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a b s t r a c t

Efficient parameter identification is an important issue for mechanistic agro-hydrological models with a
complex and nonlinear property. In this study, we presented an efficient global methodology of sensi-
tivity analysis and parameter estimation for a physically-based agro-hydrological model (SWAP-EPIC).
The LH-OAT based module and the modified-MGA based module were developed for parameter sensi-
tivity analysis and inverse estimation, respectively. In addition, a new solute transport module with
numerically stable schemes was developed for ensuring stability of SWAP-EPIC. This global method was
tested and validated with a two-year dataset in a wheat growing field. Fourteen parameters out of the
forty-nine total input parameters were identified as the sensitive parameters. These parameters were
first inversely calibrated by using a numerical case, and then the inverse calibration was performed for
the real field experimental case. Our research indicates that the proposed global method performs
successfully to find and constrain the highly sensitive parameters efficiently that can facilitate applica-
tion of the SWAP-EPIC model.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Agro-hydrological models have been an important tool for
supporting decision making in the development of agricultural
water management strategies. Since the physical description and
prediction of hydrological, chemical and biological processes at
field by some physically-based or mechanistic models are highly
valuable, these models, such as SWAP (van Dam et al., 1997) and
HYDRUS (�Sim�unek et al., 1997), are frequently used. Most of them
are based on the numerical solution of Richards equation for var-
iably saturated water flow and on analytical or numerical solution
of advection-dispersion equation. Compared with the simple
models (i.e. using lumped or tipping-bucket approach, e.g. SIM-
dualKc, AquaCrop, CERES and EPIC), these mechanistic models can
simulate multi-processes of soil water flow, solute and heat
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transport, and crop growth in great detail, and be suitable for some
more complicated conditions (Ranatunga et al., 2008; van Dam
et al., 2008; Xu et al., 2013). However, these models often contain
more number of parameters, and have complex, dynamic, and
nonlinear properties. Moreover, more functions have been added
involving hysteresis, mobile-immobile flow,macropore flow, multi-
species transport and reaction, and so on. These may result in a
more severe problem of over-parameterization. Hence, the
parameter identification becomes a major and urgent problem for
agro-environmental prediction and future model use (Ines and
Mohanty, 2008; W€ohling et al., 2008; Della Peruta et al., 2014).
An efficient identification of the sensitive and important parame-
ters and the subsequent parameter estimation would be very
helpful for the future use of physically-based agro-hydrological
models.

Parameter sensitivity analysis (SA) is a prerequisite step in the
model-building process (Campolongo et al., 2007). The SA method
identifies parameters that do or not have a significant impact on
model simulation of real world observations for specific farmlands
(van Griensven et al., 2006) and is critical for reducing the number
of parameters required in model validation (Hamby, 1994).
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Generally, SA can be divided into two different schools: the local SA
school and the global one (Saltelli et al., 1999). In the first approach,
the local response of model output is obtained by varying the pa-
rameters one at a time while holding the others fixed to certain
nominal values. This approach has been adopted by some studies
because of its easy application. Yet, local SA methods have the
known limitations of linearity and normality assumptions and local
variations. For complex non-linear models, only global sensitivity
analysis (GSA) methods are able to provide relevant information on
the sensitivity of model outputs to the whole range of model pa-
rameters (Varella et al., 2010). In recent years, many studies have
focused on the GSA methods for identifying the important pa-
rameters as well as distinguishing the effects of different input
conditions (Wesseling et al., 1998; Cariboni et al., 2007; Saltelli and
Annoni, 2010; DeJonge et al., 2012; Zhao et al., 2014; Neelam and
Mohanty, 2015; Hu et al., 2015; Pianosi et al., 2015). Typical suc-
cessful applications include the methods of RSA (Yang, 2011),
extended FAST (Varella et al., 2010), Sobol' (Nossent et al., 2011) and
LH-OAT (van Griensven et al., 2006) in the related hydrological and
crop models. The choice of the sample size and of the threshold for
the identification of insensitive input factors was also preliminarily
investigated for GSA methods (Yang, 2011; Sarrazin et al., 2016).
Although different sensitivity techniques exist, each of themwould
result in a slightly different sensitivity ranking for the important
parameters near the top of the ranking list. In general, the practi-
cality of the method depends on the calculation ease and the
desired usefulness of results (Hamby, 1994).

Parameter estimation is an essential way of calibrating a
model, which is also important to the accurate prediction of agro-
hydrological processes. Different approaches have been applied
and may be classified as two main types, i.e., trial-and-error
method (manual) and inverse optimization method (automatic).
The former has been widely applied because of its simple concept
and easy application (Xu et al., 2013). It is very suitable to the
simple models with less parameters and complexity, such as when
applying to the SimDualKc and AquaCrop models (Paredes et al.,
2014). However, the trial-and-error method is often cumber-
some and time-consuming when applying to the physically
mechanistic models, especially for layered soil-profile and
complicated field conditions (Jacques et al., 2002). Hence, in
addition to the subjectivity of the trial-and-error method, there
have also been a large number of research studies on its alter-
native: automatic inverse optimization approaches for model
calibration. These algorithms may be classified as local and global
search methods. The local method, using an iterative search
starting from a single arbitrary initial point, may often prema-
turely terminate the search and therefore present a lower chance
to find a single unique solution, such as the well-known Gauss-
Marquardt-Levenberg algorithm used by PEST (W€ohling et al.,
2008; Malone et al., 2010). This inspires the application of global
parameter estimation (GPE) methods in the field of vadose zone
hydrology, e.g., genetic algorithms (Ines and Droogers, 2002; Ines
and Mohanty, 2008; Shin et al., 2012), ant-colony optimization
(Abbaspour et al., 2001), Ensemble Kalman Filter (Evensen, 2003)
and shuffled complex methods (Duan et al., 1994). In the past, the
inverse optimization of parameters of soil hydraulic properties as
well as the related well-posedness, uniqueness and the stability
are extensively studied related to the physically-based models
(Kool et al., 1987; �Sim�unek and van Genuchten, 1996; Ines and
Droogers, 2002; Shin et al., 2012). The inverse estimation of root
water uptake parameters is also carried out (Hupet et al., 2003). In
contrast, very few research studies extend to simultaneously
consider the solute fate simulation and its parameter estimation
(Jacques et al., 2002; Xu et al., 2012). Note that they are of
importance for the accurate agro-hydrological modeling in salt-
affected irrigated areas, where the ignorance of solute transport
would lead to errors in the inverse parameter estimation. Uncer-
tainty analysis is also applied in watershed hydrological modeling
(Yang et al., 2008), but only a few cases are related to the detailed
and complicated field scale studies (Shin et al., 2012; Shafiei et al.,
2014).

To our knowledge, few studies have reported the development
of both parameter sensitivity analysis and inverse estimation for
the complicated physically-based agro-hydrological models. The
general purpose of this study was to investigate the global method
of sensitivity analysis in conjunction with inverse parameter esti-
mation for effectively identifying parameters of a mechanistic agro-
hydrological model (SWAP-EPIC). SWAP-EPIC is modified version of
the well-known SWAP model, proposed by Xu et al. (2013). A GSA
module and a GPE module were respectively developed for SWAP-
EPIC model to perform sensitivity analysis and estimation of model
parameters. An efficient Latin Hypercube One-factor-At-a-Time
(LH-OAT) method was adopted to construct the GSA module. The
GPE module was then developed based on the genetic algorithm
(GA). Meanwhile, to avoid the problem of numerical instability, a
new solute transport module was developed with the fully implicit
and Crank-Nicholson difference schemes. Finally, the proposed
global method for sensitivity analysis and parameter estimation
was tested and verified using the field experiment datasets in
Huinong experimental site, Qingtongxia Irrigation District of the
upper Yellow River basin, Northwest China. The methodology
described in this study would help increase the efficiency of
parameter identification for the complicated agro-hydrological
model and would also help understand the relationship between
different processes.
2. Materials and methods

2.1. Model description

2.1.1. Agro-hydrological simulation model: updated SWAP-EPIC
By coupling the SWAP (Soil-Water-Atmosphere-Plant) model

(Kroes and van Dam, 2003) and the EPIC crop growth module
(Williams et al., 1989), Xu et al. (2013) proposed an agro-
hydrological simulation model SWAP-EPIC. This model had
been used to evaluate soil water flow, solute transport, crop
growth, and water productivity in Heihe River basin (Jiang et al.,
2015) and Yellow River basin (Xu et al., 2013, 2015). However,
based on our experience, the numerical solution of solute
transport is not stable enough in original SWAP-EPIC with the
explicit finite-difference scheme, because the time step should
meet the stability criterion for ensuring stability (van Genuchten
and Wierenga, 1974). When the size of time step exceeds a limit
and stability criterion is not satisfied, the numerical errors in the
solution are amplified as the time marches forward, leading to an
invalid or unstable solution (Zheng and Bennett, 2002). Accord-
ing to our experience, this caused very large numerical errors and
mass imbalance for salinity problems in SWAP-EPIC, which was
prone to happen in GSA and GPE modeling with a large range of
parameter changes (Xu et al., 2012, 2013). Subsequently, it would
lead to the crash of GSA simulation and efficiency reduction for
GPE simulation. Therefore, in this study, we developed a new
solute transport module optionally using the fully implicit or
Crank-Nicholson finite-difference scheme to replace the original
one in the updated version of SWAP-EPIC. It could indeed
improve the model stability and make the calculation much
faster. Main processes of the modified SWAP-EPIC model are
described below.
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Soil water flow

Soil water flow is based on the one-dimensional (1-D) Richards
equation for vertical flow:

CðhÞ vh
vt

¼ v

vz

�
KðhÞ

�
vh
vz

þ 1
��

� SðhÞ; (1)

where C is the differential soil water capacity (cm�1), h is the soil
water pressure head (cm), t is time (d), z is the vertical coordinate
(cm, positive upward), K is the hydraulic conductivity (cm d�1) and
S is the soil water extraction rate by plant roots (cm3 cm�3 d�1).
This equation is solved using an implicit finite-difference scheme in
water flowmodule, which is from the original SWAP model. Eq. (1)
requires knowledge of the soil hydraulic properties, which are
described by the van Genuchten (1980) and Mualem (1976) func-
tions, respectively:
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in which Se is the effective saturation, qr and qs denote the residual
and saturated water contents (cm3 cm�3), respectively, Ks is the
saturated hydraulic conductivity (cm d�1), a (cm�1) and n (�) are
empirical shape parameters, and l is a pore connectivity/tortuosity
parameter (�). A variable active-node method is added for simu-
lating the soil water flow during melting period (Xu et al., 2013).

Solute transport

For solute transport, the advectionedispersion equation (ADE)
(Boesten and van der Linden, 1991) is applied as follows:
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where c is the solute concentration in the soil liquid phase (g cm�3),
rb is the dry soil bulk density (g cm�3), Q is the adsorbed concen-
tration (g g�1), q is the Darcian velocity (cm d�1), Ddif is the diffusion
coefficient (cm2 d�1),Ddis is the dispersion coefficient (cm2 d�1), m is
the first-order rate coefficient of transformation (d�1), and Kr is the
root uptake preference factor (�). An explicit, central finite differ-
ence scheme is used to solve Eq. (4) in the original SWAP-EPIC
model. It has the advantage that incorporation of the nonlinear
adsorption, mobile/immobile concepts, and other non-linear pro-
cesses is relatively easy (Kroes and van Dam, 2003). However, as
mentioned before, the explicit scheme may have some stability
problems for the GSA and GPE modeling due to the time step
required to satisfy the stability criterion, which also sacrifices
computation time. Thus, in this study, the Eq. (4) was numerically
solved by developing the fully implicit and the Crank-Nicholson
finite-difference schemes in time discretization within a new so-
lute transport module. Grid Peclet number and Courant number
were used together to ensure the numerical stability.

Evaporation and transpiration

The upper boundary conditions are defined by the actual
evaporation and transpiration rates, and the irrigation and pre-
cipitation fluxes. The potential evapotranspiration (ETp, cm d�1) is
estimated by the Penman-Monteith equation (Monteith, 1965)
using dailymeteorological data of solar radiation as computed from
sunshine duration, air temperature, relative humidity and wind
speed as well as crop parameters. The ETp is then partitioned into
potential soil evaporation (Ep, cm d1) and potential crop transpi-
ration (Tp, cm d1) using the leaf area index (LAI). In dry soil con-
ditions, the maximum evaporation rate, Emax (cm d1), is calculated
according to Darcy's law (van Dam et al., 1997). As the actual soil
evaporation (Ea, cm d1) may be overestimated using Darcy's law, a
two-stage evaporation model, recommended by FAO (Allen et al.,
1998), is introduced to correct Ep to Eats (cm d1) in the updated
SWAP-EPIC model. This new evaporation model is added because
the two empirical power functions of Black et al. (1969) and
Boesten and Stroosnijder (1986) in original SWAP have also led to
an incorrect estimation of Ea under shallow water table conditions.
Finally, the actual evaporation (Ea, cm d1) rate is determined by
taking the minimum value of Emax and Eats.

The actual transpiration (Ta, cm d1) is governed by the root
water uptake (S) which is calculated from the potential transpi-
ration, rooting depth and distribution, and a possible reduction
due to water and salt stress. In SWAP-EPIC, the S-shaped function
incorporating a salinity threshold value, proposed by Dirksen and
Augustijn (1988) is used for describing the water or salinity
stress, which is based on the soil solution osmotic head instead of
ECe. The minimal crop resistance (rc, s m�1) is assumed a con-
stant value in the original SWAP; however, it is known that rc is
affected by vapor pressure deficit (VPD, kPa) and atmospheric
CO2 level. Therefore, the methods proposed by Easterling et al.
(1992) and Stockle et al. (1992) were incorporated to make a
correction of rc related to VPD and CO2 concentration in this
study.
Crop growth

SWAP-EPIC includes the conceptual module of the EPIC crop
growth model (Williams et al., 1989). This module considers leaf
area development, light interception, and the conversion of inter-
cepted light into biomass and yield together with effects of tem-
perature, water and salt stress. Biomass is computed from the solar
radiation intercepted by the crop leaf area, which is estimated with
Beer's law (Monsi and Saeki, 1953). The potential increase in
biomass on a given day is estimated as a function of the plant
radiation-use efficiency with consideration of stress factors such as
water, salinity, and temperature (Monteith and Moss, 1977).
Radiation-use efficiency is estimated using the approach proposed
by Stockle et al. (1992).

Leaf area index (LAI) is computed for the various phenological
development stages considering heat units accumulation (Williams
et al., 1989). LAI represents the level of canopy cover, and is esti-
mated as a function of heat units, crop stress, and development
stages. Crop height is estimated as such in the EPICmodel (Williams
et al., 1989). The fraction of total biomass partitioned to the root
system is 30e50% in seedlings and reduces to 5e20% in mature
plants (Jones, 1985). This model decreases the fraction of total
biomass in roots linearly from 0.4 at emergence to 0.2 at maturity,
which is similar to the EPIC model (Williams et al., 1989). The root
depth generally increases rapidly from planting to a specific
maximum depth by early mid-season (Borg and Grimes, 1986). The
vertical root distribution in the soil profile is assumed as a
piecewise-linear function of the root depth. The actual crop yield is
calculated using the harvest index concept following the EPIC
model procedures (Williams et al., 1989), i.e., as a function of the
above ground biomass (kg ha�1) and environmental stresses (soil
temperature, soil salinity, fertilizers, etc.).
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2.1.2. Sensitivity analysis and parameter estimation
Two new modules (GSA and GPE) were developed and

embedded into SWAP-EPIC for effective identification of model
parameters. The GSA module for sensitivity analysis was based on
the LH-OAT method which had a sampling strategy that was a
combination of Latin Hypercube (LH) and One-factor-At-a-Time
(OAT) sampling. The genetic algorithm based method was adop-
ted here to construct the GPE module for inverse parameter esti-
mation. The calculation procedure for model calibration with GSA
and GPE modules is explained in Fig. 1.

Sensitivity analysis: LH-OAT method

The LH-OAT method has a sampling strategy that is a combi-
nation of Latin Hypercube and One-factor-At-a-Time sampling. It
allows performing GSA for a long list of parameters with less
computational cost (van Griensven et al., 2006). It starts with
dividing the parameter range into N equal intervals, and taking N
LH sampling points for each parameter. Random values of the pa-
rameters are generated, with each interval to be sampled only once.
Then each of the N LH sampling is varied for P times by changing
each of the P parameters one at a time, using the OAT design. Thus it
only requires a total of N � (Pþ 1) model runs. A final sensitivity
index Si for the ith parameter is calculated by averaging the partial
effects for all Latin Hypercube points, as follows:

Si ¼
1
N

XN
j¼1









Mðe1;j;…;ei;jð1þfiÞ;…;ep;jÞ�Mðe1;j;…;ei;j;…;ep;jÞ

½M�ðe1;j;…;ei;jð1þfiÞ;…;ep;jÞþMðe1;j;…;ei;j;…;ep;jÞ=2
fi








; (5)

whereM(∙) refers to the model functions, fi is the fraction by which
Fig. 1. Schematic diagram of global sensitivity analysis (a) and inverse estimation (b) of pa
methods, respectively.
the parameter ei is changed (a predefined constant), and j refers to a
LH point. GSA result is obtained according to Si value, with largest
value being given rank 1 and the smallest value being given a rank
equal to the total number of parameters analyzed. The default value
of fi is set to 5%.

In this paper, the above LH-OAT sampling method was applied
and embedded into SWAP-EPIC as a new module for GSA. A
restricted set of parameters was applied in sensitivity analysis for
capturing the major processes described in agro-hydrological
simulation. These parameters can be selected for GSA as required,
and their ranges were needed and often determined based on the
existing literature. For example, Table 1 presents the selected pa-
rameters and their ranges for the case studies in this paper. In the
GSA module, parameters were classified into five categories related
to different processes (soil water flow, solute transport, crop
growth, and water or salt stress of root water uptake). The model
outputs could be optionally selected as objective variables as
necessary, including actual evapotranspiration (ETa), LAI, bottom
flux (Qbot), dry above ground biomass (D-AGB), and layer-specific
soil moisture and salinity concentration.
Parameter calibration: genetic algorithm based method

The genetic algorithms (GAs) are global and robust methods
for searching the optimum solution to the complex problems,
using the precept of natural selection (Holland, 1975; Goldberg,
1989). GA consists of three basic operators of selection, cross-
over and mutation. It represents a solution using strings (referred
as chromosomes) of variables (represented as genes) in a search
problem. The search will start by initializing a population of
chromosomes. Each chromosome is evaluated on its performance
rameters for agro-hydrological model (SWAP-EPIC) using LH-OAT and modified-MGA



Table 1
Parameters and their ranges used in sensitivity analysis in the case study.

Parameter Definitiona Min Max Process

qri Saturated water content for material i (cm3 cm�3) 0 0.05 Soil water flow
qsi Residual water contents for material i (cm3 cm�3) 0.36 0.52 Soil water flow
Ksi Saturated hydraulic conductivity for material i (cm d1) 5 50 Soil water flow
ai Empirical shape parameter in Eq. (2) for material i (�) 0.005 0.03 Soil water flow
li Pore connectivity/tortuosity parameter in Eq. (3) for material i (�) �6 0 Soil water flow
ni Empirical shape parameter in Eq. (2) for material i (�) 1.15 1.8 Soil water flow
Ldis Dispersion length (cm) 5 22 Solute transport
Dw Solute diffusion coefficient in free water (cm2 d�1) 0 10 Solute transport
h1 No water extraction at higher pressure heads (cm) �10 0 Water stress of root uptake
h2u h below which optimum water uptake starts for top layer (cm) �50 �11 Water stress of root uptake
h2l h below which optimum water uptake starts for sub layer (cm) �50 �11 Water stress of root uptake
h3 h below which water uptake reduction starts at high atmospheric demand (cm) �400 �700 Water stress of root uptake
h4 h below which water uptake is zero (cm) �18,000 �7000 Water stress of root uptake
rs Minimum crop resistance (s m�1) 50 80 Crop growth
aic Empirical coefficient of rainfall interception (cm d1) 0.1 0.5 Crop growth
P2 Exponential coefficient of S-Shape salt stress function (�) 1 2.5 Salt stress of root uptake
h50c Osmotic head at which water uptake is reduced by 50% (cm) �9500 �6000 Salt stress of root uptake
hcr Threshold value of Osmotic head (cm) �5000 �3000 Salt stress of root uptake
Tb Minimum temperature for plant growth (ºC) 0 4 Crop growth
Topt Optimal temperature for plant growth (ºC) 18 24 Crop growth
DLAI Fraction of growing season controlled by cumulative temperature when leaf area

index starts declining (�)
0.48 0.7 Crop growth

RLAD Leaf area index decline rate (�) 0.4 2 Crop growth
Lmax Maximum leaf area index (�) 5 7 Crop growth
PHU Total potential heat units required for crop maturation (ºC) 1800 2200 Crop growth
cdrain solute concentration in groundwater (g L�1) 0 6 Solute transport

a Note: subscript i is the number of soil material for parameters in the top six rows, and equal to 1e5 in the case.
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using a fitness function. On the basis of the performance, the
chromosomes are selected into the mating pool to form the
offspring through the crossover and mutation of genes. Selection,
crossover, and mutation are repeated for many generations for
reproducing the chromosome that fit the environment best. The
best chromosome would represent the optimal or near optimal
solution to the search problem (Carroll, 1998; Goldberg, 2002). In
this study, the modified-MGA has been adopted to calibrate the
model parameters by minimizing the error between simulated
and observed data. The uniqueness of modified-MGA is the
ability to restart when the chromosomes of the micropopulation
are nearly 90% similar in structure (Ines and Droogers, 2002; Shin
et al., 2012).

The modified-MGA code (Carroll, 1998; Ines and Droogers,
2002) was integrated as a GPE module for parameter estimation
into SWAP-EPIC by embedded coupling. The highly sensitive pa-
rameters selected by LH-OATmethodwere adopted to be calibrated
here. Their range and classificationwere set as same in SA (Table 1).
Similar to the sensitivity analysis, the model outputs could be
optionally selected as objective variables according to the obser-
vation data collected. On the basis of these objective variables, the
fitness function was constructed using the weighted average
method, as follows:
Table 2
Soil physical properties of experimental area.

Soil depths (cm) Soil particle size distribution (%) Soil te

Sand (2.0e0.05 mm) Silt (0.05e0.002 mm) Clay (<0.002 mm)

0e30 55.9 39.3 4.8 Sandy
30e81 54.0 41.0 5.0 Loam
81e103 55.0 41.3 3.7 Loam
103e140 21.5 74.7 3.8 Silty l
140e150 71.0 27.0 2.0 Sandy
fitnessðjÞ ¼
Xm
k¼1

uk

0
BBB@ 1

1
nk

Pnk
i¼1 jxsim � xobsji

1
CCCA; (6)

where fitness(j) is the fitness value of the jth chromosome, xsim and
xobs are the normalized values of simulated and observed objective
variables, respectively (�), the subscript i donates the ith obser-
vation, the nk is the number of observations for the kth objective
variable, m is the number of total selected objective variables, and
uk is the weighting factor for the kth objective variable (�) withPm

k¼1uk equals to one.
When GA approaches to the solution, the fitness values of most

chromosomes in a population may be close. To avoid the non-
uniqueness and instability in the inverse solution, a kind of un-
certainty bounds to solution was created analogous to that used
by Abbaspour et al. (2004) or Shin et al. (2012). The inverse
modeling was conducted with a multi-population generated by
various random generator seeds. The average fitness of all chro-
mosomes was calculated and classified as above or below average
at the end of searching. The above average solutions were
xture Bulk density (g cm�3) Field capacity (�11 kPa) Wilting point (�1500 kPa)

loam 1.41 0.28 0.059
1.60 0.31 0.068
1.52 0.28 0.072

oam 1.55 0.36 0.120
loam 1.58 0.32 0.106



Table 3
Values of the van Genuchten-Mualem model parameters and dispersion length for different soil layers, calibrated by Xu et al. (2013).

Depths (cm) Layer and soil type qs qr a (cm�1) n (�) l (�) Ks (cm d1) Ldis (cm)

(cm3 cm�3) (cm3 cm�3)

0e30 1 Sandy loam 0.40 0.02 0.020 1.40 0.5 6.0 19
30e81 2 Loam 0.42 0.02 0.015 1.39 0.5 13.0
81e103 3 Loam 0.38 0.01 0.018 1.32 0.5 10.0
103e140 4 Silty loam 0.45 0.01 0.013 1.26 0.5 7.0
>140 5 Sandy loam 0.41 0.01 0.020 1.25 0.5 10.0
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considered as the most probable solutions, which were used
respectively to run the model. Then, the 95 percent confidence
interval (95PCI) of outputs with the probable solutions was
calculated for each observation time. The upper and lower 95PCI
was the range of output, which may represent some modeling
uncertainties.
Fig. 2. Comparison of solute concentration profiles (a) at different hours and breakthrough
numerical solutions given SWAP-EPIC module.
2.2. Model test: new solute transport module

The developed new solute transport module was tested by
using an analytical solution with steady-state water flow condi-
tion. Only the result of fully implicit scheme was selected and
exemplified in this study. The solution of 1-D analytical solute
transport models for the third-type (i.e. flux-type) sources, first
curves (b) at different depths between the analytical solution given in Eq. (7) and the
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obtained by Lindstrom et al. (1967), is used and presented as
follows (Batu, 2005):

Cnðz; tÞ ¼ C � Ci
C0 � Ci

¼ 1
2
erfc

"
Rdz� Ut

2ðDRdtÞ1=2

#
þ
�

U2t
pDRd

�1=2

exp

"
� ðRdz� UtÞ2

4DRdt

#

� 1
2

�
1þ Uz

D
þ U2t
DRd

�
exp

�
Uz
D

�
erfc

 
Rdzþ Ut

2ðDRdtÞ1=2

!
;

(7)

where Cn(z, t) is the normalized concentration, Ci and C0 are
respectively the initial and boundary flux concentration (g L�1), Rd
is the solute retardation factor (�), D is the effective dispersion
coefficient (cm2 d�1), U is the average pore-water velocity (cm d1).
The governing differential equation and related initial and
Table 4
Sensitivity analysis ranking for 49 parameters of SWAP-EPIC model corresponding to dif

Name Global ETa Qbot LAI D-AGB q1 (10e30 cm) q2 (30e50 cm) q3 (50e70 cm)

qs1 1 13 5 18 16 1 7 10
qs2 1 1 1 6 1 10 1 1
Ldis 1 8 13 16 13 22 23 21
Tb 1 10 14 1 2 20 19 24
qs3 2 36 32 34 41 36 39 27
a1 2 4 2 9 8 2 6 4
a2 2 15 6 11 7 6 2 2
h50c 2 2 3 7 3 13 12 9
PHU 2 17 19 2 5 26 29 31
n1 3 3 4 8 4 3 4 5
n2 3 6 7 10 10 4 3 3
DLAI 3 24 26 3 22 30 30 35
Ks2 4 14 10 14 17 5 5 13
a3 4 26 22 29 30 16 20 14
Lmax 4 21 28 4 6 28 25 37
rs 5 5 8 21 11 18 15 18
RLAD 5 18 31 5 18 27 35 39
Ks3 6 25 21 25 24 14 16 8
n3 6 22 17 32 25 12 13 6
qr2 7 33 35 22 28 21 11 7
l2 7 16 18 23 19 7 8 17
hcr 7 7 11 13 9 23 27 23
Ks1 8 12 12 15 14 8 9 11
l1 8 11 9 17 15 9 10 12
P2 9 9 15 12 12 24 17 26
qr1 11 23 16 20 20 11 18 20
Ks4 12 32 23 36 34 19 22 25
Ks5 14 35 30 31 35 15 14 16
l3 15 29 34 41 29 25 21 15
qr3 16 39 40 42 44 50 50 36
n4 17 31 29 43 36 17 24 19
qs4 18 37 38 30 37 34 32 34
Dw 18 28 37 28 31 32 34 33
a4 19 34 36 39 32 29 26 22
h2u 19 27 25 19 21 38 28 29
h2l 19 19 20 26 23 33 31 50
aic 20 20 24 37 33 37 38 50
Topt 24 41 44 24 26 39 50 50
qr4 27 40 27 50 39 50 50 50
h1 27 30 33 27 27 50 50 28
qs5 28 42 41 38 43 35 37 38
l4 30 38 39 40 38 31 33 30
h3 32 44 43 35 42 50 36 32
h4 33 43 42 33 40 50 50 50
a5 45 50 45 50 50 50 50 50
cdrain 45 50 46 50 50 50 50 50
qr5 50 50 50 50 50 50 50 50
l5 50 50 50 50 50 50 50 50
n5 50 50 50 50 50 50 50 50

Note: The global rank 1 and 2e6 were categorized as the ‘very important’ and ‘importan
boundary conditions are given in detail by Batu (2005). This third
type solution includes finite length flow domains and ensures mass
continuity, which is consistent with the practical conditions as well.
A 300 cm long (loam) soil column was considered and simulation
period was set 100 h for numerical solution. The column was dis-
cretized into 250 nodes with 1 cm thickness for the top 100 cm and
1 or 2 cm for the bottom 200 cm. The parameters related to solute
transport were taken as follows: Rd ¼ 1.25, U ¼ 40 cm d1,
D ¼ 10 cm2 d�1.
2.3. Global sensitivity analysis and calibration of parameters: field
case study

The field experiment of spring wheat in 2007 and 2008 was
selected as a case study for model testing. It was conducted at the
Huinong experimental site, Qingtongxia Irrigation District, Ningxia
Hui Autonomous Region, Northern China (39� 040 N, 116� 39’ E,
1092m altitude) during 2007 and 2008. The climate in the region is
ferent criteria.

q4 (70e90 cm) c1 (10e30 cm) c2 (30e50 cm) c3 (50e70 cm) c4 (70e90 cm)

13 7 15 16 7
1 1 1 2 1

24 2 2 1 2
25 14 10 5 14
2 25 31 30 16
8 10 6 7 5
3 5 3 3 6

23 6 4 6 13
31 23 21 14 25
9 3 5 9 4
5 4 7 8 3

35 29 34 33 34
14 11 9 4 10
4 26 30 29 17

36 17 20 24 29
20 9 8 11 21
38 31 35 36 33
6 22 19 12 12
7 19 16 13 9

10 21 22 27 35
11 16 14 18 15
27 13 12 20 24
21 8 13 15 11
22 12 17 17 8
28 15 11 10 22
26 18 27 31 23
12 30 26 32 27
15 37 29 25 28
18 32 28 22 26
16 50 50 40 40
17 36 24 19 20
50 39 37 34 18
37 27 18 23 19
19 35 38 28 30
29 20 33 35 38
39 33 25 21 36
33 24 23 26 31
50 38 50 50 43
50 50 40 42 39
32 34 32 43 41
34 28 50 39 32
30 41 36 41 37
50 40 50 38 42
50 42 39 37 44
50 50 50 50 50
50 50 50 50 45
50 50 50 50 50
50 50 50 50 50
50 50 50 50 50

t’ parameters, respectively.
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arid continental and during the experimental period the average
annual rainfall is 194 mm, with more than 70% of precipitation
occurring between June and September. The experiment data had
been used to calibrate the previous version of SWAP-EPIC by Xu
et al. (2013) that presented a detail description of experiment
conditions. The information related to weather, soil properties,
groundwater, irrigation, cultivation practices, and observations
were provided in Xu et al. (2013). Table 2 provides the main soil
physical properties of the studied soil with five layers.

A soil profile with 300 cm depth was specified during simula-
tions. It was divided into five horizon layers up to 150 cm, according
Fig. 3. Sensitivity values of the importa
to observations (Table 2). The soil domain was further discretized
into 200 compartments with 1 cm thickness for the first 100 cm
and 2 cm thickness for 100e300 cm. The fully implicit difference
scheme was selected. The corresponding soil hydraulic and solute
transport parameters calibrated by Xu et al. (2013) are provided in
Table 3. The simulation period was from mid-March to mid-July,
covering the growth period of spring wheat both in 2007 and
2008. Themodel setup of initial and boundary conditions were kept
same as in Xu et al. (2013).

In this case study, 49 parameters were initially selected for
sensitivity analysis, with their ranges presented in Table 1. The
nt parameters for different criteria.



Table 5
Solutions of inverse modeling for the numerical and real experimental cases using the global parameter estimation (GPE) module.

Parameter Numerical case Experimental case

Target valuea Average Range Target value Average Range

qs1 0.400 0.451 0.405e0.467 e 0.455 0.379e0.499
qs2 0.420 0.435 0.400e0.460 e 0.388 0.361e0.404
qs3 0.380 0.395 0.385e0.416 e 0.389 0.361e0.431
Ks2 13.0 23.7 5.2e43.0 e 24.9 7.1e38.5
Ks3 10.0 10.2 6.4e21.3 e 11.6 7.9e17.0
a1 0.020 0.020 0.019e0.020 e 0.025 0.021e0.028
a2 0.015 0.016 0.011e0.020 e 0.013 0.006e0.023
a3 0.018 0.020 0.018e0.028 e 0.021 0.018e0.028
n1 1.400 1.602 1.433e1.659 e 1.486 1.243e1.623
n2 1.390 1.516 1.488e1.592 e 1.381 1.242e1.726
n3 1.320 1.480 1.360e1.528 e 1.266 1.153e1.464
Ldis 19.0 18.2 15.8e19.2 e 19.2 10.9e21.8
rs 70.0 70.3 63.6e74.1 e 75.2 64.6e79.8
h50c �9300 �9119 �9369~e8515 e �9103 �9430~e8251

a Note: the parameter values calibrated by Xu et al. (2013) were assumed to be the real target values for the numerical case.
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model outputs, including ETa, LAI, Qbot, and layer-specific soil
moisture (q1, q2, q3 and q4) and salinity concentration (c1, c2, c3 and
c4) for 10e30, 30e50, 50e70 and 70e90 cm layers, were selected as
sensitivity criteria. The parameter sensitivity to LAI, soil moisture
and salinity concentration were analyzed based on the simulated
and observed data. The functions M(∙) in Eq. (5) were constructed
with the deviation between simulated and observed data. The fi
value in Eq. (5) was set equal to the default value of 5% in this study.
Due to no observations of ETa and Qbot, their functions M(∙) only
Fig. 4. Simulated versus measured soil water contents (a, at left) and salt content of the soil
to the average simulation of solutions by GPE, while the gray band represents the simulati
consisted of the simulated data. The sensitivity index values for
each parameter were then calculated using the GSA module, and a
ranking list of sensitivity was obtained. Finally, the parameter
sensitivity was determined, and only highly sensitive parameters
were considered for inverse calibration with the GPE module.

For evaluating the performance of the GPE module, a numerical
case was adopted at first during the crop season of 2007. The
model-generated output was used instead of actual field observa-
tions. The parameters calibrated by Xu et al. (2013) were considered
solution (b, at right) in different soil layers in numerical case. The solid line corresponds
on uncertainty.
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for this numerical case as the real parameter values (Table 3).
Running the SWAP-EPIC model with the above parameters, and the
generated output was assumed as the “measured” values in the
inverse modeling. The daily measured (hypothetical) ETa, layer-
specific soil moisture (q1, q2, q3 and q4) and salinity concentration
(c1, c2, c3 and c4) were used to construct the fitness function (Eq.
(6)). The weighting factor was respectively set to 0.20, 0.50 and
0.30. ETa was selected as an objective because it has become a
routine observation by various methods (e.g. lysimeter, eddy
covariance and remote sensing).

Next, the real field measurements were used to test the appli-
cability of GPE module (i.e. the experimental case). The fitness
function for the experimental case was composed by the observed
LAI, layer-specific soil moisture, and salinity concentration. The
weighted factor was the same as in the numerical case with LAI
instead of ETa. The parameters were firstly calibrated though in-
verse modeling using the experimental data in 2007 season. Then
the inverse parameters were also validated by using the observed
data in 2008 season.

The mean relative error (MRE), the root mean square error
(RMSE), the Nash and Sutcliffe model efficiency (NSE), the coeffi-
cient of determination (R2) were used to quantify the model fitting
performance. These indicators were defined as follows:

MRE ¼ 1
N

XN
i¼1

ðPi � OiÞ
Oi

� 100%; (8)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðPi � OiÞ2
vuut ; (9)

NSE ¼ 1�
PN

i¼1ðPi � OiÞ2PN
i¼1

�
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	2 ; (10)
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2
66664

PN
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�
Oi � O

	 �
Pi � P

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
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�2r
3
77775

2

; (11)

where N is the total number of observations, Pi and Oi are respec-
tively the ith model simulated and observed values (i ¼ 1, 2, …, N),
and P and O are the simulated and observed mean values, respec-
tively. NSE ¼ 1.0 represents a perfect fit, and negative NSE values
indicate that the mean observed value is a better predictor than the
simulated value (Moriasi et al., 2007). Note that when calculating
the above indicators, the simulated value (Pi) corresponded to the
average of simulation results obtained by all probable solutions,
both for the numerical and experimental cases.
Fig. 5. Simulated versus measured actual evapotranspiration in numerical case. The
solid line corresponds to the average simulation of solutions by GPE, while the gray
band represents the simulation uncertainty.
3. Results and discussion

3.1. Test of the new solute transport module

Results showed that the numerical solution with new scheme
for solute transport matched very well with the analytical solution
under steady-state water flow condition (Fig. 2). Fig. 2a shows a
comparison between soil salinity concentration profiles calculated
with analytical solution and with our numerical method at selected
four times (25, 50, 75 and 100 h). Breakthrough curves at different
depths (including 0.5, 14.5, 34.5, 60.5, 145 and 240 cm) are pre-
sented in Fig. 2b. The agreement was excellent. The above
comparison indicated that the numerical scheme of ADE (Eq. (4))
was correct. Thus, the new solute transport module was reasonable
and accurate for solute transport modeling.
3.2. Parameter sensitivity analysis in field case study

Table 4 gives the sensitivity rank of all the parameters for
different criteria (i.e. model outputs of ETa, LAI, Qbot, q1-q4 and c1-c4).
The lowest rank from all the outputs was used to assess global
parameter sensitivity as shown in the second column. Global ranks
1 were categorized as ‘very important’, rank 2e6 as ‘important’,
rank 7e49 as ‘slightly important’ and rank 50 as ‘not important’.
Thus, results identified 4 very important, 15 important, 27 slightly
important, and 3 not important parameters. In addition, the
sensitivity values of parameters corresponding to different criteria
are presented in Fig. 3.

The 4 very important parameters included qs1, qs2, Ldis and Tb,
which covered soil water flow, solute transport and crop growth
processes. The 15 important parameters mainly consisted of soil
hydraulic parameters of upper two soil layers and also salt stress
parameter (h50c) and crop growth parameters (PHU, DLAI, Lmax and
RLAD). Some soil hydraulic parameters of upper two soil layers
(including qs2, a2, n2, a1, n1 and qs1) showed important influences on
all criteria (Fig. 3). It was also found that the crop growth param-
eters (e.g. Tb and PHU) had marked influence on LAI and biomass
(Fig. 3b), but the influencewas less on ETa, soil moisture and salinity
concentration (Fig. 3a,c,d). Ldis primarily affected the solute trans-
ports with slight sensitivity to other criteria. Results also indicated
that the ETawas not so sensitive to parameters while Tawas slightly
more sensitive (Fig. 3a), under conditions of shallow water tables.

There were some soil hydraulic parameters which belonged to
the 27 slightly important parameters, most of which were related
to the lower two soil layers. These layers were close to groundwater
table and sometimes in saturated conditions. Meanwhile, the water
stress parameters were all slightly influential on all criteria, located
in the lower part of ranking list (Table 4). It implied that the water
supply is not insufficient under shallow water table conditions, and
the root water uptake and crop growth were primarily stressed by
salinity levels. This was consistent with the analysis of Xu et al.
(2013). In addition, the two soil hydraulic parameters of the 5th
soil layer (qr5 and l5) caused no changes on model outputs due to
the fact that this layer was saturated all the time. Overall, the GSA
efficiently identified the importance of parameters and provided
their sensitivity values for the SWAP-EPIC model. Besides some soil
hydraulic parameters, salt stress and crop growth parameters were
also significant to model output. Many of soil hydraulic parameters



Table 6
Goodness-of-fit test indicators of observed and simulated values for numerical case
and real experimental case.

Numerical case

Item MRE (%) RMSE NSE R2

Soil water content (cm3 cm�3) �0.246 0.006 0.985 0.993
Salinity concentration (g L�1) �0.210 0.112 0.997 0.999
ETa (cm) �0.300 0.147 0.997 0.997

Experimental case

Item MRE (%) RMSE NSE R2

Calibration (2007) Soil water content (cm3 cm�3) �1.200 0.022 0.827 0.842
Salinity concentration (g L�1) �5.300 1.967 0.292 0.392
LAI (�) �3.453 0.429 0.920 0.931

Validation (2008) Soil water content (cm3 cm�3) 3.373 0.027 0.757 0.809
Salinity concentration (g L�1) 3.199 2.334 0.498 0.569
LAI (�) 9.060 0.510 0.887 0.903
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had only slight effects on model output, especially for the lower
two soil layers in this case. The quantitative sensitivity information
could be very useful to model calibration.

The parameters to be inversely calibrated were generated from
the “very important” and “important” parameters (ranking 1e19 in
Table 4). However, the parameters that have little uncertainty or
could be known precisely were not necessarily to be calibrated.
Fig. 6. Simulated versus measured soil water contents in different soil layers during model c
line corresponds to the average simulation of solutions by GPE, while the gray band repres
Thus, 14 parameters related to soil hydraulic properties, solute
transport and salt stress were selected in the following inverse
calibration (see Table 5). Five crop growth parameters (Tb, PHU,
DLAI, Lmax and RLAD) were not considered and were set the same
values as in Xu et al. (2013), because they were more well-known
and had small influences on soil water and solute transport.

3.3. Parameter estimation in case study

3.3.1. Numerical case
Five most probable solutions (i.e. parameter groups) were ob-

tained through inverse simulation in numerical case (Table 5).
Figs. 4 and 5 showed the comparison of simulated and observed
ETa, soil moisture and salinity concentration based on inverse
modeling. The fitness indicators are given in Table 6. Results
showed that the simulated values were almost completely fitted
with the observed values (ETa, RMSE ¼ 0.147 mm, NSE ¼ 0.997; soil
moisture, RMSE ¼ 0.006 cm3 cm�3, NSE ¼ 0.985; soil salinity
concentration, RMSE ¼ 0.112 g L�1, NSE ¼ 0.997). Meanwhile, MAE
were found to approach zero and R2 were larger than 0.99 for all
output. The values of calibrated parameters are presented in
Table 5. The value range almost covered the target (real) values
while the average values for most calibrated parameters were
approaching to the target values. It was also found that parameters
with high sensitivity were much closer to the target values, such as
alibration (a, at left) and validation (b, at right) in the real experimental case. The solid
ents the simulation uncertainty.
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a1, a2 and Ldis. However, the parameter range might also have an
impact on the accuracy of inverse estimation. For example, the
accuracy of inverse estimation for the most important parameters
qs2 was not the highest. Some parameters were more uncertain and
difficult to estimate such as Ks2 that had relatively low sensitivity.
The uncertainty bound for simulated ETa, soil moisture and salinity
concentration is presented in Figs. 4 and 5, respectively. There were
very small uncertainties for all model output. In summary, the
estimated and targeted values for 14 selected parameters were very
close with each other, and the simulated data matched very well
with observed daily data with some small uncertainties. Thus, the
numerical case showed that the GPE module had a potential ability
for inverse parameter estimation for agro-hydrological model.

3.3.2. Experimental case
Eight probable solutions were obtained by inverse calibration

using 2007 data in field experimental case (Table 5). The simulated
soil moisture showed good agreement with the measured values
for various soil layers during model calibration in 2007 (Fig. 6a). It
produced a RMSE ¼ 0.022 cm3 cm�3, a NSE ¼ 0.827 and a
R2 ¼ 0.842, which showed a better fitness than that by Xu et al.
(2013) with manual try-and-error method. Fig. 7a also shows that
the simulated and observed salinity concentration for the same soil
layers matched with each other during the calibration period. In
addition, Figs. 6a and 7a showed that the predicted uncertainty
bounds covered most of the observed values. However, there were
Fig. 7. Simulated versus measured salt content of the soil solution in different soil layers du
The solid line corresponds to the average simulation of solutions by GPE, while the gray ba
some discrepancies for deeper soil layers (i.e. 50e70 cm and
70e90 cm) that were partly affected by water table fluctuations.
This could be related to the low observation frequency of ground-
water depths (every 10 days) as well as observation quality (espe-
cially for salinity concentration). The LAI values were also simulated
in agreement with observations (Fig. 8a), and the fitness results (i.e.
RMSE ¼ 0.429, NSE ¼ 0.920 and R2 ¼ 0.931) were superior to the
manual calibration. Note that the simulated soil moisture and LAI
were closer to the observed values than soil salinity concentration.
This should be the result of the quality of observational data for
salinity concentration was worse than the other two. It affected the
accuracy of inverse parameter estimation.

The model with calibrated parameters was further tested using
the 2008 experimental data. Soil moisture reproduced by the
SWAP-EPIC model (Fig. 6b) represented well the observations as
shown in the small errors of the estimates
(RMSE ¼ 0.027 cm3 cm�3, NSE ¼ 0.757 and R2 ¼ 0.809). The
simulated salinity concentration was also in agreement with ob-
servations (Fig. 7b) (RMSE ¼ 2.334 g L�1, NSC ¼ 0.498 and
R2 ¼ 0.569). In addition, most of the observed data were located in
the uncertainty bands for soil moisture and salinity concentration.
The performance indicators showed that the accuracy for soil water
and salinity was better than that obtained by manual method in Xu
et al. (2013). The simulated LAI was also closer to observed values
(Table 6). The uncertainty bound was relatively small for LAI and
soil salinity concentration. These results indicated an acceptably
ring model calibration (a, left) and validation (b, at right) in the real experimental case.
nd represents the simulation uncertainty.



Fig. 8. Simulated versus measured leaf area index during model calibration (a, left)
and validation (b, at right) in the real experimental case. The solid line corresponds to
the average simulation of solutions by GPE, while the gray band represents the
simulation uncertainty.
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good simulation of all processes during validation period with the
calibrated parameters by the GPE module. The two case studies
above showed that the GPE module was useful to inversely cali-
brate the parameters for an agro-hydrological model. The effects of
parameter estimation for numerical case were much better than
that for experimental case, due to the good quality of (synthetic)
observation. The estimated parameter had larger uncertain range in
field experimental case (Table 5). However, the fitness of simulated/
observed data was still slightly better than that using the laborious
and tedious try-and-error method. In addition, the uncertainties
both for parameters and output could be provided when using the
GPE module. Thus, this indicated that the GPE method has a good
possibility for real field use, but its successful use should be based
largely on the quality of the observation data.

In summary, the case studies showed the applicability of the
joint use of the GSA and GPE modules. However, some limitations
or caveats should also be mentioned, such as: (1) the ranges of
parameters were subjectively defined according to users’ experi-
ences, which could influence analysis results for GSA and GPE; (2)
the uncertainty for setting the weighting factor uk in Eq. (6), which
could affect the GPE results for multi-objective problems; (3) the
application effects of methods was dependent on the quality of
observation data.
4. Conclusion

In this study, the global method of sensitivity analysis and in-
verse parameter estimation was introduced for a physically-based
agro-hydrological model�SWAP-EPIC. The global sensitivity anal-
ysis (GSA) module and global parameter estimation (GPE) module
were developed based on LH-OAT method and modified-MGA
method, respectively. They were well tested and validated with
the numerical and field experimental cases, using the experimental
data of wheat in an arid irrigation district of Northwest China. This
study has well extended the parameter identification to include
more processes (i.e. solute transport, root water uptake and crop
growth) for the complicated physically-basedmodels. In addition, a
new solute transport module was developed for SWAP-EPIC using
the fully implicit and Crank-Nicholson finite-difference schemes. It
indeed improved the numerical stability of SWAP-EPIC and made it
stable enough for GSA and GPE simulation.

The GSA performance showed that only a few parameters were
sensitive to the dynamics of agro-hydrological processes in the field
case simulation, i.e., only 14 sensitive parameters were found and
selected for calibration within 49 parameters. These sensitive pa-
rameters were mainly related to the processes of soil water flow,
solute transport and salt stress of root water uptake. Results also
implied that the sensitivity should be quite close to the specific field
conditions. The GPE simulation in the numerical case showed that
the searched value range covered the target (real) values and the
average values for most calibrated parameters were approaching to
their target values. The full consistency between simulated/
observed data further validated the applicability of GPE module.
Note that parameters with high sensitivity also have larger proba-
bility to reach the real values. Meanwhile, the acceptable agree-
ment of simulated/observed data in the actual experimental case
showed the practical applicability in fields. The parameter uncer-
tainty showed that there was relatively larger uncertain range in
experimental case than in numerical case. Thus the successful use
of GPE module was also affected by the quality of observation data.

In summary, this study presented the potential application of
GSA and GPE modules for parameter identification of physically-
based agro-hydrological models. While it should pay attention to
the effects of parameter ranges, weighting factor of multi-
objectives, quality of observation data on the identification re-
sults. This will be further studied in our follow-up investigations.
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