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Abstract Various hydrological models have been developed for estimating root zone soil moisture
dynamics. These models, however, incorporated their own parameterization approaches indicating
that the output from the different model inherent structures might include uncertainties because we do
not know which model structure is correct for describing the real system. More recently, multimodel
approaches using a Bayesian Model Averaging (BMA) scheme can improve the overall predictive skill while
individual models retain their own uncertainties for simulated soil moisture based on a single set of
weights in modeling under different land surface wetness conditions (e.g., wet, moderately wet, and dry
conditions). In order to overcome their limitations, we developed a BMA-based multimodel simulation
approach based on various soil wetness conditions for estimating effective surface soil moisture dynamics
(0–5 cm) and quantifying uncertainties efficiently based on the land surface wetness conditions. The newly
developed approach adapts three different hydrological models (i.e., Noah Land Surface Model, Noah LSM;
Soil-Water-Atmosphere-Plant, SWAP; and Community Land Model, CLM) for simulating soil moisture. These
models were integratedwith amodified-microGA (advanced version of original Genetic Algorithm (GA)) to search
for optimized soil parameters for each model. Soil moisture was simulated from the estimated soil parameters
using the hydrological models in a forward mode. It was found that SWAP performed better than others during
wet condition, while Noah LSM and CLM showed a good agreement with measurements during dry condition.
Thus, we inferred that performance of individual models with different model structures can be different with
land surface wetness. Taking into account the effects of soil wetness on different model performances, we
categorized soil moisture measurements and estimated different weights for each category using the BMA
scheme. Effective surface soil moisture dynamics were obtained by aggregatingmultiple weighted soil moisture.
Our findings demonstrated that the effective soil moisture estimates derived by this approach showed a better
match with the measurements compared to the original models and single-weighted outputs. Multimodel
simulation approach based on land surface wetness enhances the ability to predict reliable soil moisture
dynamics and reflects the strengths of different hydrological models under various soil wetness conditions.

1. Introduction

Soil moisture plays a key role in hydrologic processes such as soil water retention, infiltration, evapotranspiration,
and groundwater recharge, which control water balance and land surface energy balance [Zhu and Mohanty,
2006; Brocca et al., 2010; Leung et al., 2011]. Various hydrological models have been developed and
used widely for soil moisture predictions such as Noah Land Surface Model (Noah LSM) [Ek et al., 2003],
Soil-Water-Atmosphere-Plant (SWAP) [Van Dam et al., 1997], Community Land Model (CLM) [Oleson et al.,
2010], Variable Infiltration Capacity [Liang et al., 1994], and Mosaic Land Surface Model (Mosaic LSM)
[Koster and Suarez, 1996], among others. The Global Land Data Assimilation Systems use these hydrological
models for validating pixel-scale soil moisture from satellite platforms and evaluating water/energy cycle
and fluxes near the land surface [Liu et al., 2009]. The North American Land Data Assimilation System has
monitored and predicted hydrological drought conditions using state variables (e.g., soil moisture
dynamics, runoff, evaporation, etc.) estimated from various hydrological models [Ek et al., 2011]. However,
these models incorporated with their own parameterization schemes and simplified processes that might
not consider adequately the real-world conditions indicating that each model has its own strengths and
drawbacks for certain processes [Hsu et al., 2009]. Thus, inherent model structures might produce different
model outputs and cause uncertainties due to different model structures and input parameters (i.e., atmospheric
forcings, soil textures, vegetation covers, initial and bottom boundary conditions, etc.).
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Many stochastic techniques and methods have been developed and extended to overcome the limitations
of modeling. Genetic algorithms (GAs) [Holland, 1975], Shuffled Complex Evolution-University of Arizona
(SCE-UA) [Duan et al., 1992], and Particle Swarm Optimization (PSO) [Kennedy and Eberhart, 2001] have
been applied in estimating effective model parameters. Bayesian Model Averaging (BMA) [Hoetting et al.,
1999], Hydrological Uncertainty Processor [Krzysztofowicz, 1999; Krzysztofowicz and Kelly, 2000], Ensemble
Model Output Statistics (E-MOS) [Gneiting et al., 2005], and Model Conditional Processor [Todini, 2008;
Coccia and Todini, 2011] have been used to account for the model structural uncertainties. GAs have been
used to minimize errors in searching optimized model parameters based on inversion model [Reed et al.,
2000; Ines and Mohanty, 2008, 2009; Zhang et al., 2009; Shin et al., 2012; Shin and Mohanty, 2013; Shin et al.,
2013]. Zhang et al. [2008] integrated several global optimization algorithms (i.e., GA, SCE-UA, PSO, etc.)
with Soil and Water Assessment Tool and compared their performances in calibrating model input
parameters. They showed that GA found better optimized model parameters than others, although a large
number of computational resources were required. Further, the near-surface [Ines and Mohanty, 2008] and
layer-specific data assimilation [Shin et al., 2012] approaches using GA coupled with SWAP based on
inversion model were developed for quantifying effective soil hydraulic properties in the homogeneous
and heterogeneous soil profiles. Their findings indicated that the estimated effective soil parameters at the
near-surface and subsurface layers can be adequately conditioned by GA. However, although model parameter
uncertainties for a single model can be minimized by simulation-optimization schemes (e.g., GA-SWAP, etc.),
bias due to different model structures still remain (considerably) in model outputs [Hoetting et al., 1999;
Georgakakos et al., 2004; Ajami et al., 2007].

A BMA scheme has been proposed to account for model structural uncertainties efficiently and improve their
predictive capabilities of different models through a weighted average of probability density functions (PDFs)
of hydrological models [Hoetting et al., 1999]. Currently, the technique has been applied to multiple
hydrological model simulations as averaging scheme and weather prediction models to create forecast
ensembles [Raftery et al., 2005; Wöhling and Vrugt, 2008; Duan and Phillips, 2010; Wu et al., 2012].

BMA usually estimates a representative weight (a single set of weights) for individual PDF of each model over
the training period and then in turn aggregates different model predictions based on the estimated weights
indicating how each model contributes to the predictive skill [Ajami et al., 2007; Rojas et al., 2008; Tsai and Li,
2008; Zhang et al., 2009]. However, the weighted values can vary in the model performances during the
training period because some hydrological models predict better outputs during the rainy period, while
others perform better under the (relatively) dry condition [Radell and Rowe, 2008; Hsu et al., 2009]. In order to
overcome these limitations, recent studies adopted the sliding window algorithm to obtain the weights of
individual models optimally [Raftery et al., 2005; Vrugt and Robinson, 2007]. This approach assigns different
weights to the models as the window slides over the training period. However, the strengths of hydrological
models may not be adequately reflected by assigning different weights to the models during the training
period across time. Thus, Duan et al. [2007] improved the BMA scheme for stream flow predictions using an
alternative way that adopts the multiple sets of weights to consider different portions of the hydrograph
instead of time-based weighting schemes. None of the previous studies, however, considered an approach of
soil-wetness-based weighting scheme. Such a scheme may be more suitable for identifying soil moisture
variability because soil moisture predictions from different hydrological models vary based on antecedent
land surface wetness conditions (i.e., wet, moderately wet, and dry conditions).

In this study, we explored amultiple-model simulation approach for estimating effective surface soil moisture
dynamics (0–5 cm) and quantifying uncertainties due to different model parameters and structures. The
objectives of this study are twofold: (1) to develop a BMA-based multimodel simulation approach based on
the land surface wetness conditions in estimating effective soil moisture dynamics with a modified-microGA
(Genetic Algorithm) for soil hydraulic parameter optimization and (2) to evaluate different model parameters
and structural uncertainties under different hydroclimatic conditions.

2. Methodology
2.1. Bayesian Model Averaging Based Multimodel Simulation Approach

We developed a multimodel simulation approach adapting various hydrological models based on a Bayesian
Model Averaging (BMA) scheme for estimating effective surface (0–5 cm) soil moisture dynamics and
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quantifying uncertainties due to different model parameterizations and structures. Figure 1 shows the
schematic diagram of our proposed approach. In this study, we adapted three different hydrological models
(i.e., Noah Land Surface Model, Noah LSM; Community Land Model, CLM; and Soil-Water-Atmosphere-Plant,
SWAP) for estimating surface soil moisture dynamics reflecting their inherent strengths. Noah LSM and
CLM have been used extensively in evaluating water/energy cycles and fluxes including soil moisture
prediction near the land surface as the dynamic land surface component of global climate modeling
(e.g., Community Earth System Model and Weather Research and Forecasting), and SWAP also has
been verified and used widely for predicting crop yields and soil moisture status in various studies
[Oleson et al., 2008; Hong et al., 2009; Shin et al., 2012]. A modified-microGA was integrated with these
models for searching optimized parameters of each hydrological model and quantifying the model
parameter uncertainty. To quantify the model structural uncertainty, we employed the BMA scheme
calculating different weights of simulated results based on output fitness values of individual models.
The multimodel simulation approach based on the BMA scheme was evaluated under two different
hydroclimatic conditions.

2.2. Characteristics of the Hydrological Models
2.2.1. Noah Land Surface Model
The original Noah Land Surface Model (Noah LSM v2.7.1) is an advanced version of the Oregon State
University land model [Ek et al., 2003]. This model has been widely used in both coupled (integrated
with other models) and uncoupled (stand-alone) modes for simulating water and energy fluxes at
various spatial scales. In this study, we adapted the uncoupled mode as a one-dimensional (1-D),
physically based model for estimating the soil moisture dynamics at field scales. Noah LSM calculates
the total evapotranspiration by summing the direct evaporation from top soil layer, canopy evaporation,
and potential Penman-Monteith transpiration [Rosero et al., 2010]. The model has typically four soil
layers with the thicknesses of 10, 30, 60, and 100 cm (total soil depth of 200 cm), but we changed top
soil layer depth to 5 cm (while maintaining the same total root zone depth) to be compared to the soil
moisture observation (top 5 cm) in this study. It adapts a diffusion form of the Richards’ equation

Figure 1. Schematic diagram of the Bayesian Model Average (BMA)-based multimodel simulation approach.
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(equation (1)) for soil moisture estimation. Hydraulic conductivity and soil water retention are calculated
based on the Clapp and Hornberger [1978] equations (equations (2) and (3)),

∂θ
∂t

¼ ∂
∂z

D θð Þ ∂θ
∂z

� �
þ ∂K θð Þ

∂z
þ Q (1)

ψ ¼ ψsat
θ
θsat

� ��b

(2)

K θð Þ ¼ Ksat
θ
θsat

� �2bþ3

(3)

where θ is the volumetric soil water content (cm3 cm�3), z is the soil depth (cm) taken positive upward, D(θ) is

the soil water diffusivity (cm2 d�1) (K θð Þ∂ψ∂θ ), K(θ) is the unsaturated hydraulic conductivity (cm d�1), Q is a soil

moisture sink term, which is the root water extraction rate by plants, ψ and ψsat are the soil matric potential
and saturated soil matric potential (cm), b is the curve fitting parameter related to the pore size distribution
(�), and θsat and Ksat are the saturated soil moisture content (cm3 cm�3) and saturated hydraulic conductivity
(cm d�1), respectively.

Noah LSM has been enhanced to achieve better performance by incorporating complex canopy resistance,
bare soil evaporation, surface runoff, and higher-order time integration schemes. Additional model
processes and assumptions are provided in Table 1 and by Ek et al. [2003]. The model has been tested
and showed good performance in humid and temperate hydroclimate regions [Koren et al., 1999; Sridhar
et al., 2002; Ek et al., 2003]. However, it still has limitations in applying to arid hydroclimate regions. The
limitations might be caused by its assumption that latent heat flux associated strongly with evaporation
and the distribution of soil moisture content is negligible in the top soil layer when the water content is
lower than the wilting point (drying season) [Katata et al., 2007]. Also, the thickness of top soil layer
(10 cm as a default) is thicker than those of other models (i.e., SWAP and CLM), which can lead to
overestimations of soil moisture [Sahoo et al., 2008].
2.2.2. Soil-Water-Atmosphere-Plant Model
Soil-Water-Atmosphere-Plant (SWAP) [Van Dam et al., 1997] has been used for simulating soil water flow
between the soil, water, atmosphere, and plant system [Agnese et al., 2007; Ying et al., 2011]. This model
contains physical processes for soil water flow, potential and actual evapotranspiration, crop growth, and
irrigation. Daily potential evapotranspiration is estimated using the Penman-Monteith method with daily
meteorological data or crop factors (i.e., minimum resistance, leaf area index, and crop height), and the
actual evapotranspiration rate can be calculated using the root water uptake reduction and maximum soil
evaporation flux [Van Dam et al., 1997] (Table 1). This model simulates soil moisture dynamics in the soil
profile using the mixed form Richards’ equation (equation (4)) and the soil hydraulic properties represented
by the analytical expression of Mualem and van Genuchten (equations (5) and (6)) [Mualem, 1976; Van
Genuchten, 1980],

∂θ
∂t

¼ ∂
∂z

K ψð Þ ∂ψ
∂z

þ 1
� �� �

� Q (4)

Se ¼ θ ψð Þ � θres
θsat � θres

¼ 1
1þ αψj jn
� �m

(5)

K ψð Þ ¼ K satS
λ
e 1� 1� S1=me

� �mh i2
(6)

Table 1. Comparison of Main Characteristics of the Three Hydrological Models

Noah LSM SWAP CLM

Default thickness of top soil layer 10 cm (Total four layers) 1 cm (Total 10 layers with small compartments) 1.75 cm (Total 10 layers)
Runoff scheme Simple Water Balance (SWB) model Horton and Dunne Overland flow TOPMODEL
Soil hydraulic properties Clapp and Hornberger van Genuchten and Mualem Clapp and Hornberger
Surface evaporation Penman potential evaporation Penman-Monteith Philip and De Vries diffusion

model and BATS model
Plant system Canopy resistance function Linear production function andWOFOSTmodel Dynamic global vegetation model
Bottom boundary condition Free drainage Free drainage Dynamic groundwater table (SIMGM)
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where n (�), m (�), λ (�), and α (cm�1) are the empirical shape factors of the retention and conductivity
functions, m=1� 1/n, Se is the relative saturation (�), θres is the residual water content (cm3 cm�3), and
K(ψ) is the hydraulic conductivity (cm d�1) at matric potential ψ.

SWAP simulates water flow, solute transport, heat flow, and crop growth simultaneously at field scales. In order
to better simulate infiltration and evaporation fluxes in the vertical soil column, the soil profile (0–200 cm) was
discretized in this study with finer intervals (1, 5, and 10 cm for the 1st–10th, 11th–20th, and 21st–32nd layers,
respectively, except of 20 cm for the 33rd layer), especially for the soil surface (0–10 cm) where water content
and pressure head gradients change sharply [Van Dam et al., 1997]. However, a key limitation of the SWAP
model is that it does not consider the regional groundwater hydrology and seasonal variation of boundary
fluxes at the lower boundary [Kroes et al., 1998]. For the detailed information about SWAP readers can refer
to Van Dam et al. [1997].
2.2.3. Community Land Model
Community Land Model (CLM) [Oleson et al., 2010] is the land surface model that provides the land surface
forcing as the physical boundary for the atmospheric model in the Community Climate System Model. This
model estimates bare soil evaporation based on the Philip and de Vries [1957] diffusion model and
calculates transpiration using an aerodynamic approach of the Biosphere Atmosphere Transfer Scheme
(BATS) model [Dickinson et al., 1993]. Other model processes are provided in Table 1. CLM has a 10 layered
soil column with the fixed thickness of 1.75, 2.76, 4.55, 7.5, 12.36, 20.38, 33.60, 55.39, 91.33, and 113.7 cm
(total depth of 343 cm), and in this study averaged soil water content of the first two soil layers are used
for comparison with the observations. The vertical soil water flow is solved by the modified Richards’
equation (equation (7)) [Zeng and Decker, 2009]. This equation is derived by subtracting the hydrostatic
equilibrium soil moisture distribution from the original Richards’ equation for improving the mass
conservative numerical scheme when the water table is within the soil column,

∂θ
∂t

¼ ∂
∂z

K
∂ ψ � ψeð Þ

∂z

� �� �
� Q (7)

where ψe is the equilibrium soil matric potential (cm). The hydraulic conductivity is derived from equation (3),
and equilibrium soil matric potential and equilibrium volumetric water content are shown in equations (8)
and (9) based on Clapp and Hornberger [1978],

ψe ¼ ψsat
θe zð Þ
θsat

� ��b

(8)

θe zð Þ ¼ θsat
ψsat þ z∇ � z

ψsat

� ��1
b

(9)

where θe(z) is the equilibrium (e) volumetric water content (cm3 cm�3) at depth z (z▽ is the water table depth).

In CLM, 10 soil layers discretized unevenly include a thin top soil layer (1.75 cm) needed to better simulate
infiltration and evaporation fluxes [Sahoo et al., 2008]. Furthermore, CLM considers the variability in
ground water table as the lower boundary condition using the SIMple Groundwater Model (SIMGM) [Niu
et al., 2007]. A groundwater component is defined as an unconfined aquifer below the soil column
(343 cm). To obtain the water table depth, the model parameterizes groundwater discharge and recharge
with various constants derived from sensitive analysis [Niu et al., 2007]. On the other hand, the model
assumes that runoff generation is controlled by saturation area derived from topographic information and
its parameterization is based on an exponential form, which is obtained from observations of the upper
soil layers over small watersheds. However, this runoff generation could be also driven by the relationship
between rainfall intensity and soil infiltration capacity, especially in regions with thick soils or deep
groundwater. The assumption of dominant topographic control might lead to erroneous simulations for
the subsurface runoff [Li et al., 2011].
2.2.4. Soil Parameters of the Hydrological Models
Parameter optimization using a modified-microGA was implemented to identify the soil hydraulic properties
as unknown parameters whose variation has large effects on the model outputs [Musters et al., 2000;
Hupet et al., 2002; Ritter et al., 2003]. Several major input parameters related to soil moisture dynamics
were selected as shown in Table 2 (Noah LSM - θsat, Ksat, psisat (əψsat/əz), b, q; SWAP - θsat, Ksat, θres, α, n;

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022905

KIM ET AL. SOIL MOISTURE AND MULTIMODEL SIMULATION 5



CLM - θsat, Ksat, ψsat, b,WATDRY). Feasible ranges of the parameters (i.e., search spaces in a modified-microGA)
for eachmodel were defined based on literature related to themodel parameter sensitivity and to accommodate
a diversity of soils ranging from clay to sandy loam [Leij et al., 1999; Liu et al., 2004; Ines and Mohanty, 2008; Rosero
et al., 2010; Shin et al., 2012].

2.3. Modified-MicroGA for Estimating Optimal Parameters and Their Uncertainty

GAs are powerful algorithms based on the mechanics of nature (i.e., survival of the fittest mechanism) for
searching optimal solutions from the unknown space [Holland, 1975]. GAs are basically composed of the
GA operators such as selection, crossover, and mutation. New GA algorithms have been developed to
improve the searching ability and save the computational time. Krishnakumar [1989] developed the
so-called microGA to allow more micropopulation restarts in order to overcome the relatively poor
exploitation characteristic of the original GA. The micropopulation restarts searching solutions at the
search space when most of the new parameter sets through the GA operator in a generation are similar
up to 90%. It allowed that the GA can find solutions more efficiently saving the computational time. Ines
and Droogers [2002] modified the microGA (i.e., modified-microGA) to consider interjecting new genetic
materials to the micropopulation adopting a creep mutation. The creep mutation operator suggested by
Carroll [1998] alters the parameter sets to minimize the effect of perturbation included in the converged
parameter sets.

In this study, we used a modified-microGA [Ines and Droogers, 2002] in searching the optimized soil parameters
for the three selected hydrological models. The modified-microGAwas integrated with the hydrological models
to optimize each model input parameter sets, p= {pi=1,…,J}, as shown in Figure 1 based on the inversion model.
The number of bits and binary used in the modified-microGA were decided by the degree of discrete divisions
between the minimum and maximum values for each parameter range (Table 2). The objective (Z(p)) functions
were formulated in equation (10),

Objective Z pð Þð Þ ¼ Minimize
1
T

XT
t¼1

θsimi;t � θobst

��� ��� !
∀i (10)

where θsimi;t and θobst are the simulated and observed surface soil moisture, respectively.

For the parameter uncertainty analysis, we used the multipopulation with different random number seeds
(�1000, �950, and �750) in the modified-microGA process. After the given generations, the individual
and average fitness of all the parameter sets (i.e., chromosomes) from the multiple populations were
calculated. The parameter sets which have the fitness values above the average were then selected as the
probable solutions. Further, we carried out the perturbation analysis in order to account for the variations of
the model parameters estimating the approximated solutions (p′ ) for each parameter set (p). The perturbation

Table 2. Summary of Soil Hydraulic Parameters and its Feasible Ranges Used in the Modified-MicroGA for the Three Hydrological Models

LSMs Parameters (p = pi=1,…,J) Descriptions Unit Min.a Max.a No. of Bits Binaries (2L)

SWAP (i = 1) θsat Saturated water contents cm3 cm�3 0.37 0.55 5 32
Ksat Saturated hydraulic conductivity cm d�1 1.84 55.70 10 1,024
θres Residual water contents cm3 cm�3 0.06 0.16 7 128
α Empirical shape parameter cm�1 0.01 0.03 5 32
n Empirical shape parameter - 1.20 1.61 6 64

Noah LSM (i = 2) θsat Saturated water contents cm3 cm�3 0.35 0.55 5 32
Ksat Saturated soil hydraulic conductivity cm d�1 8.64 86.4 6 64
psisat Saturated soil matric potential (əψsat/əz) cm cm�1 0.10 0.65 6 64
b Clapp-Hornberger b parameter - 4.00 10.00 6 64
q Quartz content - 0.10 0.82 5 32

CLM (i = 3) θsat Saturated water contents cm3 cm�3 0.33 0.66 5 32
Ksat Saturated soil hydraulic conductivity cm d�1 0.09 864 8 256
ψsat Saturated soil matric potential cm �75.00 �3.00 7 128
b Clapp-Hornberger b parameter - 3.00 10.00 6 64

WATDRY Soil water content (wilting point) - 0.02 0.30 5 32

aFeasible ranges of the parameters [Liu et al., 2004; Ines and Mohanty, 2008; Rosero et al., 2010].
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analysis has been used to evaluate how variations of the model input parameters affect model outputs
[de Kroon et al., 1986; Caswell, 2000; Benke et al., 2008]. The perturbed parameters were calculated as

p′ ¼ pAvg� 1± xiξð Þ (11)

where p′ and pAvg are the perturbed and averaged parameter set, xi e Norm 0; σ2i
	 


is the normal random
deviate with the mean and standard deviation calculated by the parameter sets selected (above the
average fitness), ξ is the error term related to uncertain parameter (30% was applied in this study).

The surface soil moisture dynamics were simulated using the perturbed parameters, and their uncertainties
with the ±95% confidence interval (PCI) were evaluated for each model.

2.4. Bayesian Model Averaging Scheme Based on the Land Surface Wetness Conditions and Model
Structural Uncertainty

The BMA scheme estimatesweights for variousmodel predictions based on their probabilistic likelihoodmeasures
[Raftery et al., 2005]. Here the variable “y” indicates the BMAprediction, namely, predictive (weighted) soil moisture
and fi = 1,…, J is the individual model prediction (surface soil moisture dynamics) from the selected hydrological
models (i=1,…,J ) using the optimized parameters (section 2.3). The BMA posterior distribution of y given the
model predictions can be formulated in equation (12) as follows:

P yjf 1;⋯; f ið Þ ¼
XJ
i¼1

Pi f i DÞPi y f i;DÞjðjð (12)

where PDF (Pi(fi|D)) is the posterior probability for model prediction given the training data (i.e., observations, D)
and can be dealt with as weights (a single set ofweights,wi) defining the individual model’s relative contributions
to the BMA prediction, and J is the number of hydrological models used (i.e., 3). The conditional PDF (Pi(y|fi,D))
denotes the posterior distributions of y given model prediction and observations, which is approximated by a
normal distribution with mean (f i ) and standard deviation (σi). The assumption of normal distribution could
be inappropriate for soil moisture primarily driven by precipitation, while the gamma distribution is more
reasonable to represent the highly skewed predictive distribution of soil moisture [Sloughter et al., 2006].
However, when we tested the two assumptions (normal and gamma distribution), the assumption of normality
improved more the BMA method for soil moisture prediction. In the study of Vrugt and Robinson [2007], they
also found an improvement of BMA method with the assumption of normal distribution for streamflow
forecasting instead of the gamma distribution. The posterior mean (E) and variance (Var) of the BMA prediction
(y) can be computed in equations (13) and (14).

E yjf i¼1;…; J
� � ¼ E P yjf i¼1;…;J

	 
� � ¼ E
XJ
i¼1

wiPi yjf ið Þ
" #

¼
XJ
i¼1

wif i (13)

Var yjf i¼1;…; J
� � ¼XJ

i¼1

wi f i �
XJ
l¼1

wlf l

" #2
þ
XJ
i¼1

wi σ2i (14)

The BMA approach then estimates the weights and variances of each simulated surface soil moisture
dynamics from the three models. The variance of BMA prediction consists of the between-model variance
and the within-model error variance in the BMA procedure. The values of wi and σ2 were estimated by the
maximum likelihood (L) as described in equation (15):

L wi¼1;…; J; σ2jf i¼1;…; J; y
	 
 ¼XT

t¼1

log
XJ
i¼1

wiPi ytjf i;t
	 
 !

(15)

where T is the time domain. To find the maximum likelihood for the weights and variances, we used the
DiffeRential Evolution Adaptive Metropolis-Markov Chain Monte Carlo (DREAM-MCMC) algorithm [Vrugt
et al., 2009]. The BMA weights are highly correlated with the model performance indicating that higher
weights are assigned to a model that performed better than others. This algorithm has been used for
estimating the BMA parameters (weight and variance) and is unique in solving complex, multimodel,
and high-dimensional sampling problems [Vrugt et al., 2008, 2009]. Thus, we estimated the weights
(a single set of weights) for different hydrological models using the DREAM-MCMC algorithm and the
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effective surface soil moisture dynamics were calculated by aggregating the three model outputs based on
the estimated weights.

Hydrological models can predict the hydrologic response well during the dry or wet season based on their own
model parameters and structures [Hsu et al., 2009]. In order to reflect the strengths of individual models for
certain land surface wetness conditions, we categorized soil moisture measurements based on the land
surface wetness conditions (e.g., wet, moderately wet, dry conditions, etc.) using the k-means clustering
algorithm [MacQueen, 1967]. Near-surface soil moisture can involve several state variables of climate and
physical properties (e.g., soil texture, vegetation cover, precipitation events, etc.) with respect to the wetness
conditions so that the thresholds of wetness conditions can be identified using the measurements [Narasimhan
et al., 2005; D’Odorico et al., 2007; Brocca et al., 2008]. Thus, the thresholds based on the soil moisture
measurements can be also applicable to other locations having similar soil type, land cover, and hydroclimatic
characteristics (shown in section 3.2). The clustering algorithm determines the land surface wetness conditions
based on the degree of variability between available soil moisture measurements (note that the number of

wetness conditions, G, was manually determined). Different weights (wg¼1;…;G
i¼1;…;J , multiple sets of weights) of

model outputs corresponding to the land surface wetness conditions were calculated by the BMA scheme
(equations (12)–(15), respectively). The estimated weights were assigned to the individual model output and
then the weighted soil moisture simulations were aggregated to estimate the effective surface soil moisture
dynamics reducing error due to the model structural uncertainties. In this study, we evaluated the
performance of BMA scheme using a single (S-BMA) and multiple (M-BMA) sets of weights in modeling. Then,
we quantified the model structural uncertainties with the ±95 PCI estimated from the posterior distribution of
the BMA parameters (i.e., weight and variance).

2.5. Statistical Analysis

Three performance criteria were selected to evaluate the performance of individual model predictions and of
the multiple-model simulation. They are Pearson’s correlation (R), root-mean-square error (RMSE), and mean
absolute error (MAE) as equations (16)–(18):

R ¼

XT
t¼1

θsimt � θ
sim
t

� �
θobst � θ

obs
t

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT
t¼1

θsimt � θ
sim
t

� �2XT
t¼1

θobst � θ
obs
t

� �2s (16)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT
t¼1

θobst � θsimt
	 
2

T

vuuut
(17)

MAE ¼ 1
T

XT
t¼1

θobst � θsimt
�� �� (18)

where θ
sim
t and θ

obs
t are the average of θsimt and θobst , respectively.

2.6. Study Area and Description of Model Conditions

In this study, the Little Washita (LW 13) site in Oklahoma (subhumid) andWalnut Gulch (WG 82) site in Arizona
(semiarid) were selected for evaluating the model parameters and structural uncertainties under two
different hydroclimatic conditions (Figure 2). The LW 13 site has a subhumid climate with an average
annual rainfall of approximately 750mm with most precipitation during spring and fall. Daily mean
maximum temperature is 30°C in July with annual mean temperature of 16°C. The climate of WG 82 is
semiarid with an average annual rainfall of approximately 350mm, which is mostly received from July to
September. Daily mean maximum temperature of 35°C occurs in June with annual mean temperature of
17.7°C. Both study sites have a native grass cover, and their soil types are silty loam and sandy loam for LW
13 and WG 82, respectively. The three hydrological models require the common weather data (i.e.,
precipitation, temperature, relative humidity, solar radiation, and wind speed) and Noah LSM and CLM
additionally need the air pressure values. They were collected from the USDA Agricultural Research Service
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(ARS 136) Micronet and the Oklahoma Mesonet weather stations (Ninnekah station) from 1 January to 31
December 1997 for the LW 13 site. The weather data sets for the WG 82 site were obtained from the
Arizona Meteorological Network [Keefer et al., 2009] and the Soil Climate Analysis Network (SCAN, Walnut
Gulch #1) sites from 1 January to 31 December 2004.

We validated our approach with the in situ soil moisture measurements (0–5 cm) during the Southern
Great Plains experiment 1997 (SGP97, day of year (DOY): 170–197) [Mohanty and Skaggs, 2001; Mohanty
et al., 2002] for the LW 13 site and Soil Moisture Experiment 2004 (SMEX04, DOY: 216–238) [Jackson
et al., 2009] for the WG 82 site. Here, we calibrated the multimodel approach using the measurements
during the simulation periods (DOY: 170–183 for LW 13 and DOY: 216–227 for WG 82), and the
validations were conducted in the given periods (DOY: 184–197 for LW 13 and DOY: 228–238 for WG
82), respectively. These experiment data sets have been validated significantly and used widely in
various studies, but the experiment periods are limited. Thus, we also tested our approach using longer
data sets (1 April to 31 December 2011) measured at USDA-SCAN 2023 site (Figure 2) in Little Washita
watershed, in the close proximity of LW 13. The site is close to the LW 13 site having the same climate
condition (subhumid) and has a grass cover and silty clay soil. The weather data sets were collected
from the SCAN 2023 site from 1 January to 31 December 2011.

In order to reflect the impacts of various land surface wetness conditions in modeling as mentioned above, in
situ measurements were categorized using the k-means clustering algorithm at the LW 13 and WG 82 sites.
Thresholds of the clustering ranges could be different with site conditions such as hydroclimates due to the
different climate forcing and hydrologic responses which can influence the model performance. In order to
determine the appropriate range of weight sets we tested several different weight sets (e.g., 2, 3, and 4 sets)
clustered using k-means algorithm for each site. Comparing the BMA predictions of each set to the
measurements including at least 5 data in each class, we found the suitable sets of weights representing
the highest correlation and reflecting the models’ characteristics properly discussed in section 2.2. The in
situ data were then clustered into the three (G=3: wet, moderately wet, and dry conditions) and two
(G= 2: wet and dry conditions) classes for the LW (13 and SCAN 2023), and WG (82) sites, respectively.

Various hydrological models have different initial and bottom boundary conditions due to their own structural
characteristics. In the study sites, actual groundwater table is not available during the experiment periods, so
we assumed that the bottom boundary condition is defined with free drainage at 2m depths from the soil
surface for the Noah LSM and SWAP models, while the bottom boundary condition for CLM was decided with
the water table dynamics calculated from aquifer water storage via the SIMGM [Niu et al., 2007] after spinning
up the model. For the initial condition, the Noah LSM and CLM models performed a spinning up to initialize
the soil profile. A uniform initial soil water pressure head distributions (h(z,t=0) =�100 and �500 cm for the
LW (13 and SCAN 2023) and WG (82) sites indicating the shallow/deep groundwater levels, respectively) were
used for the SWAP model.

Figure 2. Study sites; (a) Walnut Gulch (WG) 82 in Arizona, (b) Little Washita (LW) 13, and (c) SCAN 2023 in Oklahoma.
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3. Results and Discussions
3.1. Estimation of Optimized Model Parameters and Their Uncertainties

The optimized model parameters and the uncertainties of each model were estimated using the
modified-microGA under two different hydroclimatic regions. Figure 3 shows the probability distributions
and their quantile box charts for the estimated soil hydraulic parameters of each model using multiple
random number seeds (i.e., �1000, �950, and �750) at the LW 13 site during the calibration period (DOY:
170–183, 1997). The estimated parameters for individual models showed the unimodal distributions
indicating a probable optimized parameter value. Further, some of the parameters represented discontinuous
distributions because the modified-microGA searched for the possible parameter sets from the multipopulation
and different random number seeds exploring the complete search space. The optimized values for
each model were used for evaluating the model parameter uncertainty, estimating the effective soil
moisture dynamics for the study site. Based on these results, we found that the optimized soil hydraulic
parameters (θsat, b, ψsat, and Ksat) and their ranges (i.e., search spaces) for the three models showed
differences under the same modeling conditions (i.e., atmospheric forcings, soils, vegetations, etc.). The

Figure 3. Probability distributions and quantile box plots of the searched soil parameters of the three hydrological models
using the multiple random number seeds (i.e., �1000, �950, and �750) for the LW 13 site.
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discrepancy between the models may be attributed to different parameterizations and structures that can
also provide different model performances.

In order to quantify parameter uncertainties of each model, we generated 10 perturbed parameter ensembles
using the statistics (mean and standard deviation) of estimated parameters based on the multiple populations
and random number seeds. Then, the surface (0–5 cm) soil moisture dynamics were simulated using the
perturbed parameter ensembles for each model in a forward mode. Figures 4a–4c present the comparison of
in situ and simulated surface soil moisture dynamics and their uncertainty band for SWAP, Noah LSM, and
CLM during the calibration and validation periods. The results showed very narrow uncertainty boundaries,
because the possible parameter sets searched by the modified-microGA using the different populations were
very similar for the cases of SWAP and Noah LSM (Figures 4a and 4b). Some observations deviated from the
narrow boundaries of the simulated soil moisture from SWAP and Noah LSM. It can be inferred that the
single model could not predict properly for a certain period due to their model structural error. Overall,
however, three different models predicted the surface soil moisture dynamics well in comparison with the
measurements (R: 0.742–0.850, RMSE: 0.042–0.064, and MAE: 0.063–0.085 during the calibration period; R:
0.863–0.955, RMSE: 0.028–0.062, MAE: 0.054–0.097 during the validation period). The SWAP model showed
better performance than others at the LW 13 site during the calibration period, while CLM performed
better during the validation period. On a closer view, the simulated surface soil moisture dynamics by
SWAP matched well with the measurements during DOY 170–177 (volumetric water content above
0.280m3m�3), but the CLM results were identified better during DOY 177–190 (volumetric water
content below 0.190m3m�3). Also, both Noah LSM and CLM performed well during DOY 192–197 (for
volumetric water content 0.190–0.280m3m�3). The simulated surface soil moisture from SWAP was
more sensitive to the precipitation which can be associated directly with the wet surface condition,
compared to those of Noah-LSM and CLM, because of a thin top soil layer (1 cm) which can capture the
dynamic change of surface soil moisture. Thus, it showed rather good agreement with measurements
than other models during wet condition (Figure 4a). In contrast, CLM showed poor performance during

Figure 4. In situ and simulated surface soil moisture (0–5 cm) dynamics using the optimized soil parameters derived by the
modified-microGA for (a) SWAP, (b) Noah LSM, and (c) CLM at the LW 13 site during calibration and validation periods.
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wet condition (Figure 4c). In CLM, the simulated surface soil moisture was underestimated due to the unreliable
surface runoff generation (see section 2.2.3) and high sensitivity of evaporation to precipitation. During the dry
condition, CLM predicted the surface soil moisture well whereas Noah LSM somewhat overestimated the
surface soil moisture. This may be attributed to the layer thickness of the models. The thicker top layer of
Noah LSM holds more soil water after precipitation events than the thin soil layers of the other models
(Figure 4b). These findings support those of Hsu et al. [2009] as they state that the performances of different
models has their own strengths and weaknesses for certain processes, and we found that the performances
of different hydrological models (Noah LSM, CLM, and SWAP) might vary based on the different land surface
wetness conditions (e.g., wet, moderately wet, and dry conditions).

Figure 5 shows the probability distributions of estimated effective soil hydraulic parameters based on the
multiple random number seeds for the WG 82 site during the calibration period (DOY: 216–227, 2004).
Most of the probability distributions were unimodal for the Noah LSM and CLM parameters, except q (in
Noah LSM) and WATDRY (in CLM) variables. However, the model parameter distributions of SWAP have
multiple modes indicating local minima that can be derived by the modified-microGA in the search space.

Figure 5. Probability distributions and quantile box plots of the searched soil parameters of the three hydrological models
using the multiple random number seeds (i.e., �1000, �950, and �750) for the WG 82 site.
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Thus, the local minima that were significantly deviated from the referenced parameter ranges (UNSODA [Leij
et al., 1999], Soil Survey [Wösten et al., 1994], Rosetta [Schaap et al., 1999], and Clapp and Hornberger table
[Clapp and Hornberger, 1978]) of the sandy loam soil type (predominant at the WG 82 site) were excluded.
Also, we found a response time lag of 1 day between observed precipitation and simulated soil moisture
that could be attributed to the difference of actual measurement time during the day and model time
steps (starting at 12 midnight) at the WG 82 site. Figures 6a–6c show the comparison of measured and
simulated surface soil moisture dynamics with ±95 PCI after a 1 day lag was corrected. The simulated soil
moisture dynamics from the three models agreed well with the measurements. Statistical analyses
demonstrated that CLM performed better than others during the calibration and validation period as
shown in the figures. The outputs of SWAP showed more uncertainties compared to the results of the
other two models under the prevailing condition (e.g., relatively small precipitation and high solar
radiation) as shown in Figure 6 (DOY: 222–238). SWAP tends to overestimate the surface soil moisture
when the soil is relatively dry along with small precipitation and high evapotranspiration rate estimated
using Penman-Monteith method [Baroni and Tarantola, 2012]. We also found that the SWAP results
matched the measurements during DOY 216–221 (above 0.125m3m�3, wet condition) with higher
correlation (R= 0.945) than others (R=0.911 for Noah LSM and R=0.889 for CLM) at the WG 82, while the
CLM model identified better during the period of DOY 222–238 (below 0.125m3m�3, dry condition). In
general, CLM showed a good performance for this site considering the water table dynamics as a bottom
boundary condition, but the model underestimated the surface soil moisture during wet condition
that can be associated to more moisture loss through evaporation. Noah LSM appeared to somewhat
overestimate the surface soil moisture because of the thick top soil layer, but the model showed a similar
tendency as CLM compared to the field observations (Figure 6b). Compared to the results at LW 13, the
parameter uncertainty boundaries of each model were smaller, because of the low variability of surface
soil moisture estimations. It may indicate that the relatively low rainfall amounts at the WG 82 site
(semiarid) cause the low-surface soil moisture variability in modeling.

Figure 6. In situ and simulated surface soil moisture (0–5 cm) dynamics using the optimized soil parameters derived by the
modified-microGA for (a) SWAP, (b) Noah LSM, and (c) CLM at the WG 82 site during calibration and validation periods.
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For the longer period simulation at SCAN 2023 site, the three models integrated with the modified-microGA
predicted the surface soil moisture well representing a good agreement with the measurements (R: 0.75,
RMSE: 0.052, and MAE: 0.039 for SWAP; R: 0.89, RMSE: 0.033, and MAE: 0.023 for Noah LSM; R: 0.78, RMSE:
0.046, and MAE: 0.035 for CLM). Yet the predictions from the models indicated different trends under the
different land surface wetness conditions defined with the same thresholds of the LW 13 site (Figure 7).
SWAP shows good response to precipitation events in predicting the surface soil moisture peaks better
than others during the wet condition, whereas the simulated surface soil moisture decreased rapidly
during the dry-down phase (i.e., moderately wet and dry conditions) after the precipitation event. On the
other hand, CLM and Noah LSM showed best performances in moderately wet and dry conditions,
respectively. Evaporation in CLM is very sensitive to the precipitation on short time scale (the case of LW
13) so that the evaporation removes soil water from the top soil layer. This is the reason why CLM
predicted well the low-surface soil moisture during dry condition at the LW 13 site. In contrast, on long
time scale, more soil water can be retained from previous precipitation events that may cause the
overestimation of surface soil moisture.

Overall, the predicted surface soil moisture dynamics using the threemodels based on the optimized parameters
derived by the modified-microGA matched well with the measurements in two different hydroclimatic regions.
However, the measured soil moisture dynamics could not be captured adequately by the parameter
uncertainty boundaries of SWAP and Noah LSM. Furthermore, the performances of different hydrological
models in estimating the surface soil moisture showed different trends under various wetness conditions
and different hydroclimatic conditions. It infers that uncertainties due to the different model structures are
reflected significantly in model outputs.

3.2. Estimation of Effective Surface Soil Moisture and Its Uncertainty

In order to reduce bias due to model structural uncertainties (i.e., different model parameterizations,
governing equations, etc.) mentioned above, we assigned a single (S-BMA) and multiple (M-BMA) sets of
weights derived by the BMA scheme to the individual surface soil moisture predictions. A single set of
weight (wi = 1,…,J) was estimated based on the simulation results from the three models for the LW 13 site

Figure 7. In situ and simulated surface soil moisture (0–5 cm) dynamics using the optimized soil parameters derived by the
modified-microGA for SWAP, Noah LSM, and CLM at the SCAN 2023 site.

Table 3. A Single and Multiple Sets of the Bayesian Model Average (BMA) Weights for the Three Hydrological Models at
the LW 13 Site

BMA set

Weights

SWAP (i = 1) Noah LSM (i = 2) CLM (i = 3)

S-BMAa (wi = 1,…,J) 0.291 0.005 0.704

M-BMAb (wg¼1;…;G
i¼1;…;J )

c g = 1 0.533 0.466 0.001
g = 2 0.001 0.293 0.706
g = 3 0.008 0.002 0.990

aS-BMA means a single set of the weights for the three models (i = 1, 2, 3).
bM-BMA means multiple sets of the weights corresponding to three land surface wetness conditions (g=1, 2, 3 represent

the wet, moderately wet, and dry conditions, respectively).
cNote that G and J are the number of land surface wetness conditions and hydrological models, respectively.
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during the whole simulation period as shown in Table 3. The highest weight (0.704) was assigned to CLM,
which showed the best model performance (R: 0.837, RMSE: 0.047, MAE: 0.036) over the simulation period,
while SWAP (R: 0.789, RMSE: 0.053, MAE: 0.044) and Noah LSM (R: 0.806, RMSE: 0.054, MAE: 0.046) had
relatively lower weights of 0.291 and 0.005, respectively. The aggregated surface soil moisture dynamics
using a single set of weights (R: 0.823, RMSE: 0.040, and MAE: 0.061) for the three models matched better
with the measurements than SWAP and Noah LSM predictions in Figure 8. However, there was no
significant improvement of the single-weighted prediction compared to CLM prediction. This was because
the single-weighted based surface soil moisture dynamics were considerably biased toward the CLM
results assigned with the highest weight uniformly along the whole period and did not reflect a good
performance of other models during a certain condition (e.g., wet and moderately wet). As shown in
Figure 4, the SWAP model performed better during DOY 170–177 (defined as the wet condition), while
Noah LSM and CLM predicted the surface soil moisture estimates better under the moderately wet and
dry conditions, representing the advantages and disadvantages of each model structure. These findings
demonstrated that we need to classify the simulation period for assigning different weights to the model
predictions based on the land surface wetness conditions. For these reasons, we categorized the in situ
measurements using the k-means clustering algorithm as the wet (above 0.280m3m�3), moderately wet
(0.190–0.280m3m�3), and dry (below 0.190m3m�3) conditions, respectively. Then, we estimated multiple

sets of the weight (i.e., wg¼1
i¼1;…; J -wet, w

g¼2
i¼1;…; J -moderately wet, and wg¼3

i¼1;…; J -dry conditions) based on the

categorized soil moisture measurements for the LW 13 site (see Table 3). The highest weight (0.533) was
assigned to the SWAP results during the wet condition at the LW 13 site, while CLM had the highest weights
(0.706 and 0.990) during the moderately wet and dry conditions, respectively. These multiple-weight values
can be seen as the performance of individual models based on the advantages of each model structure. The

Figure 8. In situ and simulated surface soil moisture using a single (S-BMA, dotted line) and multiple (M-BMA, black line)
sets of the BMA weights and ±95 PCI at the LW 13 site.

Table 4. Single andMultiple Sets of the BayesianModel Average (BMA) Weights for the Three Hydrological Models at the
WG 82 Site

BMA Set

Weights

SWAP (i = 1) Noah LSM (i = 2) CLM (i = 3)

S-BMAa (wi = 1,…,J) 0.001 0.053 0.946

M-BMAb (wg¼1;…;G
i¼1;…; J )

c g = 1 0.936 0.001 0.063
g = 2 0.002 0.002 0.996

aS-BMA means a single set of the weights for the three models (i = 1, 2, 3).
bM-BMAmeans multiple sets of the weights corresponding to two land surface wetness conditions (g = 1, 2 represent

the wet and dry conditions, respectively).
cNote that G and J are the number of land surface wetness conditions and hydrological models, respectively.
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effective (multiple-weighted) surface soil moisture dynamics showed a better match with the measurements
(R: 0.906, RMSE: 0.028, and MAE: 0.057) in Figure 8. Compared to the single-weighted results (Figure 8), the
BMA scheme based on the multiple sets of weight (based on wetness thresholds) also improved the surface
soil moisture estimations and their uncertainties, especially on DOY 170–177. Thus, our findings demonstrated
that the BMA-based multimodel simulation approach with multiple sets of weights is more suitable for
addressing model structural uncertainties than those with a single set of weights.

We estimated a single set of weights (wi = 1,…, J) for the whole simulation period for theWG 82 site as shown in
Table 4. The highest weight value (0.946) was assigned to the CLM results that show the best prediction
(R: 0.856, RMSE: 0.014, and MAE: 0.011), and then in turn the low weights of 0.001 and 0.053 were assigned
to SWAP and Noah LSM, respectively. The aggregated (single-weighted) surface soil moisture dynamics
agreed with the measurements, but they were also biased to the CLM results representing that the
predictions have uncertainties during the wet period (DOY 216–221, Figure 9) as shown in the results of
LW 13 site. Thus, we categorized the simulation period into the two classes (i.e., wet and dry conditions)

and estimated the two sets of the weight (wg¼1
i¼1;…; J -wet and wg¼2

i¼1;…; J -dry conditions, see Table 4) for the

WG 82 site. As shown in the previous section, the simulated surface soil moisture dynamics from the SWAP
model were closer to the measurements during the wet condition, while CLM performed better along the
dry period. Thus, the highest weight values (0.936 and 0.996 for the wet and dry conditions) were assigned
to the results of SWAP and CLM models, respectively. The aggregated surface soil moisture dynamics
using multiple sets of weights (R: 0.903, RMSE: 0.012, and MAE: 0.008) identified better with the
measurements than the individual models and single-weighted results. Further, a poor performance due

Figure 9. In situ and simulated surface soil moisture using a single (S-BMA, dotted line) and multiple (M-BMA, black line)
sets of the BMA weights and ±95 PCI at the WG 82 site.

Table 5. Single andMultiple Sets of the BayesianModel Average (BMA) Weights for the Three Hydrological Models at the
SCAN 2023 Site

BMA Set

Weights

SWAP (i = 1) Noah LSM (i = 2) CLM (i = 3)

S-BMAa (wi = 1,…,J) 0.204 0.650 0.146

M-BMAb (wg¼1;…;G
i¼1;…; J )

c g = 1 0.592 0.406 0.002
g = 2 0.432 0.125 0.443
g = 3 0.001 0.934 0.065

aS-BMA means a single set of the weights for the three models (i = 1, 2, 3).
bM-BMA means multiple sets of the weights corresponding to three land surface wetness conditions (g = 1, 2, 3

represent the wet, moderately wet, and dry conditions, respectively).
cNote that G and J are the number of land surface wetness conditions and hydrological models, respectively.
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to the structural errors of single model could be compensated by good performances of other models
indicating that the measured soil moisture data were mostly located within the ±95 PCI.

We also tested our proposed approach using long-period data (DOY 91–365) at SCAN 2023 site. The long-period
soil moisture measurements were categorized into the three classes (wet, moderately wet, and dry conditions)
by the same range of the wetness conditions for LW 13, and multiple sets of weights were estimated using the
BMA scheme (Table 5). The highest weights were assigned to SWAP (0.592 for wet condition), CLM (0.443 for
moderately wet), and Noah LSM (0.934 for dry condition), respectively. The surface soil moisture prediction
based on the multiple sets of weights showed better improvement (R: 0.940, RMSE: 0.025, and MAE: 0.018)
compared to the individual model performances and single-weighted prediction (Figure 10).

Based on these findings, we suggest that model structural uncertainties can be addressed by the BMA-based
multimodel simulation approach using multiple sets of weight corresponding to soil wetness conditions for
the two different study sites.

4. Summary and Conclusions

Soil moisture dynamics estimated by different hydrological models are affected by their ownmodel parameters
and structures. Without identifying these uncertainties, the robustness of model outputs from various
hydrological models may be elusive. Our study was focused on improving parameter and structural
uncertainties caused by different hydrological models in predicting surface soil moisture. In this study,
we adapted three different hydrological models (i.e., Noah LSM, SWAP, and CLM) for estimating surface
(0–5 cm) soil moisture integrated with a modified-microGA (advanced version of original genetic algorithm
(GA)) to search optimized model parameters for each model. Here we simulated the surface soil moisture
dynamics using the optimized soil parameters of each model in a forward mode. In order to address the
effects of model structural uncertainties, we applied a Bayesian Model Averaging (BMA) scheme to the
multimodel outputs based on the land surface wetness conditions. By aggregating the weighted model
outputs for each model, the newly developed approach estimates the effective surface soil moisture
dynamics and quantifies model parameter and structural uncertainties. To test our approach, we selected
the Little Washita (LW 13 and SCAN 2023) in Oklahoma (subhumid) and Walnut Gulch (WG 82) in Arizona
(semiarid) sites under the two different hydroclimatic conditions.

For the uncertainty analysis of soil parameters, we used the multipopulation for the modified-microGA process
with different random number seeds (�1000, �950, and�750). Overall, the estimated parameter distributions
for individual models at the LW 13 andWG82 sites were unimodal, which represent the optimized soil hydraulic
parameters. However, the (common) optimized parameters of the three different models at the study sites
had variations under the similar modeling conditions (i.e., atmospheric forcings, soils, vegetations, etc.)
indicating that the individual model performances were affected by their own model parameterization
and structural uncertainties.

We derived the surface soil moisture dynamics from the estimated soil parameters using the three models.
Mostly, the simulated results of each model matched well with the measurements, but the SWAP and
Noah LSM results still had uncertainties showing that a few soil moisture measurements were out of the

Figure 10. In situ and simulated surface soil moisture using a single (S-BMA, dotted line) and multiple (M-BMA, black line)
sets of the BMA weights and ±95 PCI at the SCAN 2023 site.
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uncertainty bounds at the LW 13 and WG 82 sites. Furthermore, the outputs from the three hydrological
models showed different model performances under the land surface wetness (i.e., wet, moderately dry,
and dry) conditions depending on their inherent model structures. In general, the SWAP model performed
better than other models during the wet condition, while CLM and Noah LSM predicted better during the
dry period. Thus, we applied the BMA scheme to assign single or multiple sets (corresponding to various
land surface wetness conditions) of weights to each model output for the two study sites. The results
showed that the effective surface soil moisture estimates based on multiple sets of weights were more
identifiable with the measurements compared to both the original model and single-weighted outputs. It
suggests that each model’s limitations under certain wetness conditions or hydroclimatic conditions can
be compensated by other model strengths. Based on these findings, our proposed methodology can be
useful for predicting the effective surface soil moisture estimates and better addressing model parameter
and structural uncertainties in soil moisture modeling. Further, this multimodel simulation approach will
be applicable to other locations for forecasting soil moisture dynamics effectively using multiple sets of
weights derived properly based on wetness conditions or several climate and physical properties.
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