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Abstract In this new era of remote-sensing based hydrology, a major unanswered question is how to
incorporate the impact of land-surface based heterogeneity on soil moisture dynamics at remote sensing
scales. The answer to this question is complicated since (1) soil moisture dynamics that vary with support,
extent, and spacing scales are dependent on land-surface based heterogeneity and (2) land-surface based
heterogeneity itself is scale-specific and varies with hydroclimates. Land-surface factors such as soil,
vegetation, and topography affect soil moisture dynamics by redistributing the available soil moisture on
the ground. In this study, we determined the contribution of these biophysical factors to redistribution of
near-surface soil moisture across a range of remote sensing scales varying from an (airborne) remote sensor
footprint (1.6 km) to a (satellite) footprint scale (25.6 km). Two-dimensional nondecimated wavelet
transform was used to extract the support scale information from the spatial signals of the land-surface and
soil moisture variables. The study was conducted in three hydroclimates: humid (Iowa), subhumid
(Oklahoma), and semiarid (Arizona). The dominance of soil on soil moisture dynamics typically decreased
from airborne to satellite footprint scales whereas the influence of topography and vegetation increased
with increasing support scale for all three hydroclimates. The distinct effect of hydroclimate was identifiable
in the soil attributes dominating the soil moisture dynamics. The near-surface soil moisture dynamics in
Arizona (semiarid) can be attributed more to the clay content which is an effective limiting parameter for
evaporation whereas in Oklahoma (humid), sand content (limiting parameter for drainage) was the
dominant soil attribute. The findings from this study can provide a deeper understanding of the impact of
heterogeneity on soil moisture dynamics and the potential improvement of hydrological models operating
at footprints’ scales.

1. Introduction

Near-surface soil moisture dynamics refer to the variations in near surface soil moisture. Along with root
zone soil moisture, they govern (1) partitioning of the energy and water budget, (2) triggers for runoff on
the land surface or infiltration into the deeper layers after rainfall depending on the antecedent moisture
conditions, (3) modulation of groundwater recharge rates and contaminant transport to the groundwater,
and (4) bottom boundary condition for climate models and top boundary condition for watershed hydrolo-
gy and agricultural production models. However, the apparent soil moisture dynamics vary widely with the
spatial and temporal support, spacing, and extent scale of soil moisture measurements [Bl€oschl and Sivapa-
lan, 1995; Gaur and Mohanty, 2013]. The advent of a remote sensing (RS) era in hydrology has led to
increased availability of data over larger extents, coarse remote sensing supports (footprints), and regular
spacing whereas our understanding of soil moisture dynamics (Richard’s equation, Richard [1931]) has been
based on soil moisture data collected at smaller extents, fine (of the order of a few centimeters) support
scale and irregular spacing. In order to exploit the full potential of soil moisture estimation from space and
enable transfer of knowledge of soil moisture dynamics between scales, it is essential to understand soil
moisture dynamics from a remote sensing (support, spacing, and extent) scale perspective. Another impor-
tant factor governing soil moisture dynamics at the RS footprint is the hydroclimate of the region. The
hydroclimate of a region determines the amount of input water (in terms of precipitation) to any region
and discounting tectonic activity or nature of parent rock material, it also represents the nature of landscape
forming agents (like precipitation, temperature extremes observed in a region etc.). For example, an arid
hydroclimate (like deserts) will be dry and will typically have poorly formed coarser sandy soils since a major
weathering agent (water) is available in low quantity. Likewise, the vegetation density is also determined by
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the precipitation amount, temperature etc. while many topographic features (rills etc.) may also be generat-
ed as a result of long-term impact of channeling of precipitation. Since soil type, vegetation (type, density
etc.), topography, and precipitation history control soil moisture dynamics [Mohanty and Skaggs, 2001; Gaur
and Mohanty, 2013], it can be hypothesized that dynamics of soil moisture are hydroclimate specific.

Past literature has focused extensively on understanding correlations between physical factors and soil
moisture using geostatistics. This has enabled scientists to evaluate their effect on soil moisture at varying
extent and spacing scales but fixed support scale. Only a few studies have discussed soil moisture variability
by varying support scales and have mostly been limited by the scales and/or hydroclimates being analyzed.
For the Southern Great Plains (SGP) region in Oklahoma, Ryu and Famiglietti [2006] used data at approxi-
mately 1 km 3 1 km to generate semivariograms of soil moisture. They scaled their semivariograms using
‘‘regularization’’ to make inferences for the semivariogram behavior at different support scales and attribut-
ed correlation lengths varying between 10 and 30 km to spatial patterns of soil texture while correlation
lengths varying between 60 and 100 km to rainfall patterns for the 1 km support scale. The same was also
suggested by Kim and Barros [2002] who used data at 800 m 3 800 m and Oldak et al. [2002] who used
data at 400 m 3 400 m support in the SGP region. Cosh and Brutsaert [1999] used data at 200 m 3 200 m
support scale and demonstrated a soil-based control on soil moisture distribution which was also corrobo-
rated by Gaur and Mohanty [2013] who used data at 800 m 3 800 m. Over the same region, Jawson and Nie-
mann [2007] used empirical orthogonal functions to demonstrate that the largest influence on soil moisture
(800 m 3 800 m) was typically due to sand content except on the dry days where clay content played the
dominant role. Joshi and Mohanty [2010] used data collected at the 800 m support scale in Iowa and argued
that rainfall, topography, and soil texture have maximum effect on soil moisture distribution with limited
influence of vegetation. Using data at finer support scale (i.e., collected using impedance probes, time
domain reflectometry, and tensiometer-based probes), soil moisture distribution was also shown to be influ-
enced by variable land cover, land management, microheterogeneity [Mohanty et al., 2000a], and topogra-
phy [Mohanty et al., 2000b; Burt and Butcher, 1985; Western et al., 1999].

Considering the lack of and need for studies regarding the effect of varying support scales on the relation-
ship between soil moisture and heterogeneity, the primary objective of this study was to determine the
hierarchical dominance of land-surface (soil, vegetation, and topography) factors on soil moisture across
remote sensing support scales varying from 1.6 km (airborne) to 25.6 km (satellite) for three hydroclimates.
The extent and spacing scale for the study was fixed at regional extent (area >2496 km2) and regular spac-
ing (0.8 km) while the support was varied to extract support scale specific information from the spatial sig-
nal of the physical variables using two-dimensional nondecimated wavelet transform. A number of
attributes were chosen to represent soil, vegetation, and topography for a comprehensive evaluation of the
land-surface factors. To the best of the authors’ knowledge, this is the first study addressing the physical
controls of near-surface soil moisture across such a wide range of support scales.

2. Study Area and Data

2.1. Climatology
The study has been conducted using soil moisture data from the growing season of 1997, 2002, and 2004
in three different hydroclimates (Figure 1). The first region lies in Arizona. The climate in this region is classi-
fied as ‘‘arid-steppe-hot’’ (K€oppen climate classification BSh, Peel et al. [2007], Ackerman [1941]). The annual
mean precipitation of the region is �350 mm as recorded in the town of Tombstone located within the
study area. Over 60% of the total annual rainfall occurs during July–September as a result of the North
American Monsoon in the form of localized, high intensity, and short convective thunderstorms [Ryu et al.,
2010]. The potential evaporation during the growing season is between 1016 and 1270 mm [NOAA technical
report NWS 33, 1982]. The region experienced very little precipitation during the duration of the study in the
year 2004 [Bindlish et al., 2008]. The second region is in Iowa. The climate in the region is classified as ‘‘cold-
without dry season-hot summer’’ (K€oppen climate classification Dfa). The average annual rainfall in this
region is 834.9 mm [Bindlish et al., 2006]. The potential evaporation during the growing season is 762 mm
[NOAA technical report NWS 33, 1982]. During the period of study in 2002, no precipitation occurred for over
10 days before the soil moisture data collection began [Katzberg et al., 2006] after which locally heavy rain-
fall events were observed from day of year (DOY) 185–191. On DOY 192, there was a widespread rain event
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[Jackson et al., 2003]. The third study area is in Oklahoma and is characterized as ‘‘temperate-without dry
season-hot summer’’ climate (K€oppen climate classification Cfa). The average annual rainfall as recorded in
the Little Washita watershed within the study region is �749 mm [Jackson et al., 1999]. The climate in the
region remains humid throughout the year. The summers are hot and long while the winters are cool and
short. Summer precipitation is dominated by convectional precipitation. The potential evaporation during
the growing season is between 914.4 and 1016 mm [NOAA technical report NWS 33, 1982]. During the period
of study in 1997, three significant wetting events were observed in Oklahoma. Two events (DOY 176-177
and 180-181) had a strong north-south gradient with heavy precipitation in the northern half and little to
no precipitation in the southern half. The third event (DOY 191-192) delivered nearly homogeneous rainfall
to the entire study region [Crow and Wood 1999].

2.2. Data
The heterogeneity in topography, soil, and vegetation was described using various attributes for a compre-
hensive analysis. Topography was represented by elevation (DEM), slope, and flow accumulation, soil was
represented by percent clay and percent sand, while leaf area index (LAI) was used to represent vegetation.
The elevation data (30 m resolution) was obtained from the National Elevation Data set [Gesch et al., 2009].

Figure 1. Site characteristics of the study sites.
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The root mean square of the reported vertical accuracy of the data set is 1.55 m [Gesch et al., 2014]. Slope
(calculated in degrees) and flow accumulation were derived from the same elevation data set using ArcGIS
(ESRI). Percent sand and clay values were obtained from Soil Geographic (STATSGO) Data Base for the Con-
terminous United States [Miller and White, 1998]. All available LAI data for the period of study were
extracted from the 4 day composite MODIS product [NASA Land Processes Distributed Active Archive Center,
2001]. The algorithm to generate the composite LAI product chooses the ‘‘best’’ pixel from all the acquisi-
tions of the MODIS sensors aboard NASA’s Terra and Aqua satellites from within a 4 day period. The three
study regions vary extensively in terms of soil, vegetation, and topography. Arizona has the highest sand
content on average with very little vegetation which is mostly in the form of shrubs with some pasture and
cropland. The topography includes areas of high relief with a generally undulating terrain. Iowa has fertile
soils with corn and soybean comprising the dominant vegetation in the entire domain. The terrain varies
smoothly across the domain. Oklahoma has the widest range of sand and clay content amongst the three
regions. Vegetation comprises mostly of pasture with some cropland while the terrain is gently rolling. Sta-
tistics describing site characteristics have been given in Table 1.

Airborne volumetric soil moisture data (Figures 2a and 2b) for Iowa and Arizona were collected during Soil
Moisture Experiments in 2002 (SMEX02) and 2004 (SMEX04) respectively, using the Polarimetric Scanning
Radiometer, PSR [Bindlish et al., 2006, 2008] at 800 m 3 800 m spatial resolution. The data for Oklahoma
(Figure 2c) was collected in 1997 (Southern Great Plains (SGP) 1997 hydrology experiment) using the Elec-
tronically Scanning Radiometer [Jackson et al., 1999] at 800 m 3 800 m spatial resolution. The soil moisture
data comprise a wide range of soil moisture conditions (Figure 2) that are representative of the typical soil
moisture conditions in the regions during the growing season. The airborne soil moisture data were validat-
ed against the corresponding field averages of the ground-based soil moisture data that was collected
simultaneously. The standard errors of the airborne data as compared to ground-based data were small—
0.014 cm3/cm3 (v/v) for Arizona [Bindlish et al., 2008], 0.055 cm3/cm3 for Iowa [Bindlish et al., 2006], and
�0.03 cm3/cm3 for Oklahoma [Jackson et al., 1999]. Thus, the moisture retrieval algorithm used was
assumed to not bias the interpretation of the results in this study.

Table 1. Metrics of Properties Representing Different Physical Factors for Semiarid (Arizona), Humid (Iowa), and Subtropical (Oklahoma)
Regions

Phys. Factor Max Min Average CVa Median

Elevation (m)
Arizona 2155.00 1074.00 1365.96 0.11 1335.00
Iowa 391.63 266.95 342.85 0.07 350.51
Oklahoma 383.00 269.99 328.32 0.06 327.67

Clay (%)
Arizona 38.00 12.00 16.64 0.28 16.00
Iowa 33.00 18.00 24.76 0.14 24.00
Oklahoma 27.00 3.00 16.83 0.33 19.00

Sand (%)
Arizona 58.00 17.00 50.00 0.19 49.00
Iowa 45.00 20.00 29.92 0.19 29.00
Oklahoma 92.00 17.00 31.51 0.72 20.00

Slope (m/m,[8])
Arizona 0.310 [17.228] 0.000 [0.038] 0.028 [1.618] 0.021 [1.228] 0.018 [1.058]
Iowa 0.023 [1.368] 0.000 [0.008] 0.004 [0.248] 0.012 [0.668] 0.004 [0.218]
Oklahoma 0.027 [1.538] 0.000 [0.018] 0.006 [0.358] 0.010 [0.598] 0.005 [0.318]

Flow Acc.b

Arizona 1339.00 0.00 21.60 3.97 2.00
Iowa 129.00 0.00 4.37 2.58 0.00
Oklahoma 701.00 0.00 10.23 3.81 0.00

LAIc(m2m22)
Arizona 1.80 0.00 0.46 0.45 0.50
Iowa 6.80 0.10 2.62 0.33 2.50
Oklahomac 3.3 0.3 0.96 2.68 0.9

aCV represents coefficient of variation.
bUnits are number of pixels (800 m 3 800 m).
cLAI data for Oklahoma were taken from the year 2004 since MODIS data were not available in 1997. Since Oklahoma is mostly natu-

ral grasslands which remain almost same across the years, data sets from different years with similar rainfall was considered.
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3. Methodology

Land-surface based physical factors (also referred to as biophysical factors or biophysical controls in the
study) mainly affect soil moisture dynamics by redistributing/changing the available moisture content in
the land surface. Soil moisture changes as opposed to absolute values of soil moisture have been shown to
be more related to landscape factors [Logsdon, 2015] and also more accurate [Green and Erskine, 2011].
Moisture redistribution or changes in soil moisture content in a region over a given period of time, takes
place as a result of infiltration/drainage (primarily dependent on soil type) or evapotranspiration (depen-
dent on vegetation, soil, and topography) from within a pixel and also subsurface/overland flow (dependent

Figure 2. Volumetric soil moisture maps for (a) Arizona, (b) Iowa, and (c) Oklahoma regions.

Water Resources Research 10.1002/2015WR018095

GAUR AND MOHANTY LAND-SURFACE CONTROLS ON SOIL MOISTURE AT DIFFERENT SCALES 5



on soil and topography) between pixels etc. Since each process causing redistribution has its own associat-
ed time scale, a redistributed soil moisture signal sampled over different time scales may reveal a domi-
nance of different physical processes. Thus, moisture redistribution at a fixed time scale (representative of
RS data) was selected as the variable for evaluating controls of biophysical factors on footprint scale soil
moisture dynamics. The magnitude of soil moisture redistribution is also a function of antecedent moisture
conditions and depends on whether the domain is undergoing drying or wetting as evident by hysteresis
observed in past studies [Teuling et al., 2007; Ivanov et al., 2010; Gaur and Mohanty, 2013]. Thus, in order to
study the effect of land-surface factors on soil moisture dynamics in isolation, the effect of antecedent soil
moisture from the moisture redistribution spatial signal was removed. Since the functional dependence of
moisture redistribution on biophysical factors also changes with seasons which act as a large temporal scale
forcing, the results from this study are representative only of the growing season.

We generated pixel-based daily (in some cases, once in 2 days or bidiurnal) moisture redistribution images.
The daily (and bidiurnal) scale was selected keeping in mind that most satellite-based soil moisture data are
typically available once every day. The influence of biophysical factors on moisture redistribution was com-
puted in terms of their areal extent of dominance and the average magnitude of moisture redistribution
they cause. The areal extent was evaluated by comparing the spatial patterns of the redistribution signal
with the patterns of different land-surface based biophysical factors. It was assumed that if a biophysical
factor contributed to moisture redistribution, the spatial pattern of moisture redistribution would reflect the
spatial pattern of the same biophysical factor. For example, the spatial patterns of vegetation would match
that of moisture redistribution if evapotranspiration was the dominant process causing redistribution. The
results were analyzed for drying and wetting conditions separately to account for any large-scale hysteresis.
The computational details of the methodology are given below.

Using the soil moisture data for each region, soil moisture redistribution (equations (1) and (2)) values were
computed. Soil moisture data were collected at irregular time intervals. Thus, the redistribution values repre-
sent soil moisture redistribution over time scales ranging from 1 to 2 days depending on the duration
between two consecutive airborne remote sensing data collection days (Table 2).

DSMt5smt2smt21 t22ð Þ (1)

DSMt 5 redistributed soil moisture for day, t (before correction for antecedent soil moisture, smt21 t22ð Þ)

smt 5 soil moisture for day, t

Figure 3 shows a monotonic decreasing relationship between antecedent soil moisture and moisture redis-
tribution. Thus, in order to evaluate the significance of different biophysical factors on moisture redistribu-
tion in isolation from the effect of antecedent moisture, the redistribution values were normalized using
antecedent moisture values for each pixel (equation (2))

DSMnorm;t5
DSMt

SMant
(2)

DSMnorm;t 5 soil moisture redistribution at a pixel after correction for antecedent moisture

SMant 5 antecedent soil moisture at the pixel, smt21 t22ð Þ

Note that the soil moisture redistribution was not normalized with respect to duration of redistribution (1 or
2 days) since it would imply that half of the redistribution took place on the first day while the other half on
the second day. Our current knowledge of soil moisture dynamics at larger scale which may only be consid-
ered to be an approximation of the Richard’s equation, developed for local scale soil water flow behavior

Table 2. Days of Year (DOY) Data Were Available for and the Time and Spatial Scales at Which the Wetting/Drying Dynamics Were
Analyzed

Region Data Availability (DOY)
Time Scales

Analyzed (days)
Spatial Support

Scale (km)
Data Dimension

(pixels)

Arizona 221–223,225–226 1–2 1.6, 3.2, 6.4, 12.8 4340 (62 3 70)
Iowa 176,178,180,182,185,189–193 1–2 1.6, 3.2, 6.4, 12.8 3900 (100 3 39)
Oklahoma 169–171,176–178,180–184,193–195,197 1–2 1.6, 3.2, 6.4, 12.8 4440 (111 3 40)
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indicates that soil moisture dynamics are nonlinear. A linear rate of change (such as dividing by number of
days) may misrepresent the soil moisture dynamics.

The factors representing soil (original resolution 1000 m), vegetation (original resolution 1000 m), and
topography (original resolution 30 m) were resampled (using the nearest neighbor method) to 800 m in
order to maintain consistency in the data resolution of the biophysical factors and soil moisture. The nearest
neighbor interpolation scheme is typically considered best in case of discrete raster data sets. Slope and
flow accumulation were computed from the resampled elevation data sets. A study [Wu et al., 2008] on
effect of resampling methods of elevation data in Southwest Virginia also showed minor differences in com-
puted slopes as a result of resampled elevation data using different resampling techniques.

3.1. Wavelet Analysis
In order to extract support-scale-based information from the images comprised of the moisture redistribu-
tion values as well as the biophysical factors, two-dimensional nondecimated wavelet (NDWT) analysis was
used. Wavelet analysis has proven to be a powerful tool in understanding geophysical data [Kumar and Fou-
foula-Georgiou, 1997; Si and Zeleke, 2005] in both temporal and spatial domains [e.g., Kumar and Foufoula-
Georgiou, 1993; Strand et al., 2006]. Wavelets are ‘‘wave like’’ functions, w xð Þ, defined at a location ‘‘x’’ which
oscillate about the x axis and satisfy three criteria (1)

Ð1
21 w xð Þdx50, i.e., zero mean value, (2)Ð1

21 jw xð Þj2dx51, i.e., finite energy, and (3) compact support, i.e., nonzero value over a narrow interval.
Once a particular formulation of the ‘‘mother wavelet’’ (or basis function), w xð Þ, is fixed, it is scaled (dilated)
and translated over a given signal (equation (3)) and the resultant variations serve as basis functions
(ws;u xð ÞÞ to represent the given signal.

ws;u xð Þ5 1ffiffi
s
p w

x2u
s

� �
(3)

s 5 scaling parameter which controls the dilation

u 5 location of wavelet used for translation across the signal

NDWT is a discrete wavelet transform. For a discrete wavelet transform (DWT), any discrete signal Xn: n 5 0,
1,. . .., N-1 is decomposed into wavelet coefficients, Ws;u for each scale (s) and location (u), through wavelets. Sim-
ply explained a wavelet coefficient, Ws,u, represents the degree of similarity between the wavelet at the scale ‘‘s’’
and at location determined by ‘‘u’’ and the signal at the same location. The higher the wavelet coefficient, great-
er is the similarity. The set of all wavelet coefficients ‘‘ ~Ws ’’ for scale, ‘‘s’’ can be described as given in equation (4).

~Ws 5
X2s21

u50

ws;u xð Þ:Xn2u (4)

The basis functions in the case of a DWT scale up in a dyadic series represented by equation (5). The largest
scale of the basis function is restricted by the length of the data set (less than half the dimension of the
data).

Figure 3. Plot of observed DSM given antecedent volumetric soil moisture conditions.
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ws;u xð Þ52
s
2w 2sx2uð Þ; s 5 1; 2; . . . (5)

The mother wavelet chosen for our study was the Haar wavelet represented by equation (6). Soil moisture
spatial signals commonly display rapid changes as may be observed after localized rainfall events. A Haar
wavelet was chosen given its suitability in detecting rapid changes [Mahrt, 1991]. The Haar wavelet has also
been recommended for soil moisture applications in literature [Das and Mohanty, 2008].

ws;u xð Þ5

1 0 � x < 0:5

21 0:5 � x < 1

0 otherwise

��������
(6)

We performed a two-dimensional NDWT on our spatial data. A 2-D wavelet transform is a wavelet transform
performed twice—once on the rows and once on the columns of the image. It produces horizontal, vertical,
and diagonal details and an approximation (Figure 4) for scale ranges represented by ‘‘s’’. The approxima-
tion represents the original signal after the details at support scale range, ‘‘s’’, have been removed from the
signal. While running wavelet analysis, each wavelet transform is conducted on the approximation of the
next finer-scale range (Figure 4). Thus, after running the wavelet analysis over all possible scales, the result
is a set of details at all scales ‘‘S’’ and a signal approximation (AS). AS represents the large-scale residual after
information of the finer support scales has been extracted through detail wavelet coefficients. The horizon-
tal details are obtained by passing high pass-low pass (HP-LP) filters, vertical details by passing LP-HP and
diagonal details are obtained by passing HP-HP filters over the domain over each normalized soil moisture
redistribution and biophysical factors’ image separately. The hyphenated combination indicates the
vertical-horizontal direction in which filters are moved. The set of all wavelet coefficients ( ~W s) at a particular
scale range, s, represents the ‘‘details’’ in the signal at that particular scale.

Figure 4. Diagrammatic representation of nondecimated wavelet analysis. A dilated (scaled) HAAR wavelet is run on each subsequent approximation of the previous scale to obtain
(H,V,D details). Some scales have been omitted for brevity.

Water Resources Research 10.1002/2015WR018095

GAUR AND MOHANTY LAND-SURFACE CONTROLS ON SOIL MOISTURE AT DIFFERENT SCALES 8



NDWT is associated with zero phase filter and is translation invariant. It thus results in images of the wavelet
coefficients which can be perfectly aligned with the original signal [Percival and Walden, 2000] and reduces
error in interpretation resulting from the sampling scheme/starting point of the data. For more mathemati-
cal details on NDWT, the readers are referred to Percival and Walden [2000]. The NDWT wavelet analysis on
our data set was carried out using the waveslim package [Whitcher, 2012] in the statistical software package
R version 3.0.1, R core team [2013].

Wavelets analysis (like Fourier analysis) is computed in the frequency domain of the (in this case, spatial)
signal and provides information of the range of support scales corresponding to different frequency bands.
In the given study, the data set was analyzed over four support scale ranges (1.6–3.2 km, 3.2–6.4 km, 6.4–
12.8 km, 12.8–25.6 km) that represent corresponding ranges of spatial frequency. The scale ranges have
been referred to by their lower scale limit in the results and discussion.

A useful property of NDWT is that it divides the total variance of the signal, r2 Xnð Þ into the components of
variance associated with different support scales. The total variance of the signal can be reconstructed by
simple addition [Percival et al., 2011] as explained in equation (7).

r2 Xnð Þ5
XS

s51

r2 ~WsÞ1r2 ASð Þ
�

(7)

r2 Xnð Þ is defined as the statistical variance 5
P X2�Xð Þ2

n21 , where X is the normalized moisture redistribution
variable, �X is the sample mean and n is number of realizations of the variable. r2 ~Ws

� �
or the global wavelet

spectrum is the variance contributed by support scale range, s, to the variance of the signal, r2 Xnð Þwhich
can also be obtained by adding the variance of the detail wavelet coefficients (horizontal, vertical, and diag-
onal) of an image at each support scale range. Thus, wavelets can characterize a nonstationary spatial/tem-
poral data set at different support scales (coarser than the scale of the original signal).

In the given study, the global wavelet spectrum was modified (equation (8)) to understand the percentage
of variance (r2

global %ð ÞÞ contributed by a particular support scale range to the total variance of moisture
redistribution signal.

r2
global %ð Þ5

r2 ~Ws
� �

r2 Xnð Þ
x100 (8)

3.2. Pattern Matching
The contribution of different biophysical factors to soil moisture redistribution was computed in terms of
its areal extent of influence and the magnitude of moisture redistribution associated with the physical
factor. The spatial patterns of the biophysical factor were matched with the patterns of the moisture
redistribution signal at different support scales. The areal extent of impact was determined by calculating
the total area at which pattern matches between the biophysical factor and DSMnorm;t were observed. A
successful match in the pattern of DSMnorm;t and the biophysical factor was computed by equating the
wavelet spectrum (individually squared wavelet coefficient;W2

s;norm defined belowð Þ) of the two signals for
each spatial support scale. The wavelet spectrum was computed using the horizontal, diagonal, and verti-
cal details of each DSMnorm;t and biophysical factor image. Location-specific wavelet spectrum values that
differed by less than 0.005, were considered to display a similar pattern at the particular location and
scale. The threshold value of 0.005 was decided subjectively so that the matching criteria could be strict
(close to 0) while allowing some scope of uncertainty in the measured soil moisture and biophysical fac-
tors’ data. Prior to comparison of the wavelet spectrum of the physical factors and DSMnorm,t, the wavelet
coefficients for each individual DSMnorm,t and biophysical factors’ image were separately normalized
(equation (9)) with mean of 0 and standard deviation of 1. The mean and standard deviation for normaliz-
ing the coefficients were calculated after removing the outliers. It was necessary to remove outliers to
clean the data set of water bodies, normalized soil moisture redistribution computed where antecedent
soil moisture was set to 0 and unrealistic flow accumulation values because of edge effects. The outliers
were determined and removed using equation (10).
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Ws;norm5
Ws;k2 1

K

PK
k51 Ws;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
K

PK
k51 Ws;k2 1

K

PK
k51 Ws;k

� �2
r (9)

where k 5 1,2,. . .., K 5 number of pixels in the domain
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Equation (11) was then used to determine the relative areal extent of influence of the biophysical factors
(e.g., soil, topography, and vegetation) on DSMnorm,t at different support scale ranges.

Cf ;s5
Nf ;s

NP f ;s

x100 (11)

Cf ;s5 percent contribution of biophysical factor, f at a specific support scale range, s

Nf ;s 5 number of pattern matches of a specific biophysical factor, f, at a specific support scalerange, s

NP f ;s 5 total number of pattern matches observed for all biophysical factors at a particular support scale
range, s.

The magnitude of controls (Mf ;sÞ of each biophysical factor, f, at scale, s, was computed by evaluating the
mean of DSMnorm,t for the pixels where a pattern match between the biophysical factor, f and DSMnorm,t was
observed (equation (12)).

Mf ;s5
1

Nf ;s

X
Nf ;s

DSMnorm;t (12)

Cf ;s and Mf ;s were computed separately for drying (negative values of DSMt) and wetting (positive values of
DSMt) scenarios to account for any hysteretic behavior of the region.

4. Results and Discussion

Normalized soil moisture redistribution, DSMnorm,t was computed over 1 or 2 day intervals. The 2 day
interval soil moisture redistribution values were calculated when the soil moisture data were not collected
daily because of rain events or logistic reasons. Table 2 provides the details of available data for each
study region. The DSMnorm,t computed for day of year (DOY) 225 (in Arizona), DOY 178, 180, and 182 (in
Iowa) and DOY 180, and 197 (in Oklahoma) represent soil moisture redistribution computed over 2 day
periods.

4.1. Analysis of Variance of DSMnorm,t

The variance of a soil moisture signal is dependent on the support scale it is sampled at [Bl€oschl and Sivapa-
lan, 1995]. The total variance of the original DSMnorm,t signal represents the variance in soil moisture dynam-
ics at the 0.8 km support scale which contains information of scales at and coarser than 0.8 km (restricted
by extent of data). The variance within the 0.8 km support scale has been averaged within the data set and
cannot be represented by this data. The NDWT based analysis divides the variance of the original spatial sig-
nal (0.8 km support scale) into variance contributed by different spatial support scale ranges i.e., 1.6-3.2, 3.2-
6.4, 6.4-12.8, and 12.8–25.6 km. Figure 5 shows the percent contribution (r2

global %ð Þ(8)) of each support scale
to the total variance of spatial DSMnorm,t signal. Increasing trends indicate that even data collected at coarse
remote sensing resolutions can account for most of the soil moisture dynamics within a region whereas a
decreasing trend indicates that coarse resolution data set will be insufficient to account for the soil moisture
dynamics. The daily variance signals showed typical increasing trend up to 6.4 km spatial resolution for all
days in Iowa and a few days in Arizona and Oklahoma (Figure 5). However, the lack of a consistent trend in
the global wavelet spectrum indicates that the contribution of different spatial support scales to soil
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moisture dynamics is not constant across time and varies at daily temporal scales within the growing sea-
son. This varied behavior is potentially caused by a combination of the antecedent moisture conditions, the
land-surface heterogeneity, and meteorological forcings which vary dynamically in time. However, it is
beyond the scope of this paper to investigate those combinations.

4.2. Scale-Based Contribution of Biophysical Factors
The scale-based contribution of the biophysical factors to soil moisture redistribution was evaluated as a
function of their areal extent (equation (11)) of influence and the relative magnitude of their effect (equa-
tion (12)) on soil moisture redistribution. The analysis was conducted separately for drying and wetting con-
ditions to account for large-scale hysteresis.
4.2.1. Areal Extent of Controls,Cf ;s

The patterns observed in different physical factors and DSMnorm,t signals were matched (as described in sec-
tion 3.2) for the three study regions. A sample diagrammatic representation of locations of pattern match
between moisture redistribution patterns and % sand values is shown in Figure 6. Figures 6a and b depict
the normalized wavelet coefficients of DSMnorm,170 (Oklahoma) and % sand respectively while Figure 6c
depicts the locations of the pixels where a pattern match between the two was observed. The white pixels
correspond to the central location of the wavelet at which a pattern match was observed. Note that they do
not represent the actual area (much larger) of the domain that we observe a pattern match for. The percent-
age of area of the domain that the white pixels comprise of is shown in Figure 7. A comparison of the three
regions shows that Iowa distinctly has lesser areas of pattern matches between any physical factor and soil
moisture redistribution at all scales as compared to Oklahoma and Arizona. The number of pattern matches
of moisture redistribution with soil and topography in Arizona are higher than that of Oklahoma which has

Figure 5. Graphs depict percent of the total variance (equation (8)) observed in the soil moisture change signal at different scales for
(a) Arizona, (b) Iowa, and (c) Oklahoma. 1 day and 2 day dynamics represent soil moisture change observed at 1 day and 2 days’ interval,
respectively.
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the highest pattern matches with vegetation. The contribution of soil in the drying pixels in Arizona is signif-
icantly higher (�30%) than in the wetting pixels (�8%) at the 1.6 km scale and the trend is similar at the
other scales. The number of pattern matches of all land-surface based physical factors with soil moisture
redistribution decreases with increasing spatial support scales for all regions except for vegetation in Okla-
homa which remains approximately similar.

The contribution of different physical factors relative to each other (equation (11)) is shown in Figure 8. The
contribution of soil (% sand and % clay) remains high in all three hydroclimatic regions while maintaining a
decreasing trend as we go higher in scale. The trend for contribution of topographical and vegetation fac-
tors, on the other hand, increases with increasing scale. Specifically, in Arizona, at 12.8 km, the effect of

Figure 6. (a) Normalized wavelet coefficients for soil moisture redistribution (DOY 170), (b) Normalized wavelet coefficients for % sand,
(c) Locations of pattern match (white pixels), in Oklahoma at 1.6–3.2 km scale.
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Figure 7. Percentage of white pixels (centers of wavelets for pattern match) for (1) Arizona, (2) Iowa, and (3) Oklahoma for different physical factors.
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topography and vegetation becomes equivalent or slightly greater than soil. Also in Oklahoma, vegetation
becomes more dominant than soil beyond 3.2 km. These factors are analyzed in greater detail below.
4.2.1.1. Soil Factors
Percent clay and sand: the percentage of clay and sand together define the infiltration capacity and water
holding capacity of the domain at the land surface. Since they comprise the primary factors determining
the pore sizes and structure of the soil in which water is being held, they also affect the rate of evaporation
from the soil. Significant association between soil based factors and soil moisture change is evident in all
three regions. Higher clay content can be related to higher water holding capacity of the soil. It also slows
down infiltration and hinders drainage. The clay content can also cause the soil to aggregate and become
fractured which would promote drainage under very wet conditions. However, the soils in our study regions
are not fractured. In contrast, sand promotes increased infiltration. The spatial distribution of sand and clay
across the study scales also determine infiltration versus evaporation patterns [Nachshon et al., 2011; Zhu
and Mohanty, 2002a, 2002b; Mohanty and Zhu, 2007].

Figure 8. Percent contribution of different physical controls to soil moisture redistribution observed in Arizona, Iowa, and Oklahoma, (a) all pixels, (b) drying pixels, and (c) wetting pixels.
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The contribution of % clay on soil moisture variability is higher than that of % sand in Arizona and in Iowa
(except for the 3.2 km scale), whereas in Oklahoma % sand contributes more than % clay (except for the
1.6 km scale). This is true for drying as well as wetting scenarios. Arizona is semiarid and usually remains rela-
tively dry. Under these conditions, any moisture that is held in the soils is held by the small pores represented
by % clay as opposed to % sand. The greater pattern association with % clay in Arizona represents that the
evaporation is the dominant process of water redistribution as opposed to drainage of free water [Zhu and
Mohanty, 2002a, 2002b]. Despite being a sandy region, the water dynamics in Arizona are controlled (limited)
by the clay content in the soil. In case of Iowa, which is primarily a cultivated region that receives higher pre-
cipitation than semiarid Arizona, soil moisture patterns match well with both % sand and % clay. This indicates
that both processes (evaporation and drainage) occur in this region to cause redistribution of moisture. Iowa
is a cropped land planted with soybean and corn. The canopies of the two crops (during initial period of
growth) allow bare soil exposure to the sun. Thus, the top soil made porous by plant roots enables infiltration
(represented/limited by % sand) whereas the landcover promotes water losses (represented/limited by per-
cent clay) through evapotranspiration. Oklahoma is a subhumid region and the major losses to the near-
surface soil moisture are due to drainage represented/limited by % sand. Thus, the influence of soil texture on
soil moisture redistribution is directly linked to the hydroclimate and wetness condition of a region.
4.2.1.2. Topographic Factors
Elevation, slope, and flow accumulation: elevation is the basic topographic factor from which a number of
heterogeneity representing parameters (slope, flow accumulation etc.) may be derived. Elevation patterns
can relate to soil moisture patterns for different reasons [Coleman and Niemann, 2013]. It may cause steep
potential gradients thus, influencing moisture redistribution. Large elevation differences induce differences
in evapotranspiration (because of vegetation gradients) and changing precipitation patterns with elevation
[Goulden et al., 2012]. Slope can strongly influence water distribution through overland flow or aspect-
based drying. Flow accumulation represents the tendency of the region to accumulate water (concavity)
and thus, the water holding capacity of a region. This may lead to localized infiltration and evaporation.

Figure 8a shows that the behavior of topography (elevation, slope, and flow accumulation) with scale is sim-
ilar for all three hydroclimates, i.e., its percent contribution increases with support scale. In the relatively nat-
ural (anthropogenically unaltered) and topographically more complex (undulating terrain) regions,
Oklahoma and Arizona, flow accumulation has a higher contribution than slope and elevation, whereas the
trend is different for Iowa where elevation takes a higher precedence at coarser scales (6.4 km and coarser).

Overall, we observe that Arizona and Oklahoma behave similarly whereas the behavior of moisture dynam-
ics in Iowa is different. Oklahoma and Arizona are topographically more complex than Iowa which has a rel-
atively smoothly varying north to south gradient (Figure 1). Even though the absolute values of elevations
in Iowa and Oklahoma are similar, the pattern association for the two regions is very different. This implies
that the spatial patterns of elevation (or some derivative of elevation) dictate the effect of elevation on soil
moisture redistribution. Oklahoma is rolling and thus, the concavity of the domain remains an important
factor whereas the slope in Iowa is more uniform and therefore the effect of concavity of the domain
becomes lesser than elevation as we go higher in scale. The contribution of slope is mostly slightly higher
for the wetting pixels than drying pixels in Oklahoma and Arizona (Figures 8b and 8c). The contribution of
elevation is only marginally different during wetting and drying. The higher contribution of slope in the two
regions during wetting signifies the occurrence of overland flow in Oklahoma and even in the precipitation
limited Arizona. However, in Iowa, the trend is different with elevation showing higher contribution for the
drying pixels. The contribution of elevation in Iowa also becomes equivalent comparable to or larger than
other topographical factors at the coarser scales (6.4 km and coarser). This signifies two important points.
First, elevation influences drying more than wetting in these regions. This could be because of higher influ-
ence of elevation on evapotranspiration patterns than precipitation in these regions. Second, irrespective of
the precipitation dynamics, in topographically less undulating regions, the contribution of topography on
soil moisture spatial distribution is more dominated by the elevation of a pixel. On the other hand in topo-
graphically complex (undulating) regions, flow accumulation and slope form better representative parame-
ters of topography for describing soil moisture spatial dynamics.
4.2.1.3. Vegetation Factors
Leaf area index: leaf area index is a proxy for vegetation. It can cause soil moisture loss through transpira-
tion, restrict evaporation from the ground surface by shading the ground surface and limit the amount of
input water through interception and evaporation of intercepted water on the leaf. It can also direct water
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flow into the soil through stem flow. The association between spatial LAI patterns and moisture was signifi-
cant in all three regions. The percentage of pattern matches, show a general increasing trend with scale. In
Oklahoma, vegetation becomes the most spatially dominant factor at support scale 3.2 km and above.

Iowa is an agricultural region with crops of different LAI. The significance of vegetation in Iowa is slightly
more in the drying pixels as compared to wetting pixels. This implies higher differences in evapotranspira-
tion losses because of crops with different LAI as opposed to differential interception of rain water by the
varied plant types (Figures 8b and 8c). Similarly, Oklahoma which is mostly grassland region with some agri-
culture also displays a higher contribution of vegetation in the drying scenario. In the sparsely vegetated
Arizona, the trend is opposite with higher vegetation contribution for wetting pixels. It signifies a domi-
nance of processes like interception and leaf evaporation from intercepted water. The land cover in Arizona
comprises of sparse desert shrubland, grassland, and few crops [Yilmaz et al., 2008]. The spatial heterogenei-
ty in vegetation types creates differences in intercepted water and its contribution to soil moisture
dynamics.

Figure 9. Mean DSMnorm,t observed in regions where pattern matches with % sand, % clay, elevation, slope, flow accumulation, and LAI are observed for (a) all pixels, (b) drying pixels,
and (c) wetting pixels.
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4.2.2. Effect of Physical Factors on Magnitude of Soil Moisture Redistribution, Mf ;s

Figure 9 shows the mean of the absolute values of DSMnorm,t (equation (12)) observed in regions where the
pattern matches between various biophysical factors and DSMnorm,t were observed. These values reflect the
mean soil moisture changes occurring at the location where a biophysical factor was observed to control
soil moisture redistribution. Large values would indicate greater contribution of the biophysical factor in
affecting soil moisture changes. The range and maximum value of DSMnorm,t were higher for the wetting
pixels than the drying pixels (Figure 9). The higher range of the DSMnorm,t during wetting can be attributed
to higher variability in rainfall input to the system which leads to higher variations in soil moisture. Overall,
Arizona, and Oklahoma showed larger ranges of DSMnorm,t whereas they were smaller in Iowa. This partly
occurred since there were no heavy precipitation events in Iowa and also the moisture conditions in Iowa

did not become extremely dry
(Figure 3). It was also observed
that topography showed signifi-
cantly greater contribution in Ari-
zona. Mixed effects were observed
in Iowa with soil and topography
showing higher DSMnorm than oth-
er factors at different scales. Like-
wise in Oklahoma, topography
and soil showed higher DSMnorm.
These results also reveal that the
physical factors which had lower
spatial influence (in terms of are-
al extent) on soil moisture redis-
tribution (Figure 8), may have
greater influence on the amount

Figure 10. Hierarchy of effect of biophysical factors on near-surface soil moisture distribution.

Table 3. Median of the Antecedent Moisture Values of the Regions at Which a Pattern
Match Between the Given Physical Factors and Moisture Redistribution Was Observed

Median Antecedent Moisture

Support scale 1.6 km 3.2 km 6.4 km 12.8 km

ARIZONA
Soil (Clay) 0.021 0.073 0.093 0.076
Topography (Elevation) 0.099 0.100 0.085 0.060
Vegetation (LAI) 0.020 0.068 0.078 0.077

IOWA
Soil (Clay) 0.214 0.208 0.210 0.210
Topography (Elevation) 0.215 0.212 0.202 0.203
Vegetation (LAI) 0.209 0.205 0.205 0.204

OKLAHOMA
Soil (Sand) 0.170 0.180 0.170 0.230
Topography (Elevation) 0.180 0.180 0.170 0.190
Vegetation (LAI) 0.170 0.170 0.150 0.180
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of moisture redistribution that takes place and can thus; greatly alter the water budget in the limited spa-
tial regions where they are important. It is worthwhile to note that contrary to its spatial influence, the
magnitude of vegetation effect was typically low in all three regions.

4.3. Overall Ranking Scheme
In order to characterize the overall effects of the physical factors on soil moisture distribution and provide a
general guideline for the three hydroclimates, the physical factors were ranked based on the magnitude of
controls (Figure 9a) and areal extent of controls (Figure 8a). Equal weight was given to both the compo-
nents and the hierarchy of physical factors on defining near-surface soil moisture distribution was evaluat-
ed. Results are depicted for the three study regions in Figure 10. A lower numerical rank implies greater
overall control of the physical factor on soil moisture at a particular scale. In Arizona, soil (or specifically %
clay), is the most dominant land-surface factor at the 1.6–3.2 km support scale range, while topography

Figure 11. SMant distribution of regions where soil, topography, and vegetation are dominant.
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(slope) and vegetation (LAI) become more
dominant at 3.2–12.8 km and 6.4–25.6 km
support scale range, respectively. Soil
remains the most dominating factor in
Iowa consistently with % sand being most
dominant at the 1.6–3.2 km support scale
range beyond which % clay becomes most
dominant. As in Arizona, we observe that
soil (% sand) is dominant at the relatively
finer support scales (1.6–6.4 km) while veg-
etation becomes most important between
3.2 and 25.6 km support scale range in
Oklahoma. Topography exerts little domi-
nance at the finer scales and moderate
dominance at the relatively coarse support
scales.

4.4. Investigating Antecedent Moisture-Based Thresholds
Processes that control moisture movement in the soil surface are influenced by the amount of water in the
domain and the heterogeneity comprised of different biophysical factors in the domain. In order to investi-
gate the presence of threshold antecedent moisture values at which different biophysical factors (and thus
related hydrologic processes) become dominant, the antecedent soil moisture conditions of the pixels at
which different biophysical factors become dominant (pattern matched locations) were compared using
the Wilcoxon rank sum (WRS) tests. WRS test is the nonparametric equivalent of the t-test and assesses a dif-
ference in the distribution of the ranks of the ordered observations as opposed to their actual values. The
physical factors which showed maximum overall control (Figure 10) on moisture redistribution values were
chosen to represent soil, topography, and vegetation attributes. The median values for the same attributes
are provided in Table 3. Figure 11 shows the antecedent soil moisture distribution of the regions where the
particular biophysical factor was found important while the WRS significance results are provided in Table
4. We observe that there are statistically significant differences in the antecedent moisture distribution of
topography when compared to soil and vegetation in Arizona whereas in Iowa, there are no statistically sig-
nificant differences/thresholds observed. In Oklahoma, the effect of soil is statistically significantly different
from topography at all scales and from vegetation at 3.2–25.6 km support scale range. However, median
moisture difference (Table 3) that is less than the standard error of retrievals may reflect retrieval errors and
not true thresholds. The difference between the median values of antecedent moisture values of the
regions where different biophysical factors dominate is relatively small in Oklahoma (<0.03 v/v) and within
the error range. In Arizona on the other hand, we observe that differences are more than the remote sens-
ing measurement error (>0.014 v/v) [Bindlish et al., 2008]. This implies that at remote sensing footprint
scales, antecedent moisture-based thresholds at which the controls switch from one land-surface factor to
the other may be effectively identified only in some regions.

5. Conclusions

In this study, nondecimated wavelet analysis was used to assess the influence of land-surface based physi-
cal factors, namely, soil (% sand, % clay), topography (elevation, slope, flow accumulation), and vegetation
(leaf area index) on soil moisture redistribution at remote sensing footprint scales varying from 1.6 to
25.6 km. The contribution of the different biophysical factors was computed in terms of areal extent of influ-
ence of the biophysical factor and the magnitude of moisture redistribution associated with it to define
their hierarchical control on soil moisture dynamics. The hierarchy was defined for coarse spatial support
scales but fine (daily) temporal spacing scales which are typical of remotely sensed soil moisture data. The
influence of biophysical factors on soil moisture redistribution at remote sensing footprints varied across
different hydroclimates and scales. Soil is the dominant physical factor in Iowa across all scales whereas the
topography and vegetation are the dominant physical controls in Arizona starting at 3.2 and 6.4 km, respec-
tively. In Oklahoma, on the other hand, soil is the dominant factor at 1.6–3.2 km but vegetation has a more
significant effect at coarser scales. The effect of hydroclimate was also identifiable in the soil attributes

Table 4. Significance Results of Wilcoxon Rank Sum (WRS) Test Marking
the Existence of a Threshold Valuea

Region/Scale 1.6 km 3.2 km 6.4 km 12.8 km

Soil and Topography
Arizona x x x X
Iowa
Oklahoma x x x X

Soil and Vegetation
Arizona x x
Iowa
Oklahoma x x X

Topography and Vegetation
Arizona x x x X
Iowa
Oklahoma x x x

a‘‘x’’ represents a WRS result significant at 95%.
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dominating the soil moisture dynamics. The near-surface soil moisture dynamics in Arizona (semiarid) can
be more attributed to the clay content which is effective limiting parameter for evaporation whereas in the
humid Oklahoma, % sand (effectively limiting drainage) was the dominant attribute of soil. Antecedent
moisture-based thresholds at which the effect of different physical factors becomes significant were also
found to be hydroclimate specific and found to exist only in Arizona.

The study was conducted under the assumption that the soil moisture retrievals at 800 m are accurate. This
assumption may cause some uncertainty in the evaluated threshold values. This study is limited by the
regional extent, hydroclimates and also time period (growing season) analyzed. However, it provides a
direction for understanding hydroclimate-based dependence of near-surface soil moisture on physical fac-
tors. These findings can assist in developing more effective physically based soil moisture scaling schemes
and in the improvement of processes in large-scale hydrological models.
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