
Article

Hot Spots and Persistence of Nitrate in Aquifers
Across Scales
Dipankar Dwivedi 1,* and Binayak P. Mohanty 2

Received: 29 May 2015; Accepted: 5 January 2016; Published: 13 January 2016
Academic Editor: Kevin H. Knuth

1 Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2 Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843,

USA; bmohanty@tamu.edu
* Correspondence: DDwivedi@lbl.gov; Tel.: +1-510-486-4005

Abstract: Nitrate-N (NO3
- - N) is one of the most pervasive contaminants in groundwater. Nitrate in

groundwater exhibits long-term behavior due to complex interactions at multiple scales among
various geophysical factors, such as sources of nitrate-N, characteristics of the vadose zone and
aquifer attributes. To minimize contamination of nitrate-N in groundwater, it is important to
estimate hot spots (>10 mg/L of NO3

- - N), trends and persistence of nitrate-N in groundwater.
To analyze the trends and persistence of nitrate-N in groundwater at multiple spatio-temporal
scales, we developed and used an entropy-based method along with the Hurst exponent in two
different hydrogeologic settings: the Trinity and Ogallala Aquifers in Texas at fine (2 km × 2 km),
intermediate (10 km × 10 km) and coarse (100 km × 100 km) scales. Results show that nitrate-N
exhibits long-term persistence at the intermediate and coarse scales. In the Trinity Aquifer, overall
mean nitrate-N has declined with a slight increase in normalized marginal entropy (NME) over each
decade from 1940 to 2008; however, the number of hot spots has increased over time. In the Ogallala
Aquifer, overall mean nitrate-N has increased with slight moderation in NME since 1940; however,
the number of hot spots has significantly decreased for the same period at all scales.

Keywords: entropy analysis; nitrate-N in groundwater; temporal variability; spatial variability;
multi-scale analysis; Hurst exponent

1. Introduction

Globally, more than 1.5 billion people rely on groundwater as their primary source of drinking
water [1]. Nitrate-N is one of the most ubiquitous contaminants in groundwater. Nitrate-N (NO3

- - N)
is susceptible to reaching groundwater by leaching through soils with infiltrating water as a
consequence of its high solubility and mobility [2]. Furthermore, nitrate-N can persist in groundwater
for a long time (years to decades); it can further increase to high levels as more nitrogen is used
at the land surface due to anthropogenic activities. Several studies have noted that high nitrate-N
(>10 mg/L of NO3

- - N) concentration in drinking water is a threat to human health, particularly
for infants and pregnant women [3–6]. To mitigate health risks, cleaning up nitrate-contaminated
groundwater is an expensive and infeasible solution, especially for large aquifers [7]. Therefore, to
minimize contamination by developing optimal management strategies, it is desirable to analyze hot
spots and hot moments or the long-term behavior of nitrate in groundwater.

The long-term behavior of nitrate-N in groundwater shows variability in space and time.
The spatio-temporal variability of nitrate-N in groundwater is influenced by the interaction
among multiple geophysical factors, such as source availability, precipitation pattern, thickness
and composition of the vadose zone [8], types of aquifers (confined or unconfined) and aquifer
heterogeneity [9]. Varying sources of nitrate-N in space and time that render spatio-temporal
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variability include fertilizers applied to crops, irrigation source water, animal manure, air emissions,
atmospheric deposition, municipal effluent, food processing and wastewater treatment plants,
recharge from manure storage lagoons, leachate from septic system drain fields and percolation from
urban parks, lawns and golf courses [9–15]. Several studies have demonstrated that precipitation
patterns impact the extent of agricultural nitrate-N leaching [16–20]. The thickness, composition
of the vadose zone and aquifer heterogeneity [9] that vary across space in aquifers are significant
factors that can affect nitrate-N delivery to groundwater because of active biogeochemical processes
in this zone [21,22]. Furthermore, types of aquifers (confined or unconfined) affect the level of
contamination, as unconfined shallow aquifers are more prone to nitrate-N contamination [23].
Additionally, groundwater pumping impacts the long-term behavior of nitrate-N in groundwater
by local flow in the area of influence near wells. These factors also exhibit variability across
seasons to years to decades and across catchments to watersheds to the aquifer scale. Evaluating
the consequences of the interactions among different geophysical factors and processes on nitrate
contamination in groundwater is challenging. However, it is possible to develop best management
practices based on the spatio-temporal characterization of nitrate in groundwater. For example,
strategic monitoring and sampling locations can be identified based on hot spots and hot moments
of nitrate in groundwater across scales. Additionally, adaptive land use decisions can be made to
minimize nitrate leaching from the land surface and surface water bodies, such as, streams, rivers and
lakes. Therefore, it is essential to explore the spatio-temporal variability and persistence of nitrate in
groundwater to develop optimal groundwater monitoring, management and remediation strategies.

There are several approaches to quantify the trends and persistence of a system variable
(e.g., nitrate-N) across spatio-temporal scales. For instance, Assaf and Saadeh [24] analyzed
groundwater nitrate-N levels using a geostatistical approach and demonstrated maps of the
persistence of nitrate-N contamination in groundwater in Upper Litani Basin in Lebanon [24].
Similarly, a principal component analysis (PCA) and K-means clustering technique was used
to analyze the temporal evolution of groundwater composition [25]. Likewise, several others
characterized the spatial variability of groundwater quality using the entropy theory by measuring
transinformation and the information transfer index among spatial datasets [26–28]. However,
geostatistical methods are limited by the assumption of stationarity, which may not hold well across
spatio-temporal scales. Moreover, the interpolated value may be different from the measurement
itself [29]. Similarly, PCA requires certain assumptions, such as linearity and large variances being
the only important structure in the dataset [30]. On the other hand, entropy is a non-parametric
approach and a robust measure of variability. Moreover, entropy does not change drastically by
small changes in data [31–33]. Additionally, the Hurst exponent is a robust statistical measure
of the long-term behavior or persistence of a phenomenon [34]. Therefore, we have applied an
entropy-based approach to quantify the spatio-temporal variability of nitrate-N in groundwater. To
ascertain the persistence of nitrate-N in groundwater, we have used the Hurst exponent.

As a result, we have developed an entropy-based approach jointly with the Hurst exponent
to explore the trends and persistence of nitrate-N in groundwater to inform and develop optimal
groundwater sampling and remediation strategies, in two different hydrogeologic settings: the
Ogallala and Trinity Aquifers in Texas. The specific objectives of this study are to (1) analyze the
persistence of nitrate-N contamination and examine decadal variability in nitrate-N at three spatial
scales (fine, intermediate and coarse) in the Ogallala and Trinity Aquifers and (2) develop and present
a new metric for identifying hot spots of nitrate (NO3

- - N >10 mg/L).

2. Methodology

To analyze the trends and persistence of nitrate-N in groundwater, we utilized the entropy theory
and the Hurst exponent. We further developed an index that quantifies the distribution of hot spots
(>10 mg/L of NO3

- - N) of nitrate-N in groundwater at different scales. Entropy is a probabilistic
approach for measuring the variability, randomness, uncertainty or the information contained in a
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random variable. The term entropy or Shannon entropy usually quantifies bits of the information
contained in a dataset [35]. Similarly, the Hurst exponent measures the irregularity, dependence or
persistence of occurrence of a variable in time. We use the entropy concept and the Hurst exponent
jointly for analyzing the spatio-temporal variability of nitrate-N in the Ogallala and Trinity Aquifers
in Texas. A brief summary of the entropy concept and the Hurst exponent is provided below.

2.1. Entropy

For a variable with a probability density function (PDF), fX(x) the information entropy is [35]:

E = −
∫ +∞

−∞
fX(x)log( fX(x))dx (1)

where X is a random variable. A discrete form of entropy E(X) is given as:

E = −
n=N

∑
n=1

p(xn)log(p(xn)) (2)

where n is a discrete data interval, xn is an outcome corresponding to interval n, p(xn) is the
probability of xn and N is the number of data points. To measure entropy, the first step is to create a
histogram. The entire range of data is divided into a series of small intervals, and how many values
fall into each interval are counted. These intervals are also known as “bins”. There are several ways
the number of bins can be chosen [36–38]; we used Scott’s choice, as it can take into account the
integrated squared error of the density estimate. Scott’s choice of the number of bins is given as [36]:

b =
⌈max(X)− min(X)

h
⌉

h =
3.5σ

N
1
3

(3)

where b is the number of bins, and braces indicate the ceiling function; σ is the sample standard
deviation. It is also worth mentioning that the number of bins for the time series from 1940 to 1950,
1940 to 1960, and so on, had nearly the same number of bins across all datasets.

The function log(.) in Equation (2) can be used with the user’s choice of base, such as 2, e or 10.
We used 2 as the base of the log function in this paper.

E measures the relative variability or randomness of a variable (e.g., nitrate-N) with respect
to complete randomness, i.e., the randomness associated with a uniform distribution. The uniform
distribution is a non-informative distribution. The value of the entropy reflects how much
information is contained in random variables of interest with respect to the information contained
in the non-informative probability distribution of the system. Therefore, E is maximum if all states
are equiprobable (uniform distribution). To a certain event, there is only one outcome. Hence,
the probability is 1, and the entropy value is 0. There is no upper bound for the entropy value;
because log(.) can tend to infinity if the probability of any or some values in the dataset tends to zero.
Therefore, for removing the effect of different numbers of data points and comparing entropy values
across datasets, we defined a normalized measure of entropy:

EN =
max(E)− E

maxE
; 0 ≥ EN ≤ 100

EN =
log(k))− E

log(b)
;

(4)

where EN is the normalized marginal entropy (NME) of X; b is the number of bins. Maximum entropy
is the log of the number of bins (b). The higher the NME, the lower is the entropy value and, so, the
lesser is the variability.
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2.2. Normalized Risk Index

We define a new index, the “normalized risk index” (NRI), for quantifying the distribution of
hot spots (nitrate-N >10 mg/L). NRI can be extended to any variable depending on the criterion of
hot spots for that variable. For nitrate-N, if there are k spatial locations (grids) in an aquifer, there will
be k time series datasets. Let N0 be the total number of cases having nitrate-N >10 mg/L at a given
spatial scale and n0i be the total number of cases for a particular dataset or time series (wells).

N0 =
i=k

∑
i=1

n0i (5)

where k is the total number of grids or time series datasets. Risk entropy (RE) is thus given as:

RE = −
i=k

∑
i=1

n0i
N0

log(
n0i
N0

) (6)

where RE measures the density of hot spots in an aquifer. If there is only one time series dataset
that has all cases (samples having nitrate-N > 10 mg/L), RE will be zero, and if all of the k time
series datasets have an equiprobable number of cases, then RE will be maximum, i.e., log(k). For
eliminating the effect of the number of data points across datasets and comparing these entropy
values, we defined a normalized measure of risk entropy: the normalized risk index (NRI):

NRI =
RE

max(RE)
× 100; or

NRI =
RE

log(k)
× 100

(7)

The range of NRI is between 0 and 100. The higher the NRI, the higher is the number of hot
spots in the aquifer.

2.3. Hurst Exponent

Harold E. Hurst was a British hydrologist, who first used the range analysis of time series data
in hydrology. He analyzed the time series for trends and persistence by dividing the time series into
shorter sub-time series and rescaling ranges of each sub-time series [34]. The Hurst exponent has
been an indicator of the irregularity, dependence or persistence, such as to analyze fractal properties
of river networks [39], financial markets for price fluctuations [40] and digital signal processing [41].
The range of the Hurst exponent (H) is from 0 to 1; H is equal to 0.5 for random processes, e.g.,
Brownian motion. A Hurst exponent can be used to analyze the trends of nitrate-N in groundwater.
A Hurst exponent value that ranges from 0 to 0.5 (0 < H < 0.5) indicates the “anti-persistent
behavior”. Anti-persistent behavior implies that an increase in nitrate-N concentration (in a well
for a particular year) will follow a decrease in nitrate-N concentration, in the same well, in future
times. This phenomenon is also known as “mean-reversion”. The intensity of the mean-reversion
increases as H tends to 0. A Hurst exponent H between 0.5 and 1 indicates the “persistent behavior”,
which means that the time series has a strong trend (either increasing or decreasing). The larger is H,
the more persistent is the trend. It is easier to predict time series (H ≥ 0.5) that show persistent trends
as compared to time series (H ≤ 0.5) that fall in the other category (mean-reversion) [34].

There are various methods (such as rescaled range, regression on periodogram, Whittle
estimator, aggregated variances) to estimate the Hurst coefficient in the literature [42,43]. We chose the
rescaled range method to calculate the Hurst exponent, because rescaled range statistics is relatively
robust with data having a long-tailed probability density function [44]. In our case, nitrate-N data
follow the Weibull distribution that is positively skewed. A detailed description of how the Hurst
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exponent is calculated is provided elsewhere [45]. A time series of length Nh is split into shorter
time series of smaller lengths, such as nh = Nh, Nh/2, Nh/4 · · · . For each value of nh, the average
range is rescaled. To calculate the average rescaled range for each partial time series of length nh,
Xh = X1, X2, · · · , Xn, the following steps are outlined:

1. Compute the mean mh = 1
nh

i=Nh
∑

i=1
Xi.

2. Detrend the series by subtracting mean Yt = Xt − m; for t = 1, 2, · · · , nh.

3. Calculate the summation of all detrended series Zt =
t

∑
i=1

Yi; for t = 1, 2, · · · , nh.

4. Rescale the range, by dividing the range by the standard deviation.

5. Calculate the mean of the rescaled range for all sub-series of length nh; ( R
S )nh

= 1
nh

nh
∑

i=1
( Ri

Si
).

6. Finally, the value of the Hurst exponent is obtained using an ordinary least square regression
with log(nh) as the independent variable and nhlog( R

S ) as the dependent variable. The gradient
of the fit is the estimate of the Hurst exponent.

3. Study Site

We conducted this study in two different hydro-geologic settings: (1) the Ogallala Aquifer, which
is an unconfined aquifer and a principal source of water for agricultural, municipal and industrial
development; and (2) the Trinity Aquifer, which is partially confined and a principal source of water
in four densely inhabited urban centers: San Antonio, Austin, Fort Worth and Dallas metropolitan
areas in Texas. Previous studies (such as [2,46]), have suggested that the Ogallala and Trinity Aquifers
have a history of nitrate-N contamination. A short description of study sites is provided below.

3.1. Ogallala Aquifer

The Ogallala Aquifer is the largest groundwater system in North America. The Ogallala Aquifer
spreads across eight states: South Dakota, Nebraska, Wyoming, Colorado, Kansas, Oklahoma,
New Mexico and Texas [47] In this study, we critically examine the Ogallala Aquifer in the Texas
regions that extends over 91,815 km2 (20% of the aquifer) and provides water to all or part of 46
counties. The Ogallala is an unconfined aquifer that is formed mostly by sand, gravel, clay and silt
deposited during the Tertiary Period. The Canadian River, Prairie Dog Town Fork Red River and
Colorado River are major rivers that flow across the Ogallala Aquifer in Texas regions (Figure 1).
The Ogallala Aquifer is an important water supply in the High Plains of Texas, particularly for
agriculture, as 90% of the water pumped is used to irrigate crops. Previous studies suggest that
the Ogallala Aquifer has a median nitrate-N concentration exceeding 10.0 mg/L [2].

3.2. The Trinity Aquifer

The Trinity Group Aquifer is a prime water-bearing entity in north-central, central and
southwest-central Texas, extends over more than 106,190 km2 and provides water to all or part of
52 counties. The Trinity Aquifer is a partially-confined aquifer. The significance of the Trinity Aquifer
is immense, as the outcrop and sub-crop areas of the Trinity Aquifer supply drinking water for almost
seven million people in this region apart from irrigation and industrial purposes. The Red, Trinity,
Brazos, Colorado, San Antonio, Guadalupe and Medina are major rivers that flow across the Trinity
Aquifer (Figure 1). The Trinity Aquifer has a history of nitrate-N contamination [46]



Entropy 2016, 18, 25 6 of 15

Figure 1. Map showing the Ogallala Aquifer (A) and Trinity Aquifer and its outcrop area (B).
The Ogallala Aquifer is an unconfined aquifer, primarily composed of sand, gravel, clay and silt,
whereas the Trinity Aquifer is a sandstone-carbonate rock aquifer and partly confined.

4. Data Analysis

The nitrate-N data were obtained from the Texas Water Development Board [48]. Data used in
this study were from 1940 to 2008. There is vast information of nitrate-N in groundwater, but this
information is limited, as it lacks the continuity of sampling in individual wells. In other words,
nitrate-N concentrations in a particular well, for example, were available only at five instances from
1940 to 2008, which limits the use of these data in their totality. However, for other times, nitrate-N
concentrations were available in neighboring wells of the well under consideration. Therefore, we
reconstructed nitrate-N data by binning them in three scales (fine, intermediate and coarse). Each
scale had grids of different resolutions as fine (2 km × 2 km), intermediate (10 km × 10 km) and
coarse (100 km × 100 km) grids. The choice of scales was based on flow systems—local, intermediate
and coarse—that exist in aquifers depending on the spatial locations of recharge and discharge
zones. A local flow system of groundwater, where recharge and discharge areas are adjacent to
each other, leads to the higher mixing of nitrate-N. On the contrary, an intermediate flow system
of groundwater, where recharge and discharge areas are disconnected by topographic highs and
lows, leads to intermediate mixing of nitrate-N in groundwater. Finally, a regional flow system of
groundwater, where recharge and discharge areas are disconnected by groundwater divides, leads
to the lower mixing of nitrate-N in groundwater [49,50]. Therefore, various flow systems that exist
in aquifers also impact the long-term behavior of nitrate-N in groundwater. In the Trinity and
Ogallala Aquifers, it is assumed that the local, intermediate and coarse flow system spans an area
of 2 km × 2 km, 10 km × 10 km and 100 km × 100 km, which is in accordance with the previous
studies [49,50]. Subsequently, we combined all wells falling in a particular grid as one time series
dataset and analyzed the intra-decadal variability, trend and persistence of nitrate-N annually.

5. Results and Discussion

The Trinity and Ogallala Aquifers are two contrasting hydrogeologic settings, as shown in
(Figure 1). Nitrate-N occurs in varying concentrations in the Trinity and Ogallala Aquifers. There are
25% and 16% of total wells exceeding 10 mg/L of nitrate-N in the Ogallala and Trinity Aquifers,
respectively (Figure 2). Higher concentrations or hotspots (nitrate-N > 10 mg/L) were found on
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the outcrop and the southern part (downdip) of the Trinity Aquifer. In the Ogallala Aquifer, hotspots
(nitrate-N > 10 mg/L) were found almost everywhere, except the region between the Canadian River
and the Prairie Dog Town Fork Red River (Figure 2). A detailed analysis of the trends and persistence
of nitrate-N for the two aquifers is described in the following sections.

Figure 2. The nitrate-N concentrations (1940 to 2008) are shown in the (A) Trinity and (B) Ogallala
Aquifers. In both aquifers, three different spatial scales, namely fine (2 km × 2 km), intermediate
(10 km × 10 km) and coarse (100 km × 100 km), are used to analyze the trends and persistence
of nitrate-N. Red and green dots show wells where nitrate-N was measured in both aquifers.
Additionally, red dots show wells that have nitrate-N > 10 mg/L (hot spots) in these aquifers.

5.1. Trend and Persistence of Nitrate-N across Scales

Figure 3 shows the map of Hurst exponents (H) in the Ogallala and Trinity Aquifers at three
spatial scales: fine, intermediate and coarse. Although there are small-scale variations of H, trends
are more persistent at the intermediate and coarse scales in both aquifers. There are regions where
more variation (anti-persistence) is observed in both the aquifers at the coarse scale. It is evident
from Figure 3 that H of nitrate-N is scattered over the small spatial scale in the Ogallala and Trinity
Aquifers. At fine and intermediate scales, both aquifers show variability across different river basins.
Especially in the Trinity Aquifer, the H transitions around the Red, Brazos, Colorado and Guadalupe
Rivers (see Figure 1), which indicates the significance of rivers at fine and intermediate scales for
nitrate-N contamination in groundwater.

Figure 4 shows the probability distribution (PDF) of H at the fine, intermediate and coarse scales
in the Trinity and Ogallala Aquifers. PDFs illustrate how H is spatially distributed in two aquifers
across scales. In the Trinity Aquifer, PDFs show that H ranges from 0.4 to 0.8 and is distributed around
(peaks of the PDF) 0.5 and 0.7 at the fine scale. These values indicate that nitrate-N in groundwater
shows random to persistent behavior at the fine scale. Moreover, the bimodal behavior of nitrate-N,
in the Trinity Aquifer at the fine scale, also indicates different physical controls (more than one) at that
scale. Likewise, H ranges from 0.45 to 0.85 and is distributed around 0.65 at the intermediate scale,
which means nitrate-N values in groundwater show more persistence at the intermediate scale as
compared to the fine-scale distribution of nitrate-N. At the coarse scale in the Trinity Aquifer, H ranges
from 0.5 to 0.8 and is distributed around multiple modes (e.g., 0.5, 0.6). Multimodal distribution
of H signifies multiple processes (e.g., river-groundwater interactions, regional flow system, etc.)
controlling nitrate-N in groundwater at different times from 1940 to 2008 at the coarse scale.
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Figure 3. The Hurst exponent (H) of nitrate-N in both aquifers at small, intermediate and coarse
scales. The Hurst exponent varies from 0 to 1. H close to 0, 0.5 and 1 shows anti-persistence, random
behavior and persistence, respectively.

Figure 4. Probability distribution functions (PDFs) of the Hurst exponent of nitrate-N in the (A) Trinity
and (B) Ogallala Aquifers across different spatial scales (fine, intermediate and coarse).

In the Ogallala Aquifer, PDFs show that H ranges from 0 to 0.5 and is distributed around
(peak of the PDF) 0.3 at the fine scale, which indicates that nitrate-N values in groundwater show a
mean-reversion phenomenon to random behavior at the fine scale. On the other hand, H ranges from
0.6 to 1 and is distributed around multiple modes (e.g., 0.5, 0.6, 0.7, 0.8) at the intermediate scale,
which means nitrate-N values in groundwater show slight to strong persistence at the intermediate
scale in contrast to the fine scale distribution of nitrate-N for the Ogallala Aquifer. At the coarse scale
in the Ogallala Aquifer, H ranges from 0.6 to 0.9 and is distributed around 0.8, which indicates that
nitrate-N values in groundwater have strong persistence at the coarse scale.

Further analysis of H values shows that more than 50% of grids at the fine scale, 70% at the
intermediate scale and 10% at the coarse scale show persistence in the Trinity Aquifer. On the other
hand, more than 80% of grids at the small scale, 90% at the intermediate scale and 70% at the coarse
scale show persistence in the Ogallala Aquifer. The constantly changing behavior of nitrate-N at the
small scale in the Ogallala Aquifer, as shown in Figure 3 (in contrast to the Trinity Aquifer), may be
explained by the presence of prevalent local flow systems. A local flow system is typically present
in sandy and unconfined aquifers, and such aquifers respond quickly to increased groundwater
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recharge. At the coarse scale in both aquifers, PDFs show multimodality. In the Trinity Aquifer, these
modes are located around 0.5 and 0.6, which means rapidly changing behavior of the variability of
nitrate-N. However, in the Ogallala Aquifer, these modes are located around 0.5, 0.6 and 0.7, which
means there are regions signifying the persistence of nitrate-N. The Ogallala Aquifer is intensive
agricultural land, so the use of fertilizer may be a reason for the persistence.

5.2. Temporal Variability of Nitrate-N

For understanding the temporal variability of nitrate-N over different decades, an inter-decadal
variation of nitrate-N was analyzed (Figures 5 and 6). Decadal mean (µ), standard deviation (SD),
percent of samples having nitrate-N > 10 mg/L and normalized marginal entropy (NME) were
plotted for different scales (fine, intermediate and coarse). In the Trinity Aquifer, overall mean
nitrate-N (at the fine scale from 12 mg/L to 6 mg/L; at the intermediate scale from 12 mg/L to
5.8 mg/L; at the coarse scale from 7 mg/L to 5 mg/L) has declined with a slight increase in the
normalized marginal entropy (NME) (at the fine scale from 93 to 98; at the intermediate scale from
88 to 90; at the coarse scale from 55 to 89) over the decades between 1940 and 2008. However, percent
samples having nitrate-N >10 mg/L have increased across times (at the fine scale from 79% to 89%;
at the intermediate scale from 80% to 87%; at the coarse scale from 77% to 90%). In other words,
overall decadal mean nitrate-N has declined at all scales. The standard deviation has also decreased
with time, implying lesser variability (Figure 5).We also note that standard deviations are relatively
high in the decades of 1940 to 1950 and 1960 to 1970. The high standard deviations may be because
the 1940 to 1950 decade experienced enhanced use of fertilizer that resulted in a larger spread (or
standard deviation) of nitrate values. The larger spread can be attributed to nitrate-N increasing in
groundwater starting from a small or negligible concentration. In contrast, the 1960 to 1970 decade
experienced the lesser use of fertilizer and lesser return flow from irrigation, which resulted in a
decrease in nitrate values from a high concentration of nitrate-N in groundwater. Therefore, nitrate-N
values show a large spread. Furthermore, NME also suggests a slight decline in the temporal
variability of nitrate-N at the coarse scale (Figure 6). However, percent samples having nitrate-N
>10 mg/L are almost constant over the last seven decades (1940 to 2008). Based on these findings, it
seems that nitrate-N levels in groundwater have stabilized in the Trinity Aquifer. It can be inferred
from these results that overall consumption of fertilizers (or nitrate-N emanating from other sources,
as well) has gone down, but there are hot spots in the Trinity Aquifer.

In the Ogallala Aquifer, overall decadal mean nitrate-N has increased at all scales from 1940 to
1970, which may be because of a higher use of fertilizers to improve agricultural productivity since
the 1940s. After 1970, overall mean nitrate-N has decreased at both fine and coarse scales (Figure 5).
The standard deviation has increased in the Ogallala Aquifer at all scales (Figure 5). However,
percent samples having nitrate-N > 10 mg/L decreased significantly over the last seven decades.
This decrease is suggested to be because of more efficient water management methods employed in
the irrigation practices of the region, particularly after the early 1980s. Hence, the irrigation return
flow, which contributes significant amounts of recharge to the Ogallala Aquifer, has declined through
time. In the Ogallala Aquifer, at all scales, overall mean nitrate-N has increased because of enhanced
use of fertilizer since 1940 (at the fine scale from 9 mg/L to 22 mg/L; at the intermediate scale from
10 mg/L to 22 mg/L; at the coarse scale from 10 mg/L to 22 mg/L). However, the percent of samples
having nitrate-N > 10 mg/L have significantly decreased (at the fine scale from 71% to 32%; at the
intermediate scale from 71% to 38%; at the coarse scale from 66% to 27%) over the last seven decades
due to the use of more efficient methods of irrigation. This is also reflected in the normalized marginal
entropy that has gone down in the Ogallala Aquifer at all scales (at the fine scale 98 to 89; at the
intermediate scale 98 to 89; at the coarse scale 98 to 39).
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Figure 5. Decadal analysis of the mean and standard deviation (SD) for nitrate-N in the Trinity Aquifer
across (A) fine, (B) intermediate and (C) coarse scales and in the Ogallala Aquifer across (D) fine, (E)
intermediate and (F) coarse scales.

Figure 6. Decadal analysis of normalized marginal entropy (NME) and hot spots for nitrate-N in
the Trinity Aquifer across (A) fine, (B) intermediate and (C) coarse scales and in the Ogallala Aquifer
across (D) fine, (E) intermediate and (F) coarse scales.

5.3. Hot Spots of Nitrate-N

The normalized risk index (NRI) measures the distribution of hot spots (nitrate-N > 10 mg/L)
in aquifers. The higher the NRI, the higher are the number of hot spots in the aquifer at a
particular spatial scale. In Table 1, the NRI values are given for both the aquifers at different
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scales. The results indicate that the number of hot spots of nitrate-N contamination in groundwater
decreases with an increase in the spatial scale (from fine to coarse grids). This finding suggests that
there are concentrated hot spots in both the aquifers where nitrate-N contamination is localized.
Moreover, comparing NRI values with standard deviations across scales (Figure 5) also corroborates
these results. NRI values decreased across scales. Similarly, standard deviations also decreased
across scales.

Table 1. Normalized risk index (NRI) in the Ogallala and Trinity Aquifers across scales.

Aquifers Grid Normalized Risk Index (%)

Ogallala
Fine 67.8

Intermediate 64.2
Coarse 39.1

Trinity
Fine 75.3

Intermediate 61.3
Coarse 40.9

Results show that a larger number of hot spots of nitrate-N contamination exist at the fine scale as
compared to intermediate or coarse scales. Thus, at the fine scale (particularly around the transitional
zones), automated sampling that helps to provide data at a smaller interval should be used to
monitor nitrate-N contamination in groundwater. Furthermore, trends of nitrate-N in groundwater
are more persistent at intermediate and coarse scales. This result suggests that a few sampling
sites at a relatively larger interval will be needed at these scales to monitor groundwater quality.
In other words, these results can, therefore, be used to design metrics for optimal groundwater
monitoring, management and remediation strategies for nitrate-N. An example of such an application
is provided below.

6. An Application: Designing Monitoring Strategies

In this section, an example of a practical field application of the proposed entropy approach
is presented. Although this example is focused on designing sampling strategies for nitrate
contamination in groundwater, the following approach is generic enough in nature for designing
the optimal sampling strategy to track groundwater quality. The first step in any monitoring well
network design requires collecting preliminary data on potential sites or hot spots of nitrate in
aquifers. Various approaches have been suggested in the literature for identifying strategic locations
for monitoring groundwater. For example, Al-Zabet [51] suggested a monitoring strategy based
on aquifer vulnerability to contamination potential [51], whereas Scot [52] developed a random
site-selection approach [52], and others have used an overlay model using multiple geographic
information system (GIS) data layers [53] for monitoring. These approaches are data intensive
(e.g., land use land cover data, water well density, aquifer vulnerability) and usually general for
all contaminants. However, different contaminants show varying levels of mobility and reactivity in
groundwater [47]; a general approach cannot describe hot spots of each contaminant. In contrast,
the entropy approach presented in this paper is specific for each contaminant and does not require
multiple GIS data layers. In this study, the entropy approach identified hot spots of nitrate
contamination in groundwater across various scales (Figure 3, Table 1). These hot spots can be used
as strategic sampling locations.

The second step in designing the optimal sampling strategy is to determine sampling frequency
for various contaminants. Because data collection, processing and analysis can be expensive, it is
desirable that the sampling frequency be cost effective. There are various criteria, such as land use
change and groundwater fluctuations, that are used to determine sampling frequency for monitoring.
However, it is essential to find redundancies in observations and to outline the sampling frequency
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without losing any significant information. To test the redundancy in the sampling frequency, we
computed NME in Ogallala and Trinity Aquifers for the 2000-onwards decade at the fine scale by
removing nitrate data points. We chose the 2000-onwards decade at the fine scale because both
time series (nitrate time series in Trinity and Ogallala Aquifers for 2000-onwards) had more than
500 nitrate values. We removed part of the data (10%, 20%, 50%, 75%) from the nitrate time series
and computed NME. To make sure that there is no systematic bias in the analysis, part of the data
was removed randomly from the time series using “randperm” function in MATLAB. Subsequently,
for comparison, we also removed one alternate and two alternate data points from both time series
and computed NME. As shown in Table 2, for the Ogallala Aquifer, when sample points were
removed by 50% (removing one alternate sample), NME did not change. However, when sample
points were removed by 66% (removing two alternate samples), NME changed significantly. In
addition, when sample points were removed by 10 to 50%, NME values did not change much from
the base case. However, NME values changed significantly, when samples were removed randomly
by 75%. Therefore, NME values suggest that sampling frequency can be reduced by 50% in future
sampling without losing much information in the Ogallala Aquifer. On the contrary, NME values
showed little change when samples were removed randomly by 10 to 75% or one or two alternate
samples in the Trinity Aquifer. These results are also substantiated by Figure 3. It is evident from
Figure 3 that Trinity Aquifer shows higher persistence as compared to the Ogallala Aquifer at the
fine scale. Therefore, removing sample points (>50%) from the time series of the Ogallala Aquifer
changed NME significantly, but removing sample points (up to 75% ) from the time series of the
Trinity Aquifer did not change NME values significantly. These results suggest that persistence and
NME together can be an effective approach to design the optimal sampling strategy. We also want to
emphasize that each monitoring program has different objectives; therefore, the reader can creatively
apply this entropy-based method in designing their own sampling strategies.

Table 2. Change in normalized marginal entropy (NME) in Ogallala and Trinity Aquifers for the
decade 2000-onwards.

Aquifers Sampling Strategy NME

Ogallala

Base case 89.3
Removing one alternate sample 89.3
Removing two alternate samples 63.8
Removing 10% (randomly) 88.7
Removing 20% (randomly) 88.7
Removing 50% (randomly) 85.2
Removing 75% (randomly) 60.0

Trinity

Base case 92.4
Removing one alternate sample 92.2
Removing two alternate samples 91.9
Removing 10% (randomly) 91.7
Removing 20% (randomly) 91.7
Removing 50% (randomly) 91.9
Removing 75% (randomly) 90.4

7. Summary and Conclusions

Nitrate contamination in groundwater shows multi-scalar variability in space and time.
However, a systematic approach to characterize the spatio-temporal variability of nitrate in
groundwater has been lacking. This study uses entropy theory and the Hurst exponent to identify
the trends and persistence of nitrate-N at different spatial scales (fine, intermediate and coarse) in the
Trinity and Ogallala Aquifers of Texas.
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Results suggest that nitrate-N in groundwater shows a scale phenomenon in both space and
time. The trends of nitrate-N variability show long-term persistence at the intermediate and coarse
scales. At the fine scale, there is a fluctuation in the trends of nitrate-N, especially in the transitional
areas, where the interaction between rivers and aquifer is prominent, or in the zones that are
characterized by the presence of local flow systems. Furthermore, agricultural lands are more prone to
nitrate-N contamination than urban areas due to the application of fertilizers. Furthermore, outcrop
or unconfined aquifers become more susceptible to contamination of nitrate-N if inorganic sources of
nitrate-N (e.g., fertilizers) are present.

This study also highlights how entropy techniques and the Hurst exponent can be used
to design decision-making tools for water quality monitoring and management. An improved
monitoring of nitrate-N contamination of groundwater can be achieved by having densely-located
sampling sites and collecting samples at smaller time intervals in transitional areas, such as the
river-aquifer interface. In contrast, at intermediate and coarse scales, sparsely-located sampling sites
that collect nitrate-N samples at larger time intervals are adequate. Furthermore, we presented
an example application for designing monitoring strategies for nitrate in groundwater. The
example demonstrated how the entropy-based approach along with the Hurst exponent can be
used to identify strategic sampling locations and outline cost-effective sampling frequency by
capturing the characteristic distribution of nitrate in groundwater, without losing any significant
information. Although we applied the entropy technique and the Hurst exponent to understand
the multi-scalar behavior of nitrate-N in groundwater, this approach should readily be transferable
to other contaminated aquifers and catchments.
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