
A physically based hydrological connectivity algorithm
for describing spatial patterns of soil moisture
in the unsaturated zone
Jonggun Kim1 and Binayak P. Mohanty1

1Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA

Abstract Hydrologic connectivity has been proposed as an important concept for understanding local
processes in the context of catchment hydrology. It can be useful for characterizing the soil moisture
variability in complex heterogeneous landscapes. The current land surface models (e.g., Community Land
Model, CLM) could not completely account for flow path continuity and connected patterns of subsurface
properties in the unsaturated zone. In this study, we developed a physically based hydrologic connectivity
algorithm based on dominant physical controls (e.g., topography, soil texture, and vegetation) to better
understand the spatially distributed subsurface flow and improve the parameterization of soil hydraulic
properties in hydrological modeling. We investigated the effects of mixed physical controls on soil moisture
spatial variability and developed hydrologic connectivity using various thresholds. The connectivity was used
for identifying the soilmoisture variability and applied in a distributed land surfacemodel (CLM) for calibrating
soil hydraulic properties and improvingmodel performance for estimating spatially distributed soil moisture.
The proposed concept was tested in two watersheds (Little Washita in Oklahoma and Upper South Skunk in
Iowa) comparing estimated soil moisture with the airborne remote sensing data (Electronically Scanning
Thinned Array Radiometer and Polarimetric Scanning Radiometer). Our finding demonstrated that the spatial
variations of soilmoisture could bedescribedwell usingphysically basedhydrologic connectivity, and the land
surface model performance was improved by using the calibrated (distributed) soil hydraulic parameters. In
addition, we found that the calibrated soil hydraulic parameters significantly affect model outputs not only on
the water cycle but also on surface energy budgets.

1. Introduction

Recently, various studies have been conducted to understand catchment dynamics through the examination
of catchments emergent properties (i.e., spatially connected patterns of flow paths or variable source areas)
[Amoros and Bornette, 2002; Sivapalan, 2005; McDonnell et al., 2007; Ali and Roy, 2009]. Hydrologic connectiv-
ity has been developed as an important concept for understanding local processes in the context of catch-
ment hydrology. The connectivity can be defined as connected pathways of surface and subsurface flow
and spatial patterns of soil moisture [Western et al., 2001; Ali and Roy, 2010; Jencso and McGlynn, 2011]. It
can also provide a missing linkage for preferential flow inferred from unexpected water and chemical migra-
tion, which cannot be successfully accounted for through the current parameterization and land surface
modeling (LSM: Community Land Model (CLM), Noah Land Surface Model (Noah LSM), Variable Infiltration
Capacity, etc.). Various connectivity metrics have been used in hydrology and ecology such as FRAGSTATS
(e.g., cohesion, aggregation index (AI), and contagion) [McGarigal et al., 2002], semivariogram range
[Western et al., 1998], gamma index [Ricotta et al., 2000], directional connectivity index (DCI) [Larsen et al.,
2012], and integral connectivity scale (ICS) [Western et al., 2001]. The connectivity metrics are useful to better
understand catchment hydrologic characteristics and identify runoff source areas at the hillslope scale. The
semivariogram range has the difficulty in interpreting the variation of parameters (e.g., nuggets, sills, and
ranges) with respect to the direction. Common connectivity metrics (e.g., cohesion and AI) do not reflect
the relative differences in connectivity, while DCI and ICS can describe the relative variability of spatially
connected patterns across landscapes. Several studies explored the combined effects of topography and
vegetation on connectivity of runoff source areas and shallow groundwater and showed the potential for
improving the estimation of hydrologic connectivity [Mayor et al., 2008; Hwang et al., 2009; Emanuel et al.,
2014]. Jencso et al. [2009, 2010] derived the hydrologic connectivity between catchment landscapes and
channel network to identify runoff source areas based on topographic characteristics. They explored the
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linkage between catchment structure and runoff characteristics and defined the connectivity from flow path
continuity across hillslope, riparian, and stream (HRS) interfaces. Using this concept, Smith et al. [2013]
developed the catchment connectivity model to predict streamflow production using simulated hydrologic
connectivity across HRS along a stream network. Western et al. [2004] demonstrated that saturation excess
processes can be indicated by patterns of near-surface soil moisture used for developing hydrologic connec-
tivity using the integral connectivity scale technique. Based on these studies, hydrologic connectivity demon-
strated spatially connected patterns of landscape information such as wetness condition, streamflow, and
surface characteristics (e.g., topography and vegetation).

In the past, soil moisture variability has been extensively studied at different spatial scales using in situ and
remote sensing data in various hydroclimate regions. It is crucial for understanding hydrological processes
and catchment characteristics across scales [Gaur and Mohanty, 2016]. The spatial variability of soil moisture
can be a critical factor to develop the hydrologic connectivity characterizing spatial patterns of surface and
subsurface flow. However, soil moisture information is very limited in deep soils as well as near-surface soils
for large regions. Various studies have been performed to derive soil moisture and soil properties based on
terrain indices in landscapes [Moore et al., 1993; Western et al., 1999; Wilson et al., 2005; Zhu and Lin, 2010].
Soil moisture varies across space and time according to geophysical parameters (i.e., physical controls) such
as topography, soil properties, and vegetation characteristics. The physical controls play a significant role in
characterizing the heterogeneous landscape in surface and subsurface hydrology [Famiglietti et al., 1999;
Mohanty and Skaggs, 2001; Joshi and Mohanty, 2010]. Gaur and Mohanty [2013] explored the effects of
physical controls on spatial patterns of soil moisture in humid and subhumid climatic regions. They identified
the dominant physical controls that strongly affect the soil moisture variability at various scales. Spatial
patterns of soil moisture are dependent on a set of various (dynamic and static) physical controls which have
been defined as precipitation, topography, soil, and vegetation. Thus, the spatial distribution of mixed
physical controls can be considered to develop hydrologic connectivity as landscape descriptors or potential
predictors for redistribution of surface and subsurface flow. Since precipitation and vegetation vary tempo-
rally, dynamic hydrologic connectivity can be also developed using the temporal aspect of physical controls.
Recently, Kim and Mohanty [2016] developed the hydrologic connectivity algorithm for lateral subsurface
flow processes based on the dominant physical controls to improve hydrological modeling at a subwa-
tershed scale. Their hydrologic connectivity based on the mixed physical controls (assuming that the
variables have equal effects on hydrological processes) was successfully reflected to account for subsurface
lateral flow processes in land surface modeling. However, the equal contributions of different physical
controls for describing the soil moisture variability may not be applicable in other regions or spatiotemporal
scales. Soil moisture variability may have different effects of dominant physical controls. Thus, it may be
needed to investigate the effects of mixed (weighted) physical controls as well as the interactions between
the controls on soil moisture distribution and subsurface flow.

In addition to improving the process modeling, hydrologic connectivity can be employed for improvement of
existing parameterizations (especially for soil hydraulic properties) in land surface modeling. Land surface
models estimate soil water content in soil profiles based on soil hydraulic properties which directly influence
water holding capacity in the unsaturated zone [Price et al., 2010]. In land surface modeling, soil hydraulic
properties are typically derived from empirical equations as their default parameters such as the pedotransfer
function by Cosby et al. [1984]. Although model parameter calibration is critical for achieving accurate model
output, most land surface models use a set of default or spatially uniform model parameters [Li et al., 2011].
The empirically derived default soil hydraulic parameters might not be enough to describe the soil moisture
variability in spatially heterogeneous landscapes. Thus, in this study, we investigated the effects of mixed
physical controls on soil moisture variability to develop physically based hydrologic connectivity and effec-
tively calibrate the distributed soil hydraulic properties across large regions in land surface
hydrological modeling.

The main objectives of this study are (1) to study spatially distributed patterns of mixed physical controls
which govern soil water redistribution in the unsaturated zone, (2) to develop a physically based hydrological
connectivity algorithm for better describing the spatial connection of subsurface flow in the unsaturated
zone, and (3) to improve soil hydraulic parameterization schemes based on hydrologic connectivity in
distributed hydrological modeling.
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2. Methodology
2.1. Study Sites

The Little Washita (LW) watershed in Oklahoma and Upper South Skunk (USS) watershed in Iowa were
selected as the test sites for this study (Figure 1). The study sites have different hydroclimatic conditions
and watershed characteristics (e.g., soil properties, land cover, and topography). The LW watershed is classi-
fied as subhumid climate with a mean annual rainfall of approximately 926mm and temperature of 16°C. The
LW region (area of about 600 km2) has rangeland and pastures dominated by patches of winter wheat and
other crops and soil textures ranging from fine sand to silty loam across the watershed. Several field
campaigns were conducted in this watershed such as Washita ’94, Southern Great Plains 1997 (SGP97), Soil
Moisture Experiments 2003 (SMEX03), and Cloud Land Surface Interaction Campaign 2007 (CLASIC07).

The climate of USS is humid with a mean annual rainfall of approximately 956mm and temperature of 10.7°C.
The region (area of about 2000 km2) has mostly agricultural crops such as corn and soybean and mainly silty
clay loam. The Soil Moisture Experiments 2002 (SMEX02) and Soil Moisture Active Passive Vegetation
Experiment 2012 (SMAPVEX12) field campaigns were conducted in this watershed. Our proposed approach
was validated with Electronically Scanning Thin Array Radiometer (ESTAR) pixel-based (800 × 800m) near-
surface soil moisture products [Jackson et al., 1999] obtained during SGP97 (18 June to 17 July 1997) for
the LW watershed and Aircraft Polarimetric Scanning Radiometer (PSR [Bindlish and Jackson, 2002]) observed
during SMEX02 (25 June to 12 July 2002) for the USS watershed. We selected several pixels on connected and
unconnected regions with different characteristics and complexities (e.g., soil type, land use, and topogra-
phy) as shown in Table 1 (Figure 1). On the selected pixels, the performance of land surface model was

Figure 1. Study sites of (a) Little Washita (LW) in Oklahoma and (b) Upper South Skunk (USS) in IOWA. The pixels represent
connected and unconnected regions selected for analysis.

Table 1. Characteristics of Selected Pixels in the Study Sites

LW USS

Elevation Soil Texture Land Use Elevation Soil Texture Land Use

Pixel 1 418m Silty clay loam Crop 314m Sandy clay loam Crop
Pixel 2 338m Loam Crop 294m Loam Forest
Pixel 3 391m Sandy clay loam Forage 321m Loam Crop
Pixel 4 379m Sandy clay loam Alfalfa 310m Clay loam Grass
Pixel 5 398m Clay loam Pasture 311m Loam Crop
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evaluated with and without the subsurface hydrologic connectivity for the study watersheds. In addition, the
model performances were compared at various extent scales to evaluate the spatial variability of soil moist-
ure prediction for large regions within the watersheds.

2.2. Land Surface Model (Community Land Model)

Community Land Model (CLM) serves as the dynamic land surface model component of the Community
Earth SystemModel [Oleson et al., 2010]. CLM consists of various processes such as biogeophysics, hydrologic
cycle, biogeochemistry, and dynamic vegetation. The model estimates surface and subsurface runoff based
on the simple TOPMODEL-based runoff (SIMTOP) [Niu et al., 2005]. The SIMple Groundwater Model (SIMGM)
[Niu et al., 2007] is used for considering water table dynamics as the lower boundary. Bare soil evaporation
and plant transpiration are calculated using the Philip and De Vries [1957] diffusion model and an aerody-
namic approach which is based on the Biosphere-Atmosphere Transfer Scheme model [Dickinson et al.,
1993] and a stomatal resistance from the LSM model [Bonan, 1996]. CLM is coupled with the River
Transport Model (RTM) for the runoff routing process [Oleson et al., 2010]. The soil profile is divided into 10
soil layers with the fixed thickness of 1.75, 2.76, 4.55, 7.5, 12.36, 20.38, 33.60, 55.39, 91.33, and 113.7 cm (total
depth of 343 cm). The soil water flow is solved by the modified Richards’ equation (1) [Zeng and Decker, 2009]
which is derived by subtracting the hydrostatic equilibrium soil moisture distribution from the original
Richards’ equation for improving the mass-conservative numerical scheme when the water table is within
the soil column,

∂θ
∂t

¼ ∂
∂z

K
∂ ψ � ψeð Þ

∂z

� �� �
� Q (1)

where ψ and ψe are the soil matric potential and equilibrium soil matric potential (cm), z is soil depth (cm)
taken positive upward, K is hydraulic conductivity (cmd�1), and Q is a soil moisture sink term, which is the
root water extraction rate by plants. The hydraulic conductivity, equilibrium soil matric potential, and equili-
brium volumetric water content are shown in equations 2–4 based on Clapp and Hornberger [1978],

K θð Þ ¼ Ksat
θ
θsat

� �2bþ3

(2)

ψe ¼ ψsat
θe zð Þ
θsat

� ��b
(3)

θe zð Þ ¼ θsat
ψsat þ z∇� z

ψsat

� ��1
b

(4)

where K(θ) and Ksat are the unsaturated and saturated hydraulic conductivity (cmd�1), θ and θsat are the volu-
metric soil water content and saturated soil water content (cm3 cm�3), ψsat is the saturated soil matric poten-
tial (cm), θe(z) is the equilibrium (e) volumetric water content (cm3 cm�3) at depth z (z▽ is the water table
depth), and b is the curve fitting parameter related to the pore size distribution (�), respectively. Primarily,
the four soil hydraulic properties (θsat, Ksat, ψsat, and b) are major input parameters for estimating soil

Table 2. Means and Standard Deviations for the Four Hydraulic Parameters for Various Textural Classes [From Cosby et al.,
1984, Table 3]

b Log ψsat Log Ksat θsat

Class Mean SD Mean SD Mean SD Mean SD

Sandy loam 4.74 1.40 1.15 0.73 �0.13 0.67 43.4 8.8
Sand 2.79 1.38 0.84 0.56 0.82 0.39 33.9 7.3
Loamy sand 4.26 1.95 0.56 0.73 0.30 0.51 42.1 7.2
Loam 5.25 1.66 1.55 0.66 �0.32 0.63 43.9 7.4
Silty loam 5.33 1.72 1.88 0.38 �0.40 0.55 47.6 5.4
Sandy clay loam 6.77 3.39 1.13 1.04 �0.20 0.54 40.4 4.8
Clay loam 8.17 3.74 1.42 0.72 �0.46 0.59 46.5 5.4
Silty clay loam 8.72 4.33 1.79 0.58 �0.54 0.61 46.4 4.6
Sandy clay 10.73 1.54 0.99 0.56 0.01 0.33 40.6 3.2
Silty clay 10.39 4.27 1.51 0.84 �0.72 0.69 46.8 6.2
Light clay 11.55 3.93 1.67 0.59 �0.86 0.62 46.8 3.5
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moisture distribution in CLM [Huang et al., 2013]. These soil properties are calculated based on the work by
Clapp and Hornberger [1978] and Cosby et al. [1984], which are determined according to percent sand and
percent clay contents (equations 5–8) (called default parameters in this paper). The means and standard
deviations of the parameters are available from Cosby et al. [1984] as shown in Table 2.

θsat ¼ 0:489� 0:00126�%sand (5)

b ¼ 2:91þ 0:159�%clay (6)

ψsat ¼ 10�10 1:88�0:0131�%sandð Þ (7)

Ksat ¼ 0:0070556�10 �0:884þ0:0153�%sandð Þ (8)

After investigating the effects of mixed physical controls on soil moisture variability, the soil hydraulic para-
meters were calibrated using the physically based hydrologic connectivity algorithm developed in section 2.4

Figure 2. Schematic diagram of information flow for developing connectivity index using Bayesian averaging of dominant physical controls and calibrating distrib-
uted soil hydraulic parameters. αi is the calibrating factor for each parameter based on their standard deviation that is determined by the physically based hydrologic
connectivity index.
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(Figure 2). To evaluate the land surface model performance, we compared the model outputs (e.g., soil water
content, evapotranspiration, surface runoff, and water storage) estimated by using the default soil hydraulic
parameters versus using the calibrated soil hydraulic parameters.

We used CLM4.0 loosely coupled with RTM in an offline mode with atmospheric forcing data (precipitation,
temperature, specific humidity, wind speed, surface air pressure, and solar radiation) collected from the U.S.
Department of Agriculture (USDA) Agricultural Research Service (ARS) Micronet network for the LW
watershed and SMEX02 Rain Gauge network for the USS watershed. Model inputs for the two watersheds
were generated at a spatial resolution of 800m using land cover, soil types with depth, and topographic infor-
mation obtained from NLCD (National Land Cover Database), SSURGO (Soil Survey Geographic database),
and NED (National Elevation Dataset), respectively.

2.3. Mixed Physical Controls in Complex Landscapes

Kim and Mohanty [2016] developed hydrologic connectivity assuming that all physical controls are contribut-
ing equally to representing the soil moisture distribution in the unsaturated zone. However, that assumption
has a limitation to be applied into other complex landscapes due to site-specific characteristics. In complex
landscapes, spatial distribution of soil moisture varies and shifts with landscape characteristics such as spatial
patterns of soils, vegetation, topography, and hydroclimates [Gaur and Mohanty, 2013, 2016]. To better
characterize the spatial variability of soil moisture, the total contribution of various physical controls and
their interactions need to be accounted. In this study, dominant physical controls (i.e., soil texture (%clay
and %sand), topography (Topographic Index (TI), Ln(a/tanβ)), and vegetation (normalized difference vegeta-
tion index (NDVI), (RNIR� Rred)/(RNIR + Rred)) were considered. RNIR and Rred are the reflectance of near-infrared
(NIR) radiation and visible red radiation, respectively; a represents the upslope area; and tanβ is the local
downslope. Spatial data were collected from the Soil Survey (SSURGO), Landsat 5 imagery, and USDA-
NRCS Geospatial Data Gateway for the two watersheds (Figure 3). To effectively estimate the contributing
ratios (weights) for the physical controls and their interactions, we used the Bayesian averaging scheme
[Hoetting et al., 1999] that can provide proper weights that show how the controls contribute to describing
the spatial variability of soil moisture (equation (9)).

Figure 3. Dominant physical controls (soil texture, vegetation, and topography) for the (a) LW and (b) USS watersheds (spatial resolution of 800m).
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P yjx1;⋯xið Þ ¼
Xj

i¼1

Pi xijDð ÞPi yjxi;Dð Þ (9)

where y is the combined (weighted) physical controls, xi is the normalized physical controls (i= 1, …, j), j is
the number of physical controls and interaction terms used, PDF (Pi(xi|D)) is the posterior probability for
physical controls given the normalized soil moisture measurements (D) and defined as contributing ratios
(wi) of normalized physical controls (x1, x2, x3, x4 as %clay, %sand, NDVI, and TI), and the conditional PDF
(Pi(y|xi,D)) represents the posterior distributions of y given physical controls and measurements. Interaction
terms were also considered to examine the joint effects of physical controls (e.g., x1·2, x1·3, x1·4, x2·3, x2·4,
and x3·4). In this study, the observed spatial patterns of soil moisture obtained from ESTAR and PSR for
the LW and USS watersheds, respectively, were used to determine the contributions of physical controls.
The estimated contributing ratios were used to combine the dominant controls and to develop the hydro-
logic connectivity for the study watershed.

2.4. Development of Physically Based Hydrologic Connectivity

By and large, hydrologic connectivity has been developed by patterns of wetness condition (e.g., soil moisture)
or surface topography (e.g., contributing area) at a catchment scale [Western et al., 2001; Jencso and McGlynn,
2011]. However, information for surface wetness or root zone soil moisture is very sparse, and surface
topography cannot sufficiently reflect the patterns of subsurface flow [Kim and Mohanty, 2016]. Thus, we
developed physically based hydrologic connectivity using the mixed physical controls (i.e., %clay, %sand,
NDVI, and TI) to identify the spatial variation of soil moisture. Hydrologic connectivity can be defined as

Figure 4. Physically based hydrologic connectivity: (a) connectivity functions (τ(d)) calculated using indicator maps (I(y)) of
mixed physical controls, (b) indicator maps for five selected thresholds (si), and (c) physically based hydrologic connectivity
index map developed by integrating five indicator maps.
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spatial features which concentrate flow and reduce travel times [Knudby and Carrera, 2005], and it shows how
cells are connected to each other across a domain under a certain threshold of interest variable. Among
various connectivity metrics, we used the integral connectivity scale technique which was successfully
tested in a previous study [Kim and Mohanty, 2016] to describe the soil moisture spatial variability. The
indicator map (I) is used to describe the spatial patterns of interest variable (y, mixed physical controls)
above a certain threshold (s) in the hydrologic connectivity process (10). Connectivity is calculated using
the indicator map I(y) and the connectivity function (τ(d)) expressed as equation (11).

I yð Þ ¼ 0 if y < s

1 if y ≥ s

�
(10)

τ dð Þ ¼ P h↔hþ djh; hþ d∈Hð Þ (11)

where h is a certain cell in a domain (H) and d is the distance between two cells.

Indicator maps (I(y)) for various thresholds (0–100%) were created using a mixed physical controls map gen-
erated with the contributing ratios of different physical controls. It shows that pixels above the thresholds on
the mixed controls map were assigned to “1” and others assigned to “0.” To consider various connected pat-
terns of mixed physical controls, we selected five representative thresholds from the connectivity functions
(τ(d)) that reflect the connectivity patterns well across the watershed (Figure 4a) [Western et al., 2001; Kim and
Mohanty, 2016]. In this study, we manually selected the thresholds indicating the connected patterns in the
connectivity function. Based on the various thresholds, it can be inferred how moisture can be drying or
wetting spatially across the watersheds. In turn, the indicator maps for the five thresholds were chosen
(Figure 4b). The physically based hydrologic connectivity index was developed by integrating the indicator

Figure 5. Contributing ratios (weights, wi) of physical controls (a) for LW and (b) for USS and mixed (weighted) physical controls maps (c) for LW and (d) for USS.
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maps ranging from 1 to 5 (
X5
i¼1

I yð Þsi ; si is the selected thresholds) (Figure 4c). Pixels of higher index represent

fairly connected and higher wetness regions, while lower index pixels indicate unconnected and drier
regions. The connectivity index was developed for each soil layer of CLM using the collected soil
information with depth, NDVI, and TI and then used to calibrate soil hydraulic properties in land surface
modeling. Cosby et al. [1984] developed a pedotransfer function for estimating soil hydraulic properties
(θsat, Ksat, ψsat, and b) through a regression analysis using mean values of soil samples for various soil
texture classes. The pedotransfer function has been applied in CLM to model the soil parameters as a set
of default parameters. However, the default parameters might not be enough to successfully describe the
soil moisture distribution in all areas/regions because they were derived from the texture-based mean
values of soil samples collected across the conterminous U.S. Thus, in this study, we calibrated the
parameters within their possible ranges (implying various characteristics of sample sites such as texture,
topography, vegetation, among others) by accounting for their standard deviation obtained in Cosby et al.
[1984] study (Table 2) (Pi0 = Pi,def ± αi). Pi0 is the calibrated parameter set (θsat, ψsat, b, and Ksat); Pi,def is the
default parameter set; αi is the calibrating factor for each parameter based on the standard deviation that
is determined by the physically based hydrologic connectivity index. The value of α is added to the default

Figure 6. Comparison of spatial variations of measured saturated hydraulic conductivity (Ksat) and normalized mixed phy-
sical controls (%clay, %sand, NDVI, and TI) according to soil types across the LWwatershed. CL: clay loam, L: loam, LS: loamy
sand, S: sand, SiL: silty loam, and SL: sandy loam.

Figure 7. Connectivity functions for five representative thresholds for soil layers and connectivity index for the LW
watershed. Pixels of higher index represent highly connected and higher wetness regions; lower index pixels indicate
unconnected and drier regions.
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soil parameters of θsat, ψsat, and b and subtracted from the parameter of Ksat when the connectivity index is
greater than 3 representing connected regions of physical controls and higher soil water content; on the
contrary, for other regions that have a connectivity index less than 3 reverse operation is performed. The
calibrating factor was derived for each pixel across the domain as a constant value in time. The calibrated
parameters based on physically based hydrologic connectivity were applied in CLM to effectively predict
spatially distributed soil moisture. The model outputs using the default and calibrated parameters were
compared to field observations.

3. Results and Discussions

In this study we investigated the effects of mixed dominant physical controls on soil moisture variability,
developed the hydrologic connectivity algorithm to identify the spatial variations of soil moisture, and
improved the parameterization of soil hydraulic properties. The proposed approach was tested in two water-
sheds (LW and USS) and compared to airborne remote sensing near-surface soil moisture data (800 × 800m).
The physically based hydrologic connectivity algorithm was applied to deeper soil layers as well as near-
surface soil layer. However, we compared to near-surface observations only because of the lack of soil moist-
ure information for deeper soils at watershed scales.

3.1. Effects of Mixed Physical Controls on Soil Moisture Variability

The contributing ratios of the most dominant controls (up to 4) were derived using the Bayesian averaging
scheme. Figures 5a and 5b show the histograms of contributing ratios (w1,w2,w3, andw4) of the physical con-
trols (e.g., %clay, %sand, NDVI, and TI) for the two study sites. For the LWwatershed, NDVI (w3 of 0.438), %clay
(w1 of 0.326), and %sand (w2 of 0.235) represented higher contributions to soil moisture spatial distribution,
while topography seldom contributes at the support scale of 800 × 800m (Figure 5a). The spatial distributions
of soil texture and NDVI showed distinctive patterns across this watershed. The patterns indicated that the

Figure 8. Connectivity functions for five representative thresholds for soil layers and connectivity index for the USS
watershed. Pixels of higher index represent highly connected and higher wetness regions; lower index pixels indicate
unconnected and drier regions.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025591

KIM AND MOHANTY HYDROLOGIC CONNECTIVITY IN SOIL MOISTURE 10



west and east parts of the watershed have higher values of %clay and NDVI and lower values of %sand
corresponding to higher soil water content from ESTAR measurements. We also explored the effects of
interactions between the physical controls (%clay · %sand, NDVI · %clay, NDVI ·%sand, TI · %clay, TI · %sand,
and NDVI · TI) on the contributions to soil moisture spatial variability. It was found that no significant
contributions of the interactions existed in this watershed. It can be inferred that mixed response of
individual physical controls based on their contributing ratios can predict the spatial variation of soil
moisture well describing the distinctive patterns of landscape at the LW watershed. In addition, the spatial
variation of mixed physical controls (normalized) was compared to the variability of measured saturated
hydraulic conductivity (Ksat) from soil samples collected during the SGP97 hydrology experiment across
the LW watershed. When Ksat measurements were rearranged according to soil types (CL = clay loam;
L = loam; LS = loamy sand; S = sand; SiL = silty loam; and SL = sandy loam), it showed high variations even
for the same soil types representing a similar tendency as the variation of mixed physical controls with
higher contribution of NDVI (Figure 6). This could be caused by other coexisting physical controls such as
vegetation cover which may affect soil water flow, because of root distribution and organic matter content
leading to different pore size distribution and water holding capacity in the unsaturated zone.

For the USS watershed, we found that contributing ratios of the dominant controls estimated using the
Bayesian averaging scheme tend to be biased toward soil texture (0.50 and 0.33 for %clay and%sand, respec-
tively) with no significant contributions of NDVI and TI. As with the results of LW, the surface topography
showed no valid contribution at this support scale (800 × 800m). On the other hand, when the interaction
terms between the dominant controls (%clay ·%sand, NDVI ·%clay, NDVI · %sand, TI · %clay, TI · %sand,
and NDVI · TI) were included to account for the dependency of the physical controls, the interactions of
%clay · NDVI and %sand · NDVI contributed significantly to the spatial distribution of soil moisture with resul-
tant weights of 0.17 and 0.38, respectively (Figure 5b). It showed that NDVI influenced the description of the
spatial variability of soil moisture as an interaction term with soil texture. In other words, the mixed effects of

Figure 9. (a) Dominant physical controls, (b) default and calibrated soil hydraulic parameters, and (c) soil moisture prediction in the current (CLM) and calibrated
model for a selected region (800 × 800m resolution) in the LW watershed.
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Figure 10. Comparisons of default and calibrated soil parameters according to soil texture (%sand and %clay). θsat, Ksat, and b are estimated based on %sand only;
ψsat is dependent on %clay only in pedotransfer function of CLM.

Figure 11. Comparison of default parameters and calibrated parameters on five selected pixels for the LW watershed. The
bar shows the ranges of parameters for 11 soil texture classes obtained from Cosby et al. [1984].
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interactions between physical controls as well as the individual controls on soil moisture distribution can be a
characteristic feature of larger and complex landscapes such as USS and LW watersheds.

Thus, we mixed the spatial patterns of physical controls based on their contribution ratios (w1(%clay),
w2(%sand), w3(NDVI), and w4(TI) for LW watershed; w1(%clay), w2(%sand), w3(NDVI · %clay), and w4

(NDVI · %sand) for USS watershed) (Figures 5c and 5d) and developed hydrologic connectivity maps.

3.2. Calibration of Soil Hydraulic Properties Based On Hydrologic Connectivity

Since soil moisture measurements with depth are not available at watershed scales, the contributing ratios of
physical controls derived from near-surface soil moisture were applied to combine the physical controls
maps for deeper soil layers. Because connectivity functions can be different in different soil layers, the mixed
physical controls map for each soil layer was created to calculate connectivity functions under various thresh-
olds. The five representative thresholds (50%, 55%, 58%, 60%, and 70% for LWwatershed and varying thresh-
olds with depth for USS watershed) were found from connectivity functions for each soil layer that reflect
connected patterns of themixed physical controls well across the watersheds (Figures 7 and 8). Using the five
thresholds, the indicator maps were generated, suggesting that the connectivity of mixed physical controls
showed different patterns according to the thresholds which can reflect various spatial patterns of soil moist-
ure in the unsaturated zone. In turn, the physically based hydrologic connectivity index was developed by
adding the indicator maps and quantifying the soil moisture variability. The hydrologic connectivity index
with soil depth was applied in calibrating the soil hydraulic properties in CLM, as depicted in Figure 2.

To analyze the spatial distributions of default and calibrated soil parameters, we selected a region which has
complex landscape with relatively uniform soil types and heterogeneous vegetation cover and topography
in the LW watershed. Figure 9 shows the comparison of spatial distributions of default and calibrated soil
parameters. The default parameters have relatively uniform distributions depending on soil texture only
(%sand and %clay) leading to low variation in soil moisture prediction. This is because CLM predicts soil
hydraulic parameters from soil textural class alone. On the contrary, the parameters calibrated based on the
physically based hydrologic connectivity index showed the spatially distributed patterns across the region.

Figure 12. (a) Comparisons of simulated and measured soil moisture dynamics on 5 pixels selected on connected and unconnected regions and (b) correlation and
RMSE with ESTARmeasurements for 5 pixels in the LWwatershed. Calibrated 1 and 2 represent model simulations using equal (proposed in Kim and Mohanty [2016])
and varied (proposed in this study) contributed ratios from physical controls, respectively.
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Furthermore, the variations of default and calibrated soil hydraulic parameters were compared according to
soil texture (Figure 10). The soil hydraulic parameters were uniformly predicted for the identical soil texture in
the current model, while the calibrated parameters showed variations in space as shown in comparison of
measured Ksat and mixed physical controls in Figure 6. Thus, the soil hydraulic parameters can be
effectively calibrated using the hydrologic connectivity index to predict the variability of soil moisture in
complex landscapes.

3.3. Comparison of CLM Output Using Default and Calibrated Soil Parameters

Model outputs (e.g., soil moisture, surface runoff, ET, and water storage) using the default and calibrated soil
hydraulic properties were compared. Figure 11 shows the range of parameters based on their standard devia-
tions in the Cosby et al. [1984] study. The default and calibrated parameters were compared for the selected
5 pixels (Figure 1) which have various soil texture classes (loam, sandy clay loam, clay loam, and silty clay
loam) and different vegetation in the LW watershed. After calibrating the parameters based on the physically
based hydrologic connectivity index, the soil parameters of b, θsat, and ψsat were found to be higher than the
default parameters and Ksat lower than its default values in pixels 1, 2, and 3 located on connected pixels in
the connectivity index map. In contrast, it showed lower b, θsat, ψsat and higher Ksat for the calibrated para-
meters than those of the defaults in pixels 4 and 5 which are on unconnected pixels. Several default and cali-
brated parameters were out of the ranges of parameters because the parameters were estimated with the
pedotransfer function derived through a regression analysis usingmean values of soil samples. Using the cali-
brated parameters, the model can estimate higher soil water content in connected regions and lower soil
water content in unconnected regions describing the spatially distributed soil moisture well across the LW
watershed. Corroborating these findings, an improvement can be found by comparison of soil moisture
dynamics on the selected pixels (Figures 12a and 12b). On pixels 1, 2, and 3 (connected pixels), the soil moist-
ure dynamics simulated with the default parameters were underestimated, while the model simulation using

Figure 13. Comparison of default parameters and calibrated parameters on five selected pixels for the USS watershed. The
bar shows the ranges of parameters for 11 soil texture classes obtained from Cosby et al. [1984].
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the calibrated parameters showed good agreement with ESTAR measurements (correlation coefficient of
0.81, 0.72, and 0.91; RMSE of 0.028, 0.054, and 0.029 in Figure 12b). On the other hand, the current model
using the default parameters overestimated the near-surface soil moisture on pixels 4 and 5 (unconnected
pixels) compared to the measurements. The model prediction could be improved using the calibrated soil
hydraulic parameters which match better with the measurements (correlation coefficient of 0.60 and 0.56;
RMSE of 0.058 and 0.042 in Figure 12b) for the LW watershed. Furthermore, the model output using the
varied contribution ratios from the physical controls (proposed in this study) was compared to that using
the equal contribution ratios (proposed in Kim and Mohanty [2016]) as shown in Figure 12. It showed that
the results from the previous concept could not effectively describe the spatial heterogeneity of soil
moisture distribution.

For the USS watershed, we compared the default and calibrated parameters on the selected 5 pixels
(Figure 13), which were plotted on the ranges of parameters for various soil texture classes. As discussed
above, after calibrating the parameters based on the connectivity index, it showed higher values of b, θsat,
and ψsat and lower Ksat on pixels 1 (sand clay loam) and 5 (loam) which are on connected pixels compared
to the default parameters. On the other hand, lower values of b, θsat, and ψsat and higher Ksat were assigned
to the unconnected pixels (2 (loam), 3 (loam), and 4 (clay loam)). When we compared the simulated soil
moisture dynamics using the default and calibrated parameters on the selected pixels, the improvement
of model performance was found (Figure 14a). Most of the pixels, except pixel 5, showed higher correlation
with PSR measurements for the model output with the calibrated parameters, and RMSE was further reduced
on all pixels (Figure 14b). In addition, the model predictions using the equal contributions of physical controls
considerably overestimated soil moisture dynamics compared to that using the varied contributions and
measurements. It can be inferred that we need to properly consider the spatial variability of physical controls
to reflect landscape characteristics effectively in complex landscapes. Applying the calibrated parameters in
land surface modeling, the parameters could make up for the default parameters’ weaknesses which include
underestimating the soil moisture dynamics on the connected regions and overestimating on the
unconnected regions.

Figure 14. (a) Comparisons of simulated and measured soil moisture dynamics on 5 pixels selected on connected and unconnected regions and (b) correlation and
RMSEwith ESTARmeasurements for 5 pixels in the USSwatershed. Calibrated 1 and 2 representmodel simulations using equal (proposed in Kim andMohanty [2016])
and varied (proposed in this study) contributed ratios from physical controls, respectively.
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Figures 15a and 16a show the comparisons of simulated near-surface soil moisture and ESTAR and PSR mea-
surement for the entire watersheds. The simulated soil moisture using the default parameters tends to be
underestimated in wet regions (connected pixels) and overestimated in dry regions (unconnected pixels).
It could not capture the variability of soil moisture due to the default soil parameters related to soil textural
class alone in the watersheds. The calibrated model simulation matched well with the measurements (ESTAR
and PSR) showing higher and lower soil water content on the connected and unconnected pixels, respec-
tively. The spatial variability of soil moisture prediction was compared at various extent scales. Table 3 shows
the correlation coefficients and RMSE between measured soil moisture and model simulation (top 5 cm)
using the default and calibrated soil parameters for different extent scales within the watersheds. At all extent
scales the calibrated model showed higher correlation coefficients (0.310–0.713 for LW and 0.400–0.712 for
USS) and lower RMSE (0.016–0.048 for LW and 0.081–0.099 for USS) than that of the current model that repre-
sented improvements of model performance in space. Thus, the spatial variations of soil moisture can be
properly described using soil parameters calibrated by physically based hydrologic connectivity.
Consequentially, these differences between the current and calibrated models can lead to different model
outputs (e.g., root zone soil moisture, evapotranspiration, surface runoff, and water storage) as shown in
Figures 15b–15e and 16b–16d that could have important effects not only on water cycle but also on surface
energy budgets.

Based on these findings, the physically based hydrologic connectivity developed in this study helped to
better understand the spatial variability of soil moisture in the unsaturated zone. Furthermore, the model
performance using the calibrated soil hydraulic parameters based on the connectivity index was improved
compared to the model predictions using the default parameters. It can be inferred that soil hydraulic para-
meters calibrated with physically based hydrologic connectivity can efficiently reflect the variations of soil
moisture in space in land surface modeling at regional scales.

Figure 15. (a) Comparisons of measured and simulated soil moisture and (b–e) model outputs using default and calibrated parameters (evaporation, transpiration,
surface runoff, and water storage) for the LW watershed.
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4. Summary and Conclusions

In this study, we developed a physically based hydrologic connectivity algorithm to better understand catch-
ment hydrologic characteristics and identify the soil moisture variability. To develop hydrologic connectivity
based on dominant physical controls, the effects of mixed physical controls (e.g., topography, soil texture,
and vegetation) jointly on soil moisture spatial distribution were investigated at two different hydroclimate
regions (subhumid and humid climate). The physical controls can similarly contribute to describing the spa-
tial variability of soil moisture in some regions as shown in Kim and Mohanty [2016], but it can also vary with
complex landscape characteristics. Thus, the previous methodology [Kim and Mohanty, 2016] works well in a

Figure 16. (a) Comparisons of measured and simulated soil moisture and (b–d) model outputs using default and calibrated parameters (ET, surface runoff, and water
storage) for the USS watershed.

Table 3. Correlation Coefficients and RMSE Between Soil Moisture Measurements and Simulations (Top 5 cm) Using
Default and Calibrated Soil Parameters for the Two Study Sites

LW USS

2 × 7a 4 × 9a 8 × 13a 12 × 15a 24 × 4a 32 × 7a 36 × 11a 40 × 15a

R
Default 0.164 0.250 0.540 0.669 0.512 0.389 0.371 0.237
Calibrated 0.310 0.452 0.674 0.713 0.712 0.587 0.488 0.400

RMSE
Default 0.048 0.047 0.051 0.050 0.128 0.123 0.115 0.102
Calibrated 0.016 0.044 0.048 0.047 0.099 0.098 0.090 0.081

aNumber of pixels (extent scale) = 1.6 × 1.6 km resolution; extent scales were determined by the shape of watersheds.
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certain region or does not work in other regions. That is why we improved the methodology with varied
contribution ratios in this study. Using the Bayesian averaging scheme, the contributing ratios of physical
controls to soil moisture distribution were derived to combine the controls for the two study sites. In the
LW site, soil texture (%clay and%sand) and vegetation (NDVI) showed higher contributions and no significant
contributions of interactions between the controls existed. On the other hand, soil texture and the interac-
tions between vegetation and soil texture represented valid contributions to spatial patterns of soil moisture
in the USS site. We found that the contributing ratios of physical controls could be site specific depending on
landscape characteristics, and the interaction terms of physical controls could also affect soil moisture distri-
bution. Based on the contributing ratios, the dominant physical controls were combined and used for devel-
oping hydrologic connectivity using the integral connectivity scale technique. In order to identify the
connectivity, we generated indicator maps using various thresholds selected from the connectivity functions.
In turn, the physically based hydrologic connectivity index was developed by aggregating the indicator maps
representing the connected (wet regions) and unconnected (dry regions) patterns across the watersheds,
which can properly describe the soil moisture spatial variability.

The hydrologic connectivity index was applied in calibrating soil hydraulic properties (θsat, Ksat, ψsat, and b) to
improve the current parameterization in land surface modeling (CLM). When we compared the simulated soil
moisture using the default and calibrated parameters to remote sensing measurements (ESTAR and PSR), the
calibrated model simulation showed good agreement with the measurements. The simulated soil moisture
dynamics on selected pixels were improved with the calibrated parameters indicating higher soil moisture
prediction on the connected pixels and lower prediction on the unconnected pixels. Thus, using the physi-
cally based hydrologic connectivity, we could describe the spatial patterns of soil moisture and improve
the current parameterization and model performance. Based on these results, the differences in model out-
puts using the default and calibrated soil parameters could have important effects not only on water cycle
but also on surface energy budgets. In general application, the physically based hydrologic connectivity
index can be applicable to other regions which have similar patterns of dominant physical controls for devel-
oping hydrologic connectivity using identical thresholds. Furthermore, land surface models at the global
scale currently use averaged soil parameters in a pixel, which could not reflect the spatial variability of soil
properties in a large area (a pixel). To overcome the limitation, the proposed approach can be applied for
deriving effective soil properties based on hydrologically connected patterns of physical controls. In addition,
remotely sensed soil moisture products (e.g., AMSR-E, SMOS, and SMAP) can be used for determining the
contributions of physical controls at the global scale. For future work, since hydrologic connectivity patterns
can vary with time, a dynamic connectivity index can be considered in the parameterization scheme to
account for temporal variability of soil moisture in the unsaturated zone and improve model performance
for long-term simulations.
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