
Effect of observation scale on remote sensing based
estimates of evapotranspiration in a semi-arid row
cropped orchard environment

Nandita Gaur1 • Binayak P. Mohanty1 • Shawn C. Kefauver2

� Springer Science+Business Media New York 2016

Abstract Understanding in detail the spatial distribution of evapotranspiration (ET) in row

cropped fruit production areas with diverse water requirements is vital for monitoring

water use and efficient irrigation scheduling. Spatially distributed ET for these environ-

ments can be estimated using remote sensing (RS). However, the computation of RS based

ET under such conditions is complicated because of the complex parameterizations that are

required to derive ET for the mixed pixels comprising of bare soil and well-watered plants

typical of row cropped areas. Also, the parameterization of these processes is not scale

invariant, owing to change in the percentage of vegetation cover in the mixed pixels across

remote sensing observation scales. In this study, our main objectives were (1) to isolate and

evaluate the effect of varying spatial scales (comparable to canopy sizes and larger) of the

remote sensing data on ET estimates; and (2) provide an operational method for estimating

remote sensing based ET for row cropped conditions. ET was computed using an empirical

technique (S-SEBI: Simplified-Surface Energy Balance Index Algorithm) for almond and

pistachio orchards from remote sensing imagery collected at a scale comparable to the

canopy sizes of the trees (5.8 and 7.2 m) and a scale that was much larger than the canopy

size (120 m) using the MASTER and Landsat sensors, respectively. In order to account for

the effect of mixed pixels, a Normalized Difference Vegetation Index based correction

factor was applied to the derived ET values and the results averaged for different fields

were validated with Penman–Monteith based ET estimates. It was found that the corrected

mean ET estimates at 120 m were in agreement with the Penman–Monteith based ET

estimates (RMSEaverage = 0.12 mm/h), whereas they were underestimated at the finer

resolutions. Our results indicated that a remote sensing pixel resolution comparable to the

row spacing and smaller and comparable to the canopy size overestimated the land surface
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temperature and consequently, underestimated ET when using operational models that do

not account for vegetation and soil temperature separately. The results of the application of

the NDVI correction factor indicates that good spatial estimates of crop ET can be made

for crops growing in orchards using simple ET models that require minimal data and freely

available Landsat imagery. These findings are very encouraging for the regular monitoring

of crop health and effective management of irrigation water in highly water stressed

agricultural environments.
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Introduction

Agriculture in water stressed and semi-arid environments is sustained through irrigation. In

order to effectively manage water resources in such areas, the use of irrigation water needs

to be optimized by minimizing water losses. Evapotranspiration (ET) accounts for up to

80% of the water losses in semi-arid regions (Chehbouni et al. 2008) and thus, an accurate

estimation of ET can lead to better determination of the water losses by plants to enable

effective management of irrigation planning.

The most extensively and successfully applied method for estimating crop ET (ETc) for

irrigation systems planning is the two-step crop coefficient (Kc) x reference ET (ETref)

method (Allen and Pereira 2009; Pruitt and Doorenbos 1977; Allen et al. 1998). This

method provides numerically accurate ET estimates in basin wide studies without any

spatial representation of ET. Also, the estimation of Kc becomes complicated when the

percent crop cover, irrigation techniques and routines vary across the region (Allen and

Pereira 2009). In irrigated fruit production areas where the fertilizer treatments, irrigation

techniques and age of various trees within the area (and consequently water demands) are

often variable, a numerically accurate spatial representation of ET is highly desirable. This

can be achieved through properly validated ET estimates from remote sensing, which

provides spatial representation of ET while preserving the numerical accuracy of the crop

coefficient based methodology (Price 1990; Kustas et al. 1994; Bastiaanssen et al. 1998;

Roerink et al. 2000; McCabe and Wood 2006).

Remote sensing data is available at multiple spatial scales, which determine the amount

of detail that can be extracted from each dataset. In an agricultural set-up of corn and

soybean, McCabe and Wood (2006) found that ET estimates from LANDSAT-ETM

(60 m) and ASTER (90 m) were consistent and had good correlation, while MODIS

(1020 m) was not a good platform for field scale ET owing to its inability to discriminate

land-surface heterogeneity. Kustas et al. (2004) demonstrated that remote sensing derived

ET estimates at scales varying from 60 m to 960 m were comparable with the in situ

measurements, but that the coarser resolution sensors made it impossible to distinguish

field scale fluxes from different crops. Other studies have also indicated that under full crop

cover conditions, there is loss in spatial information as the scale coarsens (Mauser and

Schadlich 1998); however, row cropped environments like fruit orchards consist of evenly

spaced trees where a large amount of bare soil is exposed between the trees. Higher

discrepancies in ET estimates based on remote sensing data at different scales have been

observed under such conditions owing to the more complex parameterization of the energy

balance processes (Chang and Hong 2012; Moran et al. 1997). In this study, it was
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hypothesized that in row cropped environments, finer resolution imagery does not imply

more accurate ET estimates from the dataset when using operational single source ET

models. The land surface temperature estimates from smaller mixed pixels (pixel resolu-

tion comparable to canopy size and row spacing) can be higher on average than that

obtained from a coarser mixed pixel where the pixel resolution is much larger than the

canopy size. This could occur since a pixel resolution comparable to the canopy size and

row spacing would lead to the presence of a higher fraction of bare soil in most pixels

(example- pistachio canopy in Fig. 1a) and thus lead to higher land surface temperature

estimates (and consequently, underestimate ET) as opposed to a coarser pixel (Fig. 1b).

Thus, the size of the pixel or observation scale would affect the ET value estimated from a

remote sensing dataset. Since land-surface temperature is a major input in ET estimating

algorithms, this variability due to scale will impact most algorithms used to derive remote

sensing based ET unless the soil and canopy temperatures are accurately accounted for

separately.

In this study, the Simplified- Surface Energy Balance Index (S-SEBI) algorithm (Ro-

erink et al. 2000) was used to estimate ET. As an empirical approach, S-SEBI is inherently

region-specific, but also consequently removes compounding errors that may be incurred

due to incorrect parameterization of energy balance processes in complex settings, such as

partial vegetation cover. S-SEBI requires minimal data inputs and assumptions in order to

estimate ET; however, in the absence of inputs required by more complex process based

algorithms, and given the incomplete understanding of the scaling of those processes in

remote sensing, such an empirical algorithm may prove to be more accurate and also more

suitable to addressing the hypotheses of this study. Furthermore, S-SEBI is compatible

with multiple sensors and works well for various land covers. It was successfully employed

by Sobrino et al. (2007) and Verstraeten et al. (2005) over diverse landscapes using

AVHRR imagery, and Roerink et al. (2000) developed this algorithm using Landsat

imagery. More recently, S-SEBI was deemed useful in a semi-arid irrigated environment in

Mexico (Chirouze et al. 2014).

Fig. 1 Conceptual diagram representing relative size of average mature pistachio canopies and remote
sensing pixels
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The objective of the study was to assess the scaling behavior of ET by comparing

spatially distributed ET derived from high resolution (comparable to canopy size) and

relatively coarser (containing multiple tree canopies per pixel) remote sensing imagery

with MODIS based (1 km) and Penman-Montieth (fetch scale) based ET estimates in row

cropped conditions. A correction factor that explicitly reduces the discrepancy between

measured, ground based ET and ET derived from remote sensing imagery under row

cropped conditions was also developed to improve ET estimates under semi-arid, row

cropped conditions.

Materials and methods

Study area

The study was conducted in almond and pistachio orchards in Lost Hills, Kern County,

California (Fig. 2). The climate of the region is semi-arid, with summer months that are

extremely hot and dry with virtually no precipitation and with most crop water demands

fulfilled by irrigation. The study area comprised of four adjacent orchards planted in rows

and irrigated through fanjet and drip irrigation. The pistachio orchards were planted in the

year 2000 with a row spacing of 5.8 m. The two almond orchards were planted one year

apart (1999 and 2000) with a row spacing of 7.5 m. The almond trees varied from 2.5 to

7.0 m high, whereas the pistachio trees were shorter, with heights varying between 1.5 and

3.0 m. (Cheng et al. 2013).

Fig. 2 Location and imagery of the study orchards in California. The calibration sites marked in white
represent calibration sites for 2009 while those marked in black represent calibration sites for 2010. The
encircled area is a bare dry patch in the almond field
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Remote sensing platforms

The study uses imagery from two different remote sensing platforms – an airborne sensor,

MASTER (MODIS/ASTER airborne simulator), and a space borne sensor, Landsat 5. The

MASTER imagery was collected on July 24th, 2009 (7.2 m resolution, time of overpass

*2 P.M. local time) and June 29th, 2010 (5.8 m resolution, time of overpass *10:30

A.M. local time) as part of the Student Airborne Research Program (SARP) campaign

organized by NASA in collaboration with the National Sub-Orbital Education and

Research Center, whereas the Landsat (120 m thermal band resolution, time of overpass

*10:30 A.M. local time) imagery was collected on July 28th, 2009 and June 29th, 2010.

The LANDSAT imagery was provided by the U.S. Geological Survey (USGS) and was

processed using the software version LPGS_12.1.1. The necessary calibration data for the

remote sensing imagery was collected at the field site as part of the SARP campaign.

Landsat

Landsat 5 terrain corrected imagery (path 42, row 35) was corrected to surface reflectance

using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)

module for basic atmospheric correction provided by ENVI version 4.3 (Exelis Visual

Information Solutions, Boulder, Colorado). The atmospheric model chosen for the cor-

rection was set to ‘Tropical’ based on the climate of the Central Valley. The aerosol model

was selected as ‘Rural’ and the initial visibility was set to 40 km since our datasets

comprised of clear, haze free days in an agricultural non-urban area. The procedure used to

extract at-satellite temperature values from Landsat was adopted from Landsat 7- Science

Data User’s Handbook, NASA (Irish 2000). The procedure for deriving actual land surface

temperature from at-satellite temperature by accounting for surface emissivity of the

respective pixels is detailed below.

Per-pixel emissivity was determined based on the red (R) and near infrared (NIR) bands

using the technique developed by Valor and Caselles (1996). The various assumed

emissivity components used in the calculation were obtained from those developed for fruit

trees.

e0 ¼ evPv þ egð1� PvÞ þ 4ðdeÞPvð1� PvÞ ð1Þ

Pv ¼
1� NDVI

�
NDVIg

1� NDVI
�
NDVIg

� �
� k 1� NDVI=NDVIv

� � ð2Þ

k ¼ q2v � q1v
q2g � q1g

ð3Þ

e: dimensionless emissivity of the pixel, de: cavity effect of a rough surface (Caselles and

Sobrino 1989) *0.04, Pv: Vegetation fraction cover, q2: reflectance in NIR band, q1:

reflectance in R band, NDVI ¼ NIR�R
NIRþR

� �
, normalized difference vegetation index (Tucker

1979).

The sub-scripts ‘0’, ‘g’ and ‘v’ refer to the pixel under consideration, a bare ground

pixel and a fully vegetated pixel, respectively. The values of emissivity for a bare ground

pixel and fully vegetated pixel were assumed to be 0.95 and 0.99. These values are in

agreement with values reported in literature.
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The uncalibrated land surface temperature was obtained by correcting the at-satellite

(radiative) surface temperature for emissivity effects of the surface

T0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
T4
sat
�
e0

4

q
ð4Þ

T0 = Uncalibrated land surface temperature, Tsat = At-satellite temperature

The remote sensing based land surface temperature was calibrated using with the

temperature data collected on the ground using empirical line correction (ELC). Ground

truth data (as described in ‘‘Field data collection’’ section) was collected on July 22nd 2009

and June 29th, 2010. The equations developed to calibrate the derived temperature esti-

mates to the actual land surface temperature are given below in Eqs. 5 and 6 (R2[ 0.9).

Tact ¼ 3:7156 � T0 � 96:093 ð2009Þ ð5Þ

Tact ¼ 2:2632 � T0 � 46:918 ð2010Þ ð6Þ

T0 = Uncalibrated derived land surface temperature, �C, Tact = Calibrated derived land

surface temperature, �C

MODIS/ASTER airborne simulator (MASTER)

The MASTER sensor collects information over 50 optical and thermal wavelengths. The

temperature estimates for the MASTER sensor were derived from band 42 which corre-

sponded to the peak of the thermal signature. Atmospheric correction using MODTRAN 4

and the In-Scene Atmospheric Compensation (ISAC) algorithm for 2009 and 2010

respectively, were applied to the thermal imagery prior to ELC and temperature estimation.

A constant emissivity value of 0.975 was used in the temperature derivation for the

MASTER sensor. A standard MODTRAN 4 and FLAASH correction for optical bands was

applied for 2009 and 2010, respectively. The equations used to calibrate the derived

temperatures from MASTER to land surface temperature in 2009 and 2010 are given

below in Eqs. 7 and 8 respectively.

Tact ¼ 1:3184 � T0 � 20:229 ð2009Þ ð7Þ

Tact ¼ 0:7194 � T0 þ 10:204 ð2010Þ ð8Þ

T0 = Uncalibrated derived land surface temperature, �C, Tact = Calibrated derived land

surface temperature, �C

Field data collection

Ground truth land surface temperature was collected using the Fluke 572 thermal infrared

(TIR) guns (Fluke Electronics, Washington, USA) to calibrate the remote sensing derived

temperature. The emissivity for the calibration of the TIR gun was set to 0.95 based on its

radiometer range (8–14 lm). A blackbody calibration was also done to account for any

variability in emissivity of the targets. In 2009, 4 target locations (2 bare soil and 2 water

bodies) in the field were chosen to calibrate the imagery (Fig. 2). Each target location was

divided in a 3 by 3 grid and the temperature of all 9 grid points was estimated using the

TIR gun. This was done twice through the afternoon. The mean temperatures of the grid

points are provided in Fig. 3. Since each location was sampled twice, a linear relationship

between temperature and time of temperature collection was assumed (Fig. 3a). The
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temperature of the ground at the time of over pass of the sensor was estimated from this

curve. Three such targets (light, dark and water), each divided into a 2 by 2 grid were

chosen to calibrate the imagery in 2010 (Fig. 2). This was done 8 times through the

afternoon. The temperature of each location at the time of overpass was estimated using the

fitted polynomial curve as shown in Fig. 3b.

The value of hourly incoming solar radiation (Table 1) and reference ET estimates were

obtained from weather station No. 146 (Belridge) managed by California Irrigation

Management Information System (CIMIS). The station is located 800 m west of the pis-

tachio orchards. CIMIS generates ET estimates for the state of California and calculates

reference ET over a standard grass or alfalfa land cover using the modified Penman

equation (Pruitt and Doorenbos 1977). The necessary crop coefficients required to compute

ET estimates specific to the crop were also calculated by CIMIS based on the technique

developed by Allen et al. (1998).

Estimating ET

Energy balance method: S-SEBI

A brief description of S-SEBI, with minor variations in computation of albedo, is provided

below for completeness. However, readers are referred to (Roerink et al. 2000) for details

of the algorithm.

Fig. 3 Calibration curves for estimation of ground temperature at the time of satellite and airborne sensor
overpass in a 2009 and b 2010

Table 1 Incoming solar radia-
tion (CIMIS, Belridge station)

Date Solar Rad (W m-2)

July 24th, 2009 835.1

July 28th, 2009 834.2

June 29th, 2010 858.9

Precision Agric

123



Rn ¼ Gþ H þ LE ð9Þ

Rn = Net radiation, W/m2, H = Sensible heat flux, W/m2, LE = Latent heat flux, W/m2,

G = Soil heat flux, W/m2

Incoming solar radiation, RS was measured close to the field site at weather station No.

146 managed by CIMIS. Rn was estimated using the relationship given below

Rn ¼ RSð1� aÞ þ Rld � Rlu ð10Þ

a = Dimensionless albedo, Rld = Long-wave downwards radiation (W m-2) (Brutsaert

1975)

Rld ¼ earT
4
a W m�2
� �

ð11Þ

Ta = Air temperature (K), ea = Dimensionless atmospheric emissivity

ea ¼ 1:24
ea

Ta

� 	1=7
ð12Þ

ea = Vapor Pressure (mBar), Rlu = Long-wave upwards radiation defined as

Rld ¼ eSrT
4
S W m�2
� �

ð13Þ

es = Land Surface emissivity (calculated in Eq. 1), r = Stefan–Boltzman Constant

(W m-2 K-4), Ts = Land surface temperature (�K)
Soil heat flux, G, was estimated as a function of NDVI using the model developed by

Daughtry et al. (1990) and assuming that the same relationship held good for our field site.

The use of a vegetation based relationship for calculating soil heat flux was justifiable since

the area under consideration was an agricultural region.

G ¼ ð0:325� 0:208NDVIÞRn ð14Þ

The evaporative fraction (K) was assumed constant through the day (Shuttleworth et al.

1989; Brutsaert and Chen 1996; Crago 1996) for the S-SEBI model and was calculated as:

K ¼ TH � T0

TH � TkE

� 	
ð15Þ

where,

TH ¼ aH þ bHr0 TkE ¼ akE þ bkEr0 ð16Þ

K: Evaporative fraction corresponding to pixel albedo r0, TH : Theoretical land surface

temperature for an albedo value when all available energy is converted to sensible heat,

TkE: Theoretical temperature for a land-surface albedo value when all available energy is

converted to latent heat, aH , bH , akE, bkE: fitting parameters (Roerink et al. 2000).

These fitting parameters were obtained by bounding the albedo versus temperature

graphs as shown for the MASTER and Landsat sensors (Fig. 4). The accuracy of the

bounding lines is subject to the nature of the heterogeneity present in the area (i.e. presence

of light and dark pixels). Ideally, the light pixels should correspond to bare soil that is

completely devoid of moisture whereas the dark pixels should correspond to pure water

pixels. These pixels were chosen from the water and bare ground targets that were also

used for calibration (Fig. 2). Albedo, r0, was estimated using the model listed in Gowda

et al. (2008) that utilizes the Red (R) and Near Infrared bands (NIR).
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r0 ¼ 0:512Rþ 0:418NIR ð17Þ

where, NIR = Band 4 (Landsat) or Band 9 (MASTER), R = Band 3 (Landsat) or Band 5

(MASTER).

The latent heat, (LE) was estimated as

LE ¼ KðRn � GÞ ð18Þ

The latent heat flux was converted to ET estimates (mm/h) using Eqs. 19 and 20

(Henderson-Sellers 1984).

ETS�SEBI ¼ LE
3600

L

� 	
ð19Þ

where,

L ¼ 2:5e6 � 2:386e3ðT � 273:15Þ Henderson - Sellers 1984ð Þ ð20Þ

T = Land surface temperature (�K).

Fig. 4 Albedo v/s land surface temperature for a Landsat sensor, 2009, b Landsat sensor, 2010, cMASTER
sensor, 2009, and d MASTER sensor, 2010
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Correction factor for S-SEBI based ET

In order to correct for the partial vegetation cover, the ET values estimated using S-SEBI

were adjusted based on the percent vegetation cover (Eq. 21).

ET ¼ ETS�SEBI

NDVI
NDVImax

� � ð21Þ

NDVI
NDVImax

= percent vegetation cover, NDVI = NDVI of the pixel under consideration,

NDVImax = NDVI of a completely vegetated pixel or maximum NDVI of the region (with

similar leaf area index as the crop under consideration), ETS-SEBI = modelled ET estimates

(mm/h).

Results and discussion

Effect of correction factor on ET estimates

ET obtained from S-SEBI is based on the relationship between land surface temperature

and albedo data derived at pixel resolution of the remote sensor and as such gives an

estimate of the water loss per pixel (which may be fully or partially vegetated). This

relationship, however, holds good only for homogeneous pixels whose albedo changes

proportionally to the temperature (also water content) of the entire pixel. In the given

study, the bare soil around the canopy and within the rows was parched dry and as a result

each pixel was comprised of the well-watered trees and soil at different temperatures.

Under such conditions, the resultant albedo/temperature of the mixed (partially vegetated)

pixel would not change in proportion with the water content of the pixel. A well-watered

plant in such conditions may appear to be water stressed because of the higher temperature

of the mixed pixel due to the presence of hot and dry bare soil in it. Thus, the ET values in

the pixel will be underestimated as a result of averaging of temperatures of the different

components in the mixed pixel. The correction factor applied to ET estimates was based on

the assumption that the ET increases in proportion to the NDVI of the pixel and was

designed to increase the estimated ET value to match a fully vegetated pixel. The Penman–

Monteith based ET estimates also provide an accurate estimate of the potential water loss

from a crop with complete ground cover (unless a variation of percent ground cover is

accounted for in the computation of Kc). Thus, such a correction also enables the com-

parison and validation of the estimated ET with the more accurate Penman–Monteith based

ET values while retaining the spatial variability and detail in ET estimates from remote

sensing platforms.

Figure 5a and b show the ET derived using S-SEBI from the Landsat and MASTER

sensor in 2010. On average, ET losses from the almond fields were higher as compared to

the pistachio fields. However, the derived ET values were underestimated due to the bare

soil fraction in each pixel. By scaling the ET as given in Eq. 21, water losses from the

plants were calculated (Fig. 5c, d), which were higher than the averaged (uncorrected) ET

across the mixed pixel. The increase in corrected ET values was larger for the pistachio

orchards as compared to almond orchards (Fig. 5) since pistachios had a smaller canopy

and consequently consisted of more bare soil compared to almond pixels.

The field averages and standard deviation for ET (Fig. 6a, b) and corrected ET (Fig. 6c,

d) for the years 2009 and 2010 are plotted against Penman–Monteith based ETc (Kc x
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ETref) estimates (Table 2). The calculation of ET based on a reference crop (ETref, either

from clipped, well-watered grass or a taller full-cover alfalfa crop) has been standardized

by Food and Agriculture Organization (FAO), (Allen et al. 1998; 2006) and the American

Society of Civil Engineers (ASCE-EWRI 2005). Kc is the crop specific coefficient rep-

resenting ratio of the crop’s potential ET (ETc) and ETref. This formulation does not

account for agricultural practices like planting in rows that result in partial ground cover.

The orchards in our study area were not under water stress and the trees were expected to

be transpiring nearly at the potential (Penman–Monteith) rate; however, S-SEBI generated

ET estimates were lower than the Penman–Monteith based estimates (Fig. 6a, b). Low ET

estimates were also reported for the 2009 imagery by Roy et al. (2013) who used the

SEBAL model to derive ET. ET from pistachio orchards that comprise of trees with

smaller canopies was underestimated more than that from the almond trees with larger

canopies in both the years. After applying the correction for percent crop cover, the ET

estimates became comparable with the Penman–Monteith based estimates (Fig. 6c, d). The

observed root mean square error (RMSE) for pistachios changed from 0.65 to 0.08 and

Fig. 5 ET (S-SEBI estimated) distribuition in 2010 as estimated from a Landsat and b MASTER sensor
and Corrected ET distribution in 2010 c Landsat and d MASTER sensor. (P-pistachio and A-almonds)
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0.76 to 0.62 mm/h for Landsat and MASTER, respectively. The difference in RMSE for

almonds was lower. Thus, we assume that better accounting for percent vegetation cover

improves estimates of remote sensing derived ET in orchard conditions using S-SEBI. This

finding is very encouraging for remote sensing based ET estimation over agricultural

Fig. 6 Average ET values in 2009 and 2010 before correcting for partial vegetation cover for a Landsat and
b MASTER and after correcting for partial vegetation cover for c Landsat and d MASTER

Table 2 CIMIS (Belridge station) based ET estimates

Date Crop ET0 (mm/h)** Crop Coefficient, Kc* ET = Kc x ET0 (mm/h)

July 24th, 2009 Almonds 0.762 1.08 0.823

July 28th, 2009 Almonds 0.762 1.08 0.823

June 29th, 2010 Almonds 0.762 1.06 0.808

July 24th, 2009 Pistachio 0.762 1.19 0.907

July 28th, 2009 Pistachio 0.762 1.19 0.907

June 29th, 2010 Pistachio 0.762 1.19 0.907

* Crop coefficients were chosen based on time of year and have been provided by CIMIS for mature almond
crops

** Provided by CIMIS
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orchards in California that solely depend on irrigation, since spatial estimates of ET can be

obtained with the use of simple models like S-SEBI and routinely available Landsat (and

eventually the most recent Sentinel-2) data. The resulting precision in ET estimates may

also then be used to design targeted irrigation schemes.

Effect of varying scale on ET estimates

ET estimates using remote sensing data are largely affected by plant structure, leaf area

index, canopy characteristics and proportion of bare soil present in a pixel. Variation in

these factors with varying resolution of the pixels affects different portions of the elec-

tromagnetic spectrum differently. Stagakis et al. (2012) evaluated the effect of varying

pixel resolution (from sunlit crown level to aggregated with bare soil) for various physi-

ological indices based on the optical electromagnetic spectrum. They found that the

relationship of the indices with plant water stress deteriorated by the inclusion of bare soil

in the aggregated pixels. In order to compare the Landsat and MASTER based ET, the

distribution of corrected ET as obtained from both sensors in 2009 (Fig. 7a) and 2010

(Fig. 7b) was plotted through violin plots. The ET of crops from the MASTER sensor was

normally distributed while Landsat based ET was slightly right skewed. The normality of

the ET values indicates that most trees were transpiring at the same rate. The thin-tailed

right skew (higher values) in the LANDSAT based ET may be attributed to the

inevitable averaging of bare soil/road around the fields. The corrected ET values for such

pixels are higher since the NDVI is lower. Numerically, ET estimates obtained from

MASTER were lower than those obtained from Landsat. The higher contrast between the

two sensors in 2009 could be because of differences in irrigation amounts on the two days

when imagery was collected. Table 3 provides the mean and variance for the distribution

of the MASTER-based S-SEBI calculated ET values. The MASTER sensor provided lower

mean ET estimates than Landsat during both the years. However, in 2010, when the

imagery from MASTER and Landsat was collected almost simultaneously, the differences

between the two ET estimates were smaller. The variance values for the pistachio fields in

2009 were almost the same at both resolutions, implying that the variance captured at 7.2

and 120 m resolution was nearly similar in the orchards. On the other hand, the differences

Fig. 7 Violin plots representing distrbution of ET in the year a 2009 and b 2010. Red line depicts MODIS
based average ET (Color figure online)
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between the variances at the two scales was higher in 2010. More data at different scales

would be required to accurately ascertain the cause of the difference in variance, but it

could be attributed to difference between the sensor resolution and canopy sizes. The

sensor resolution in 2009 was 7.2 m (larger than a typical mature pistachio canopy)

whereas it was approximately same (5.8 m) as a mature pistachio canopy in 2010. The

difference in resolution could alter the percent vegetation cover per pixel, which creates

differences in variance. The difference in variance for the larger almond canopy at the two

scales was consistent across the two years (higher for 120 m).

The underestimation of mean ET by MASTER can also be attributed to the pixel

resolution of the sensors (Landsat, 120 m thermal; MASTER, 5.8 m). McCabe et al.

(2008) showed that for a 50:50 split binary mixed pixel with large temperature variation

between the two components, the retrieved temperature (between 8 and 12 lm) could

vary up to 2 degrees K. They found this variation to be an increasing function of the

difference in mean and standard deviation of the temperature of the binary components.

The pixels in our study area represent binary mixtures with a large difference in mean

temperature of the well irrigated trees and dry bare soil. The Landsat pixel was large

enough to comprise of multiple trees and the ET estimates that resulted were an

average of trees and bare soil (Fig. 1b). On the other hand, the small pixel resolution of

the MASTER sensor at most allowed one tree per pixel (Fig. 1a). Most pixels for the

MASTER sensor consisted of either (1) a portion of a tree and bare soil or, in some

cases, (2) only bare soil. This led to higher pixel temperatures in the MASTER sensor

and consequently S-SEBI generated lower ET estimates from MASTER. The results

indicate that, similar to the typical loss of information in upscaling, there may be loss

of information in selecting resolutions that are comparable to canopy sizes under row

orchard conditions. The MODIS based ET values (Fig. 7) were typically lower than

Landsat and higher than the MASTER sensor derived ET. The MODIS pixel has a

resolution of 1 km and, under the given agricultural settings, comprises various crops

that differ in terms of growth stage, irrigation patterns and types. Thus, at the scale of a

MODIS pixel, the representativeness of an agricultural field is lost.

The above analysis indicates that in the specific case of row cropped conditions, the

spatial resolution of remote sensing data can lead to under/over estimation of ET. It is also

not necessarily true that finer resolution of remote sensing data will enable better esti-

mation of ET using single source ET algorithms.

Table 3 Mean (Variance) of
corrected ET estimates obtained
for almonds and pistachio from
Landsat and MASTER

Crop Landsat MASTER

Year: 2009

Almonds 0.96 (0.013) 0.52 (0.009)

Pistachio 0.84 (0.004) 0.32 (0.003)

Year: 2010

Almonds 0.93 (0.014) 0.77 (0.009)

Pistachio 0.85 (0.003) 0.72 (0.009)
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Conclusions

In the given study, we evaluated the effect of varying spatial resolutions on ET estimates

for two different crop orchards in California. Actual ET was estimated over almond and

pistachio orchards using S-SEBI algorithm. We employed MASTER sensor data at a

resolution of 5.8 and 7.2 m and from the Landsat sensor data at 120 m resolution at similar

dates from two consecutive years. We found that Landsat provided more accurate estimates

of ET than MASTER, which tended to underestimate the ET from the plants. An NDVI

based correction technique was also applied to correct for the mixed pixel effects in the

orchard conditions, which improved ET estimates with respect to the crop coefficient

method. A comparison of the derived ET estimates with MODIS based ET estimates

revealed that MODIS based ET estimates do not compare well with the ET estimates from

individual crop types because of its coarse pixel size. The results from this study are

limited to two days of data in the growing season with specific view angles. The issue of

scale in remote sensing, especially for partially vegetated fields, complicates as the viewing

and sun angles are altered. Therefore, additional analysis needs to be conducted before

applying these results for other seasons and using different remote sensing platforms with

non-nadir view angles. The results of the study are however very encouraging toward the

incorporation of remote sensing data in estimating evapotranspiration in the region for use

toward precision agriculture. This research may be of particular interest as it shows how

freely available Landsat data can be used in conjunction with a simple ET model with

minimal data requirements to provide ET and related crop health maps to farmers

regularly.
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Sobrino, J. A., Gómez, M., Jiménez-Muñoz, J. C., & Olioso, A. (2007). Application of a simple algorithm to
estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula. Remote
Sensing of Environment, 110(2), 139–148. doi:10.1016/j.rse.2007.02.017.

Precision Agric

123

http://dx.doi.org/10.1016/0034-4257(89)90022-9
http://dx.doi.org/10.1080/01431160802036417
http://dx.doi.org/10.1080/01431160802036417
http://dx.doi.org/10.1016/j.rse.2012.12.024
http://dx.doi.org/10.5194/hess-18-1165-2014
http://dx.doi.org/10.1016/0022-1694(95)02903-6
http://dx.doi.org/10.1016/0034-4257(90)90012-B
http://dx.doi.org/10.1007/s00271-007-0088-6
http://dx.doi.org/10.1002/qj.49711046626
http://dx.doi.org/10.1002/qj.49711046626
http://dx.doi.org/10.1016/j.rse.2004.02.020
http://dx.doi.org/10.1016/0034-4257(94)90022-1
http://dx.doi.org/10.1016/S0022-1694(98)00228-5
http://dx.doi.org/10.1080/01431160802036474
http://dx.doi.org/10.1016/j.rse.2006.07.006
http://dx.doi.org/10.1016/S0022-1694(96)03133-2
http://dx.doi.org/10.1109/36.58983
http://dx.doi.org/10.1016/S1464-1909(99)00128-8
http://dx.doi.org/10.1016/j.rse.2007.02.017
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