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Abstract With the recently launched Soil Moisture Active Passive (SMAP) mission, it is very important to
have a complete understanding of the radiative transfer model for better soil moisture retrievals and to
direct future research and field campaigns in areas of necessity. Because natural systems show great vari-
ability and complexity with respect to soil, land cover, topography, precipitation, there exist large uncertain-
ties and heterogeneities in model input factors. In this paper, we explore the possibility of using global
sensitivity analysis (GSA) technique to study the influence of heterogeneity and uncertainties in model
inputs on zero order radiative transfer (ZRT) model and to quantify interactions between parameters. GSA
technique is based on decomposition of variance and can handle nonlinear and nonmonotonic functions.
We direct our analyses toward growing agricultural fields of corn and soybean in two different regions,
Iowa, USA (SMEX02) and Winnipeg, Canada (SMAPVEX12). We noticed that, there exists a spatio-temporal
variation in parameter interactions under different soil moisture and vegetation conditions. Radiative Trans-
fer Model (RTM) behaves more non-linearly in SMEX02 and linearly in SMAPVEX12, with average parameter
interactions of 14% in SMEX02 and 5% in SMAPVEX12. Also, parameter interactions increased with vegeta-
tion water content (VWC) and roughness conditions. Interestingly, soil moisture shows an exponentially
decreasing sensitivity function whereas parameters such as root mean square height (RMS height) and veg-
etation water content show increasing sensitivity with 0.05 v/v increase in soil moisture range. Overall, con-
sidering the SMAPVEX12 fields to be water rich environment (due to higher observed SM) and SMEX02
fields to be energy rich environment (due to lower SM and wide ranges of TSURF), our results indicate that
first order as well as interactions between the parameters change with water and energy rich environments.

1. Introduction

Soil moisture (SM) plays a fundamental role in governing the hydrological and the terrestrial carbon cycle,
and demands a global and consistent monitoring for the future food and water security. Several missions in
the past (SSM/I, AMSR-E, and SMOS) have made available satellite-derived soil moisture using both the
active and the passive remote sensing. The most commonly used system for modeling the complex soil-
vegetation-atmosphere interactions for soil moisture retrieval is described by ‘‘Radiative Transfer Equation’’
(RTE) [Ulaby et al., 1986; Kerr and Njoku, 1990]. Modeling of RTE however requires characterizing the complex
land-atmosphere interactions in geophysical parameters which is a difficult task, since land surface parame-
ters show a large heterogeneity, and not all of them are significant in describing the system at all scales.
Thus, considering all parameters as significant and incorporating them into the model will result in either
an over or an underdetermined system. Therefore, implementing RTE theory into practical soil moisture
retrieval algorithm requires reducing the dimensionality by simplifying assumptions without compromising
on the system information. This requires us to understand the model behavior and also the parameters
which efficiently encapsulate all the processes. A sensitivity analysis (SA) is an effective methodology to
attain this objective. SA can result in achieving factor fixing (FF) for noninfluential parameters, or factor pri-
oritization (FP) for important parameters, thereby reducing the output uncertainty. This also reduces num-
ber of parameters required for optimization, hereby increasing computational efficiency without
undermining the results [Saltelli et al., 2004]. Past studies [Davenport et al., 2005; Crosson et al., 2005; Calvet
et al., 2011] have performed sensitivity analysis on brightness temperature to determine the influential
parameters using the One-Factor-at-a-Time (OAT) algorithm. This algorithm also called as the Local Sensitiv-
ity Analysis (LSA), computes local response of the model by varying a parameter locally while the other
input parameters are fixed at their nominal values. LSA only provides a rough estimation of parameter rank-
ing using limited number of model evaluations. These results are, however, qualitative and not quantitative,
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and understanding about the underlying model assumptions and processes are restricted in the LSA meth-
ods. Also, OAT method is suitable for factor fixing but not for factor prioritization [Saltelli et al., 2008]. In con-
trast, global sensitivity analysis (GSA) method, comprehensively evaluates model response to variations in
inputs in the entire allowable parameter ranges.

In this paper, for the first time we explore the GSA technique in remote sensing arena to evaluate the Zero
Order Radiative Transfer (ZRT) model behavior and along with the parameter interactions. We use a
variance-based Sobol method which is a widely used GSA technique [Saltelli et al., 2004]. This method quan-
tifies the amount of variance each parameter contributes to the total unconditional variance. Despite its
computational demand, it provides a comprehensive sensitivity analysis, and a nonlinear relationship
between the parameters. It is important to realize the individual and interaction effects of soil moisture
(SM), soil texture (Clay fraction (CF)), surface roughness (RMS height ‘S’ and correlation length ‘L’), vegetation
parameters (vegetation water content ‘VWC,’ vegetation structure ‘B’ and scattering albedo ‘x’) on bright-
ness temperature (TB) to improve model and process understanding. For example, consider the similar scat-
tering and screening effects of surface roughness and vegetation (increase TB and reduce soil moisture
sensitivity) [Njoku and Chan, 2006] which makes it difficult to separate their individual impacts.

We hypothesize that, there exists nonlinear interactions between these parameters which need to be
accounted for in modeling. We also hypothesize that, these interactions change with the local climate/cli-
mate zones since different parameters come into play under different conditions [Gaur and Mohanty, 2013;
Joshi and Mohanty, 2010; Jana and Mohanty, 2012]. An understanding of these spatio-temporal interactions
between parameters will result in improved modeling of radiative transfer processes. The objective of this
paper is to examine the first order, the second order, and the total sensitivity measures of the ZRT model
parameters. We explore this objective under spatio-temporally varying conditions with different wetness
conditions and vegetation types. Our study focused on using two field campaigns, Soil Moisture Experiment
2002 (SMEX02) in Iowa and Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) in Winni-
peg. Corn and soybean crops are selected for our analysis, since they are the major agricultural crops of the
study regions in particular and North America in general. This analysis is carried out in climatologically simi-
lar (but locally different) regions such as Iowa, USA, and Winnipeg, Canada. We believe quantification of
these interactions of geophysical parameters will help us direct our future soil moisture cal/val campaigns
in areas which need more expertise to make accurate retrieval or predictions.

2. Materials and Methods

2.1. Climatology of Iowa and Winnipeg
According to the Koppen climate classification, Iowa and Winnipeg fall under humid continental climate
zone [Peel et al., 2007]. Such a climatic region is classified with large seasonal temperature differences, with
hot and humid summers and cold severe winters with significant precipitation in all the seasons. Iowa and
Winnipeg are categorized as Dfa (high 30s and low 40s latitudes) and Dfb (high 40s and low 50s in latitude)
climate zones, respectively. Iowa is mainly characterized by hot summers with an average temperature
greater than 22�C in the warmest months and an average temperature above 10�C over a span of 4 months.
Winnipeg is characterized by warm summers with warmest month temperature below 22�C and with at
least 4 months average temperature above 10�C.

2.2. Soil Moisture Experiment 2002 (SMEX02)
SMEX02 was conducted in central Iowa from 24 June to 12 July, 2002 to validate soil moisture retrieval algo-
rithms for a range of soil and vegetation conditions from aircraft and satellite microwave instruments
[Jacobs et al., 2004; Bindlish et al., 2006; Narayan et al., 2004; McCabe et al., 2005; Famiglietti et al., 2008]. Cen-
tral Iowa is mainly an agricultural region with two major crops, corn and soybean. This experimental site is
being used to test retrieval algorithms since agricultural fields are uniform in vegetation type but differ
largely in landscape patterns such as soil texture, vegetation conditions, and topography. The 19-day cam-
paign collects wide range of soil and vegetation conditions for soybean and corn fields, thus forms an excel-
lent database to perform spatio-temporal sensitivity analysis of brightness temperature.

2.2.1. Field Measurements
In this study, we selected 4 sampling days (DOY: 178, 182, 186, 188) which best represent the soil moisture
wetting and drying cycles under growing vegetation. For our analysis, we used ground measurements of
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volumetric soil moisture (VSM), soil temperature, and vegetation water content from the same sampling
days (except for 186, when VWC of 187 is used). Two rainfall events were observed in watershed with light
showers on DOY: 185, 186, and more significant showers on DOY: 187 elevating SM further. Ground sam-
pling of VWC for corn and soybean noticed a significant increase from DOY: 178–188, with corn mean VWC
increasing from 2.9 to 4.5 kg/m2, and soybean mean VWC increasing from 0.3 to 0.77 kg/m2. Grid board
measurements of surface roughness, show a wide range of RMS height (S) and correlation length (L) for
corn [S: 0.19–2.55 cm; L: 0.55–26.9 cm] and soybean [S: 0.21–3.05 cm; L: 0–20.8 cm]. These ranges represent
the roughness conditions from rolled fields to ploughed surfaces [Alvarez-Mozos et al., 2006; Zhixiong et al.,
2005].

2.3. Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12)
SMAPVEX12 (Soil Moisture Active Passive Validation Experiment in 2012) was conducted in agricultural
region south of Winnipeg, Manitoba (Canada) from 6 June to 17 July 2012. This site is about 15 km 3 70 km
within the large Red River Watershed. The climate of Winnipeg is classified as extreme humid continental
with great difference in summer and winter temperatures. The annual average precipitation is about 52 cm,
with most of the precipitation occurring between May to September. Because of the extremely flat topogra-
phy and substantial snowfall this region is prone to flooding. The watershed is mainly characterized by agri-
cultural land use with a wide range of crop and soil conditions. Soils of this region vary within a distance of
few kilometers with heavy clays in the east to loamy sands in the west. The major agricultural crops of the
region include cereals, canola, corn, and soybean [Heather et al., 2012 SMAPVEX experimental report]. A
total of 55 agricultural sites have been chosen for SMAPVEX12 experiment of which soybean (15), canola (6),
corn (10), spring-wheat (14), winter-wheat (2), forage (1), bean (1), and pasture (6). Because of the favor-
able economic and environmental conditions early in season, more of the soybean fields were planted.
Apart from field soil moisture measurements, SMAPVEX12 site is largely monitored with in situ soil mois-
ture stations by United States Department of Agriculture (USDA), Agriculture and Agri-Food Canada
(AAFC), and Manitoba Agriculture Food and Rural Initiatives (MAFRI). During SMAPVEX12 field campaign,
gravimetric and volumetric soil moisture data were collected almost every alternate day except for rainy
days. With the wide range of soil moisture, vegetation and texture conditions observed, SMAPVEX12 site
provide an extensive data sets for development and validation of SMAP passive and active soil moisture
retrieval algorithms.

2.3.1. Field Measurements
In this study, we use in situ measurements of soil moisture, soil temperature, surface roughness, and vegeta-
tion water content collected for soybean and corn fields. Soybean and corn fields show sharp variations in
soil texture. Soybean fields show soil texture with sandy loam soils (Field ID: 14, 12, 11, 63, 82, 64, 52) to
heavy clay soils (Field ID: 51, 114, 64, 51, 111, 123, 113, 101, 103, 109, 112, 34). Whereas corn fields are
mainly sandy (Field ID: 24, 72, 71) and sandy loam (Field ID: 54, 83, 94, 54, 83, 53, 93). For our study, we care-
fully selected seven (DOY: 159, 164, 169, 174, 181, 190, 199) different wetness days from entire duration of
SMAPVEX12 campaign. As mentioned earlier, these wetness days were selected such that they fully repre-
sent the wetting and drying cycles of soil moisture under temporally varying vegetation conditions.

2.4. Soil Moisture Retrieval Algorithm
The theory behind microwave radiative transfer model for remote sensing of soil moisture is the large con-
trast between the dielectric properties of soil (�4) and water (�80). As the amount of water content
increases in soil, the dielectric constant increases, while emissivity reduces. The brightness temperature (TB)
of the soil surface is related to its physical effective temperature and emissivity such that:

TBðh;pÞ5ð12Rðh;pÞÞ3Teff5eðh;pÞ3Teff (1)

where subscript p is the vertical (V) or horizontal (H) polarization and h denotes incidence angle of the measure-
ment. R(h,p) is the p polarized reflectivity from the surface, Teff is the effective soil temperature, e(h,p) 51 2 R(h,p) is
the emissivity of the surface which depends on the dielectric constant (e) of the medium. The dielectric constant
(e) of soil is determined by several quantities such as moisture content, bulk density, soil texture composition, soil
temperature, and salinity. Of these quantities, e is majorly influenced by soil moisture. The penetration depth dp of
microwave radiation varies with soil moisture content, such that dp � k for volumetric moisture SM � 0.04 g
cm23(very dry soils) and dp� 0.1 k for very wet soils [Ulaby et al., 1986], where k is the wavelength. Several studies
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[Newton et al., 1982; Schmugge,
1983] relating to sensing depth,
have led to the conclusion that
soil moisture sensing depth dm is
on the order of 0.1 k or shal-
lower. Thus, the brightness tem-
perature shows higher sensitivity
to the near surface soil moisture
variations and reduced sensitivity
to deeper layers of soil moisture.
Therefore, any nonuniformity in
temperature and dielectric con-
stant profiles is significant only
for the layer between the surface
and the depth of dp, because
beyond this depth contribution
to the brightness temperature
(TB) is very small.

The most widely used radiative
transfer model [Mo et al., 1982]
under vegetation conditions is

known as s-x model described in equation (2).

TB p;f ;hð Þ5 ep;h:Teff :exp 2
sp; f

cos h

� �
1Tc: 12xp;f ;h

� �
: 12exp 2

sp;f

cosh

� �� �
1Tc: exp 2

sp;f

cosh

� �
: 12xp;f ;h
� �

:

12exp 2
sp;f

cosh

� �� �
:rp;f ;h (2)

where sp is the nadir optical depth, xp is the single scattering albedo, rp is the rough surface reflectivity and
Teff and Tc are the effective physical temperatures of soil layers and vegetation, respectively. The subscripts, p,
h, and f denote the polarization, angle of incidence, and frequency of measurement. Thus, the total upward
microwave emission is a summation of: (Ray 1) upward soil emission attenuated by the vegetation layer
through scattering and absorption (s and x), (Ray 2) upward emission from vegetation (within vegetation scat-
tering and emission), (Ray 3) vegetation emission reflected by soil (soil surface roughness and reflectivity and
attenuated through canopy (Figure 1). Several models [Njoku and Kong, 1977; Wilheit, 1978; Burke et al., 1979]
were proposed to determine brightness temperature from nonuniform dielectric and temperature medium. In
addition, a comparison between these different models [Schmugge and Choudhury, 1981] led to the conclu-
sion that at longer wavelengths internal reflections between the layered media can be ignored to calculate
effective temperature. Thus, for passive remote sensing at L-band (k � 21 cm, f � 1.4 GHz), it is reasonable to
assume the effective soil temperature to be equal to surface temperature (Teff� TSURF).

The tau-omega is considered to be Zero-Order Radiative Transfer (ZRT) model, since it ignores multiple scat-
tering within the vegetation layer. These assumptions are considered reasonable during early hours (6 A.M.
local time) when soil temperature profile is more uniform and vegetation is in thermal equilibrium with soil
(Teff � TSURF � Tc).

Different models [Wang et al., 1983; Choudhury et al., 1979; Wigneron et al., 2011; Lawrence et al., 2013] were
proposed to formulate the smooth and rough soil surface reflectivity. The effective rough surface reflectivity
in horizontal (H) or vertical (V) polarization is given by

RH;f
rs hð Þ5 12Qfð Þ RH;f

s hð Þ1Qf RV ;f
s hð Þ

� �
e2G hð Þhf (3a)

RV ;f
rs hð Þ5 12Qfð Þ RV ;f

s hð Þ1Qf RH;f
s hð Þ

� �
e2G hð Þhf (3b)

where f and h are frequency and angle of incidence of the measurement. Rp;f
s hð Þ are smooth Fresnel reflec-

tivity, Qf is a polarization mixing factor, hf is equivalent roughness parameter related to surface RMS height
and horizontal correlation length, G(h) 5 cosnp (h), and np is polarization dependent angular exponent. For

Figure 1. Three layer Zero-Order Radiative Transfer (ZRT) Model, where Ray 1: Soil Emissions
Intercepted-Scattered by Vegetation; Ray 2: Vegetation Emission; Ray 3: Soil-Vegetation.
Reflection/Attenuation, Soil Moisture (SM), Clay Fraction (CF), Surface Roughness RMS height
(S), Surface Roughness Correlation Length (L), Vegetation Structure parameter (B), and Scat-
tering Albedo (x).
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model proposed in [Wang et al., 1983] assumes G(h) 5 1 for equations (3a) and (3b), whereas model in
[Choudhury et al., 1979] assume G(h) 5 cos2 (h) and Qf 5 0. Other empirical models [e.g., Wigneron et al.,
2011] developed later consider correlation length to calculate equivalent roughness parameter. Whereas,
model proposed in Lawrence et al. [2013] allows Qf and np to be calculated from RMS height ‘S’ and correla-
tion length ‘L.’ This avoids the assumption of constant values for these parameters and is polarization
dependent. In this study we use, roughness model proposed by Lawrence et al. [2013].

As mentioned earlier, canopy affects top of the atmosphere brightness temperature (ignoring atmospheric
attenuation at L-band) by either radiating its own microwave radiation or absorbing/scattering radiation ema-
nated by the soil. These attenuation effects of vegetation are described by vegetation optical depth s (k, p) and
single scattering albedo x (k, p, h) in (2). These factors are dependent on frequency, polarization, incidence angle,
vegetation water content, and canopy structure [Mo et al., 1982; Ulaby et al., 1983; Jackson and O’Neill, 1990;
Jackson and Schmugge, 1991; Van de Griend and Wigneron, 2004; Wigneron et al., 2011]. The knowledge about
the variability of xp for H and V polarization are limited [Brunfeldt and Ulaby, 1986]. Van de Griend and Owe [1994]
showed the difference between xH and xV, is essentially realized in vegetation exhibiting preferential orientation.
The difference, however, is considered to be small, thereby assuming xp to be polarization independent.

The single scattering albedo x accounts for the canopy single volume scattering (Rays 2 and 3, multiple
scattering is considered zero) and total extinction properties exhibited by the canopy. It is defined as the
ratio of canopy scattering efficiency to the total extinction efficiency (sum of scattering and absorption
within canopy) [Mo et al., 1982; Ulaby et al., 1983a]. By fitting model to experimental observations for vege-
tated fields, several studies [Brunfeldt and Ulaby, 1986; Pampaloni and Paloscia, 1986; Jackson, 1993] have
estimated the value of single scattering albedo. The general consensus among these studies indicates that
at 1.4 GHz, x is small and varies from 0.05 to 0.13.

The vegetation optical depth sp is related to the vegetation thickness and extinction efficiency of the canopy.
The amount of radiation that is not scattered or absorbed by the vegetation is represented by optical depth
sp; which describes the amount of radiation propagated through vegetation. Since canopy in essence acts as
water cloud, sp is empirically related [Schmugge et al., 1986; Saleh et al., 2007] to the integrated canopy water
content VWC as total mass of water contained in the vertical column of the canopy per unit ground surface
area. The canopy architecture, orientation, thickness, and density of vegetation characterize the extinction effi-
ciency of the vegetation. The vegetation optical depth commonly used in soil moisture retrieval algorithms is
given by sp 5 VWC 3 B, [Jackson and Schmugge, 1991] where B is a vegetation structure parameter that
depends on factors such as frequency, polarization, look angle, and vegetation type. Thus, the vegetation
attenuation parameters sp,f and xf,h used in vegetation model are based on the assumptions: (1) at L band,
scattering albedo is small and multiple scattering may be ignored, (2) the canopy reflectivity is zero, thus
reflection losses at the boundary are not accounted, and (3) due to small refractive index of vegetation layer,
soil reflectivity is used in (2) instead of vegetation-soil reflectivity. Several soil moisture retrieval algorithms are
developed and validated [Jackson and Le Vine, 1996; Owe et al., 2001; De Jeu and Owe, 2003; Njoku and Chan,
2006; Jones et al., 2011; Santi et al., 2012] based on the above assumptions for soil and vegetation models.

2.5. Global Sensitivity Analysis: Sobol Method
Sensitivity analysis is generally used to identify and quantify the critical inputs (parameters and initial con-
ditions) to a model. Several sensitivity analysis techniques have been developed over time depending on
the objective of the study and computational demand. When the input factors are known with little uncer-
tainty, then sensitivity measure is computed by partial derivative of output function with respect to the
input factors. This method as mentioned earlier is called local sensitivity analysis (LSA). LSA techniques are
best suited for linear systems, since the impact on model output is studied by varying input factors one at
a time and very close to the nominal values. On the other hand, land surface models (LSM) or in general
any environmental model is rarely additive in nature. Since land surface processes are highly nonlinear and
nonmonotonic, thereby exhibiting interactions between the parameters. In such cases, using local SA
methods are not suitable for quantitative analysis, since they fail to capture the heterogeneity in input fac-
tors. Therefore, techniques such as global sensitivity analysis (GSA) are used, which incorporate variability
in the input factors through probability distribution functions using Monte Carlo simulations. Since, Sobol
method is capable in handling nonlinear and nonmonotonic functions we use it to analyze our radiative
transfer model. We briefly introduce the main concepts of Sobol method here for completeness.
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The concept behind variance-based technique is to quantify the amount of variance due to each input factor Xi

contributed toward the unconditional variance of the output V(Y). Suppose Y 5 f(X) is a model function, then Y is
the output, X 5 (X1, X2, X3. . ..XK) are K independent input parameters, each one varying over a probability distribu-
tion. Applying this configuration to our analysis results in, Y as the output brightness temperature, f as the ZRT
model, and XK as the input parameter vector with K 5 8, and [X1, X2, X3, X4, X5, X6, X7, X8] as [Soil Moisture (SM),
Clay Fraction (CF), Surface Roughness- RMS height (S), Surface Roughness-Correlation length (L),
Surface Temperature (TSURF), Vegetation Water Content (VWC), Vegetation Structure (B), Scattering Albedo (x)].

Sobol suggested that the function f can be decomposed into summands of increasing dimensionality;

f ðX1; X2; . . . :XK Þ5f01
X

i

fiðXiÞ1
X

i<j

fijðXi; XjÞ1 . . . 1f1...:K ðX1; . . . :KÞ (4)

If each term in the above equation is square integrable with average zero and input parameters are not
dependent, then f0 is a constant and is equal to the expectation value of the output and summands are
mutually orthogonal. Additionally, this decomposition is unique. With the assumption that the parameters
are mutually orthogonal, the total unconditional variance is [Saltelli et al., 2008];

VT 5
X

i

Vi1
X

i<j

Vij1 . . . 1
X

V1;2;3; ... K ; (5)

Vi5V E YjXið Þ½ �; Vij5V ½E YjXi; Xj
� �

�2Vi 2Vj (6)

where V E YjXið Þ½ � is the expected amount of variance that would be removed if the true value of Xi is learnt, Vij5

V½E YjXi; Xj
� �

� describes the joint effect of pair (Xi, Xj) and is called second-order effect thus measuring the var-
iance contributed by this interaction to total model variance, similarly higher order effects can be computed.

GSA ranks the input parameters based on the amount of variance that would disappear on learning the
true value of x*. For a nonlinear model, the total output variance is decomposed into variances caused due
to first (fractional variance of Xi to output) and higher order (variance caused due to interactions between
the factors, Xij, i 6¼ j).

Using first and other order variances, sensitivities indices Si are calculated by dividing V E YjXið Þ½ � with total
variance VT .

First-Order Sensitivity Measure : Si5
Vi

VT
; (7)

Second-Order Sensitivity Measure : Sij5
Vij

VT
; (8)

Total STi5Si1
X

j 6¼i

Sij1 . . . : (9)

where Si is the first-order sensitivity index for factor Xi, which measures variance contribution of param-
eter Xi on total model variance, Sij is the second-order sensitivity index signifying the interactions
between parameters i and j, and STi is sum of main effects and all their interactions with the other
parameters (up to kth order). The calculation of STi can be based on E V YjX2ið Þ½ �, variation of all parame-
ters except Xi;

STi5
E V YjX2ið Þ½ �

VðYÞ : (10)

For additive models, Si and STi are equal and sum of Si (and thus STi) is 1. For nonlinear models (or nonaddi-
tive models) STi is greater than Si and

P
Si < 1 (

P
STi > 1). The difference between STi and Si is used to

analyze the interactions between parameter Xi and the other parameters.

2.6. Evaluation of the Parameters Using Sensitivity Analysis
A high value of Si implies Xi as significant parameter in influencing the output and should be given priority
in estimation. Whereas a low value of STi indicates that the parameter is not important either singularly or
via interactions, and can be frozen to its optimal value (parameter fixing).
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We analyzed a time series Global Sensitivity Analysis (GSA) of Zero-Order Radiative Transfer (ZRT) Model to
input parameters. The analysis was conducted for each of the 4 days in SMEX02 fields and for 7 days in SMAP-
VEX12 fields. The field observations of SMEX02 and SMAPVEX12 are significantly different with respect to soil
moisture, soil texture, soil temperature, surface roughness, and vegetation water content. In this study, it is
assumed that the field observations are true representative of variability that is observed. In our analysis, we
assume uniform distribution for all parameters to effectively capture the heterogeneity observed in the fields.
Field observations are used to represent maximum (max) and minimum (min) values. Tables 1 and 2 show
observed soil and vegetation parameter ranges for SMAPVEX12 and SMEX02. Due to irregular planting peri-
ods, not all fields of corn (or soybean) showed similar growth trend, and not all fields were sampled on all
sampling days, which has resulted in irregular ranges for VWC. Since we want to study the influence of grow-
ing vegetation, we used highest observed VWC values than previous sampling day. It is assumed that parame-
ters such as Clay Fraction (CF), Surface Roughness RMS height (S), Surface Roughness Correlation Length (L),
Vegetation Structure (B) and Scattering albedo (x) are static during our analysis period, and same range is
considered for all sampling days. Since, there were no major agricultural practices performed during the grow-
ing cycle, our assumption of similar surface roughness conditions on all days holds valid.

To estimate first-order and total sensitivity indices Si , and STi for k parameters with N sample size requires N
(k 1 2) model evaluations, i.e., for K 5 8 parameters and N 5 30,000 sample size, a total of 300,000 model
evaluations were performed. While computing Sobol indices, we employ Sobol quasi random sampling
instead of standard Monte Carlo sampling schemes. To avoid lumped sampling or clustering, quasi random
sampling adds samples to the sequence away from the earlier sampled points and fills the unit hypercube

Table 1. Parameter Ranges of Corn and Soybean SMAPVEX12 Fields for Selected Sampling Days

Parameters SMAPVEX12 Crop Type DOY 159 DOY 164 DOY 169 DOY 174 DOY 181 DOY 190 DOY 199

Soil moisture
(SM) (V/V)

Corn 0.02–0.34 0.07–0.46 0.1–0.45 0.05–0.37 0.012–0.3 0.03–0.43 0.03–0.38
Soybean 0.04–0.47 0.12–0.57 0.06–0.52 0.08–0.59 0.04–0.41 0.04–0.45 0.05–0.40

Clay fraction (CF) (%) Corn 5%–38%
Soybean 4.5%–66%

RMS height (S) (cm) Corn 0.3–1.7
Soybean 0.2–2.0

Correlation length (L) (cm) Corn 4.5–23
Soybean 5–23

Surface Temp (TSURF) (Kelvin, K) Corn 293–300 281–294 288–293 287–295 292–298 291–300 291–296
Soybean 292–302 281–292 287–293 286–292 290–298 292–299 292–299

Vegetation Water Content (VWC) (Kg/m2) Corn No veg 0.01–0.1 0.1–0.39 0.15–0.45 0.5–1.5 1.7–2.4 2.2–4.22
Soybean No veg 0.03–0.13 0.04–0.25 0.05–0.29 0.05–0.52 0.08–0.7 0.17–2.7

Vegetation Structure (B) Corn 0.1–0.15
Soybean 0.05–0.1

Scattering Albedo (x) Corn 0–0.05
Soybean

Table 2. Parameter Ranges of Corn and Soybean SMEX02 Fields for Selected Sampling Days

Parameters SMEX02 Crop Type DOY 178 DOY 182 DOY 186 DOY 188

Soil moisture (SM) (V/V) Corn 0.07–0.16 0.05–0.15 0.06–0.27 0.11–0.37
Soybean 0.07–0.16 0.04–0.14 0.05–0.23 0.1–0.29

Clay fraction (CF) (%) Corn 10%–40%
Soybean 10%–40%

RMS height (S) (cm) Corn 0.19–2.5
Soybean 0.21–3.05

Correlation length (L) (cm) Corn 0.56–26.9
Soybean 0.43–20.80

Surface Temperature (TSURF) (Kelvin, K) Corn 296.15–318.5 299–310 296.15–304.5 295.85–299
Soybean 296.15–320.65 300.15–312.55 297.4–310.75 294.65–309.65

Vegetation Water Content (VWC) (Kg/m2) Corn 1.97–4.27 2.25–5.23 3–6 3.5–6.05
Soybean 0.2–0.47 0.27–0.66 0.32–0.69 0.4–1.43

Vegetation Structure (B) Corn 0.1–0.15
Soybean 0.05–0.1

Scattering Albedo (x) Corn 0–0.05
Soybean
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uniformly. Also, quasi random
sampling results in faster con-
vergence rate of 1/N as com-
pared to 1/

ffiffiffiffi
N
p

, which is
necessary to reduce computa-
tional demands.

2.6.1. Bootstrapping
In order to build confidence
intervals for the first-order and
total Sobol sensitivity indices,
we use bootstrap technique
with resampling [Efron and
Tibshirani, 1994], since it is
computationally very demand-
ing to repeat N.(k 1 2) model
runs several times. The N sam-

ples used for the model evaluations were sampled 1000 times with replacement, and sensitivity indices
were calculated each time. The 95% confidence intervals were then constructed on the distributions
obtained for Si’s and STi’s using percentile method.

3. Results and Discussions

We analyzed our results at N 5 30,000, where the sensitivity indices were found to be stabilized Figure 2.
The first-order and total sensitivity indices are calculated along with their 95% confidence intervals which
are obtained through bootstrapping. In the following sections, we present and discuss the Sobol sensitivity
indices for each parameter for SMAPVEX12 and SMEX02. We also discuss the sensitivity of brightness tem-
perature to soil-vegetation parameters in increasing SM ranges (for stepwise increment of 0.05 V/V incre-
ment in SM) while retaining other parameters to their observed ranges for selected days, Figures 7a–7e.
Though SMAPVEX12 and SMEX02 are climatically similar regions, they exhibited varied field conditions.

3.1. First-Order Sensitivity Measures
3.1.1. Soil Moisture (SM)
In general, brightness temperature showed higher sensitivity to SM in SMAPVEX12 than in SMEX02 due to
wider SM ranges observed in case of SMAPVEX12 fields. A clear temporal variability in SM sensitivity due to
wetting and drying cycle can be seen in both the fields. We notice an unfamiliar behavior of brightness tem-
perature sensitivity to SM in the presence of vegetation Figures 3–6. The brightness temperature sensitivity
to SM does not increase linearly with increase in SM. For example, DOY: 164, 169 show high SM (max: 0.45
V/V) observed in corn fields for SMAPVEX12, however, this increase in SM is not reflected in increased sensi-
tivity of brightness temperature to SM. Similarly DOY: 188 (corn) during SMEX02 was wettest day and high
VWC when compared to previous sampling days, however, we notice a decrease in sensitivity to SM and
VWC, but sensitivity to B, S, and L parameters and their interactions has increased. We will discuss the
behavior of B, S, L parameters and their interactions in their respective sections. To analyze this behavior of
decrease in SM sensitivity with increase in SM further, we calculated sensitivity indices for 0.05 V/V range in
SM for selected days Figures 7a–7f. Soil moisture shows a decreasing exponential function (R2 � 0.99) with
very low sensitivity from 0.2 V/V onward. Soil water in the range of 0.01–0.1 V/V are tightly bound by adhe-
sion forces to soil particles, thereby exhibiting emissitivities which are close to that of dry soil (0.95), but
with increase in SM the unbound water also called as ‘‘free water’’ increases thus reducing emissivities
steeply to 0.6 for SM 0.2 V/V. This is because after a certain SM value (transition soil moisture) any further
increase in SM does not influence emissivity significantly [Schmugge et al., 1974]. However, the transition
soil moisture changes with soil texture, being higher for more clayey soils. SM shows higher sensitivity in
lower clay soils with steep decrease in SM sensitivity with increase in SM ranges, whereas in higher clay soils
the SM sensitivities are small and decreases less steeply Figures 7c and 7d. The increased dominance of tex-
ture in higher clay soils and higher sensitivity to vegetation and roughness effects with increasing SM is
also a reason for low SM sensitivity Figures 7a–7f.

Figure 2. Evolution of first-order sensitivity index for Soil Moisture (SM), Clay fraction (CF),
RMS height (S), Correlation length (L), Surface Temperature (TSURF), Vegetation Water Con-
tent (VWC), Vegetation structure parameter (B), Scattering Albedo (x).
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3.1.2. Clay Fraction (CF)
Compared to other parameters, brightness temperature shows consistently small sensitivity to CF in field
condition for both SMAPVEX12 and SMEX02 when compared to other parameters. Higher CF sensitivities
are realized in soybean fields in SMAPVEX12 due to higher CF% observed. As expected, CF signature is
more visible in bare and dry conditions DOY: 178, 182 (SMEX02). Analyzing the CF sensitivity for increasing
SM ranges, it is noticed that CF shows a decreasing sensitivity function with high sensitivities noticed up to
0.15–0.2 V/V for higher clay soils (soybean field in SMAPVEX12) and up to 0.1–0.15 V/V for lower clay soils
(corn fields in SMAPVEX12 and SMEX02) after which it decreases steeply. Soil texture is important, since it
determines surface area, size, and shape of the soil particles thereby influencing the amount of bound and
free soil water. Therefore, clay fraction (CF) of soils largely determines the transition soil moisture, i.e., the
SM range beyond which the adhesion forces of CF largely weaken. Thus, sensitivity of CF up to transition
SM is high since it determines surface area for bound water. Beyond the transition SM, influence of CF
through adhesion forces reduces since proportion of unbound water increases, thereby reducing the effect
of CF. As this transition SM is higher in higher clay soils (SMAPVEX12), we notice high sensitivity to CF up to
SM range of 0.15–0.2 V/V.

3.1.3. Surface Roughness (S and L)
In general, significant surface roughness effects are noticed in SMEX02 fields than SMAPVEX12. For similar
surface roughness, brightness temperature shows higher sensitivity to roughness parameters (S and L) on
wet days (SMAPVEX12 DOY: 164, 169 and SMEX02 DOY: 188) than on dry days. Analyzing the sensitivity of
brightness temperature to RMS height ‘‘S’’ and correlation length ‘‘L’’ with SM ranges, resulted in an increas-
ing sensitivity function for S and L with increasing SM. As expected sensitivity indices of RMS height ‘‘S’’ is
higher than ‘‘L.’’ But surface roughness parameters (S and L) show different sensitivity functions to SM and
soil texture Figures 7a–7f. We notice a linear sensitivity function in case of higher clay soils (R2 � 0.97: CF
0.05–0.66, soybean in SMAPVEX12) and a logarithmic function in case of lower clay (R2 � 0.94; CF 0.05–0.38,
corn in SMAPVEX12) best fit the analysis. In case of soybean fields (SMAPVEX12, high clay soil), S overrides
SM and CF sensitivity curves around 0.05–0.1 V/V and 0.25–0.3 V/V, respectively, whereas in case of corn
fields (SMAPVEX12, low clay soil) S overrides SM and CF sensitivity around 0.1–0.15 V/V (Figures 7c and 7d).
Thus, the roughness observed before S overriding CF sensitivity could be accounted due to dielectric

Figure 3. SMEX02 Corn Fields (a) First-Order Sensitivity Si (left) and Total Sensitivity STi (right), (b) Second-Order Sensitivity Sij, and (c) Total
Parameter Interactions for DOY: 178, 182, 186, 188. Sum of sensitivity indices are mentioned on top of bars.
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volume scattering in soils whereas after which roughness effects are contributed mainly due to surface con-
tributions (S and L). With further increase in SM, spatial variability of SM in horizontal direction due to lateral
conductivity starts to dominate. This is clearly noticed with correlation length (L) overriding SM and CF sen-
sitivity at 0.2–0.25 V/V and 0.35–0.4 V/V, respectively, in soybean (SMAPVEX12, high clay soil), whereas in
case of corn (SMAPVEX12, low clay soil) L overrides SM and CF sensitivity around 0.2–0.25 V/V (Figures 7c
and 7d). However, in SMEX02 due to high roughness conditions and low CF range, S and L overrides SM at
all moisture conditions (Figures 7a and 7b). Chauhan [2002] also found that surface roughness gain more
impact in wetter conditions. Our results are also supported by Wigneron et al. [2001], who proposed surface
roughness may be a contribution of dielectric roughness and physical roughness. According to Panciera
et al. [2009] higher roughness conditions are observed in clayey soils than sandy soils due to higher mois-
ture heterogeneity exhibited by clayey soils.

3.1.4. Surface Temperature (TSURF)
Sensitivity of brightness temperature (TB) to surface temperature effects are much less realized in SMAP-
VEX12 fields but shows significant effect on dry days of SMEX02 fields (DOY: 178, 182) (Figures 3a and 4a),
due to wide and higher ranges of TSURF observed in SMEX02. Also, TSURF shows a decreasing sensitivity
function with increasing SM. TSURF does not participate in any second-order interactions with other param-
eters. For any TSURF range, brightness temperature it show higher sensitivity to TSURF at lower SM ranges
and sensitivity gradually decreases with increasing SM.

3.1.5. Vegetation Water Content (VWC)
Sensitivities of VWC exhibits clear spatio-temporal variation, with higher interactions observed on higher
VWC and wet days. Consider DOY: 186, 188 (SMEX02) and DOY: 190 (SMAPVEX12), where increase in VWC
has not resulted in its proportionate increase in TB sensitivity to VWC. Growing canopy will not only attenu-
ate/scatter soil emissions (Ray 1 in Figure 1) but also attenuate/scatter the reflected vegetation emission
(Ray 3 in Figure 1), acting as its own and soil emission attenuator. This explains the phenomenon of reduced
sensitivity to VWC, increasing sensitivity to B parameter and increased interactions with increasing VWC.
Due to wider and higher VWC ranges observed in SMEX02 fields, high first-order sensitivities are observed
in SMEX02 than in SMAPVEX12 (Figures 3–6). The first-order sensitivity of VWC remains similar with

Figure 4. SMEX02 Soybean Fields (a) First-Order Sensitivity Si (left) and Total Sensitivity STi (right), (b) Second-Order Sensitivity Sij, and (c)
Total Parameter Interactions for DOY: 178, 182, 186, 188. Sum of sensitivity indices are mentioned on top of bars.
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observed VWC ranges irrespective of other field conditions, however, with different higher order interac-
tions, e.g., SMEX02 (DOY: 178) and SMAPVEX12 (DOY: 199). A significant contribution from VWC is realized
in case of corn plants on all days of SMEX02 and SMAPVEX12 (DOY: 181–199). Also, an increasing sensitivity
function for VWC at higher SM ranges is observed (Figures 7a, 7e, and 7f). Vegetation shows an exponential
growth in the SMAPVEX12 fields where significant VWC is noticed on last three sampling days of SMAP-
VEX12. The increased sensitivity to VWC for soybean on DOY: 199, when mean (VWC)> 1 kg/m2 is observed,
which otherwise is not noticed on other sampling days of SMAPVEX12.

3.1.6. Vegetation Structure (B)
Corn fields show more sensitivity to B parameter than soybean fields, due to the definite vertical struc-
ture of corn plants (Figure 3) which is otherwise hardly noticed in soybean plants. The B parameter
shows a gradual increase in its sensitivity with growing VWC and increasing SM. These results agree with
Seo et al. [2010], where B parameter shows highest sensitivity in wet soils and VWC> 1 kg/m2. Since,
with growing vegetation there is a progressive change in canopy structure, i.e., length, thickness and
size of leaves, stalks, etc. This changing canopy structure also modifies soil radiation through scattering
and adds its own emissions, resulting in soil and vegetation interactions as discussed below. The first-
order effects are realized for corn on all sampling days (SMEX02) and DOY: 190, 199 (SMAPVEX12). We
clearly notice the interception/scattering of soil radiations by B through (SM, B) for grown corn plants
which otherwise not seen in soybean. Also, an increasing sensitivity function of B with SM is observed
(Figures 7a, 7e, and 7f).

3.1.7. Single Scattering Albedo (x)
Similar to B parameter, brightness temperature shows primarily no sensitivity to albedo in soybean plants
but its influence is realized in structured vegetation such as corn, similar to Chauhan [2002]. Like VWC and
B, albedo also shows increasing sensitivity with growing vegetation. The scattering albedo (x) does not par-
ticipate in any higher order interactions, however, this might not be the case at higher albedo values which
are common in bushy, structured vegetation, and forests. However unlike VWC and B, albedo shows a
decreasing sensitivity with increasing SM. Thus, assuming a constant look-up table for albedo and B under
all SM conditions, VWC, and vegetation types will compromise SM retrieval accuracy. Because B and albedo

Figure 5. SMAPVEX12 Corn fields (a) First-Order Sensitivity Si (left) and Total Sensitivity STi (right), (b) Second-Order Sensitivity Sij, and (c)
Total Parameter Interactions for DOY: 159, 164, 169, 174, 181, 190, 199. Sum of sensitivity indices are mentioned on top of bars.
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(x) show increasing sensitivity with growing vegetation, a combined parameter dependent on VWC can be
developed.

3.2. Second-Order Interactions
SMEX02 fields show more of higher order interactions than SMAPVEX12 fields. In the following discussion,
an overview of total interactions and second-order interactions are presented. In past environmental studies
using GSA, interactions are sufficiently captured by second-order interactions, however, in this study we
notice interactions greater than second order are also present. The total interactions exhibited by the
parameter can be obtained from the difference between its total and first-order measures as discussed
below.

3.2.1. Interactions of Soil Moisture (SM, VWC), (SM, B), (SM, S), and (SM, L)
It is understood that, the upward soil emission contributing to the brightness temperature is interrupted
by vegetation, thus determining the amount of soil radiation passing through canopy. Interactions of
soil parameters with vegetation parameters such as vegetation water content (VWC) and vegetation
structure (B) are reflected through interactions between (SM, VWC) and (SM, B). Due to the definite
structure and significant VWC observed in corn, a consistent (SM, VWC) interactions are seen on all sam-
pling days in corn (SMEX02) and on DOY: 181, 190, 199 (SMAPVEX12), clearly displaying the shielding
effect of grown canopy which are otherwise not observed in early stages of corn growth in SMAPVEX12
and soybean. Apart from VWC, vegetation structure (geometry, orientation, thickness, etc.) also play a
significant role in screening/scattering soil emissions and interception of rainwater, displaying an interac-
tion of (SM, B) on DOY: 186, 188 (SMEX02) and DOY: 199 (SMAPVEX12). An increase in SM on DOY: 186,
188 did not result in increased (SM, VWC) interactions, but produced interactions between surface-
roughness and vegetation as discussed below. The scattering of soil moisture emission by surface
roughness parameters (S and L) can be realized through interactions between (SM, S) and (SM, L). The
scattering of soil radiations by RMS height (S) is realized on all sampling days except on DOY: 178, 182
for corn (SMEX02) due to low SM and high VWC. Further, the interactions between (SM, L) are realized
only on higher SM conditions and smaller L values SMEX02 fields (DOY: 182–188). This is because the
connectivity of soil water flow in horizontal direction starts to influence only at higher SM conditions.

Figure 6. SMAPVEX12 Soybean fields, (a) First-Order Sensitivity Si (left) and Total Sensitivity STi (right), (b) Second-Order Sensitivity Sij, and
(c) Total Parameter Interactions for DOY: 159, 164, 169, 174, 181, 190, 199. Sum of sensitivity indices are mentioned on top of bars.
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The correlation lengths (L) which is the periodicity of soil surface, will then define soil water flow
thereby displaying (SM, L) interactions. However, the consistent high SM in SMAPVEX12 has not resulted
in similar (SM, L) interactions. Thus, there could be a range of SM and above which the (SM, L) interac-
tions are undermined due to higher SM. Whereas the (SM, S) are expected in all conditions due to the
scattering influence of random roughness (S) on soil emissions. This can also be realized through Fig-
ures 7a–7f where increase in SM, resulted in increased sensitivity of brightness temperature to surface
roughness (S and L) parameters increases.

3.2.2. Interactions of Surface Roughness (S, L), (S, VWC), (S, B), and (L, VWC)
The vegetation emission reflected by rough surface is represented by Ray 3 (Figure 1) is captured through
interactions between (S, B), (S, VWC), and (L, VWC). These interactions are noticed only in corn (SMEX02)
and not in soybean (SMEX02), due to prominent vegetation structure and higher VWC observed in corn
plants. However, none of these interactions are observed in SMAPVEX12 fields due to smaller VWC and
milder surface roughness conditions compared to SMEX02 fields. Therefore, we can expect to see higher
interactions between surface roughness and vegetation parameters (higher contribution from Ray 3) in
fields with higher surface roughness, and structured plants with significant VWC. Also, a consistent (S, L)
interaction is realized on all sampling days in SMEX02 and SMAPVEX12 fields emphasizing their underlying
correlation.

Figure 7. First-Order Sensitivities of Parameters (Si) on Y-axis and Soil Moisture (SM) ranges on X-axis. (a) SMEX02 Corn DOY: 178, (b)
SMEX02 Soybean DOY: 178, (c) SMAPVEX12 Corn DOY: 159, (d) SMAPVEX12 Soybean DOY: 159, (e) SMAPVEX12 Corn DOY: 199, and (f)
SMAPVEX12 Soybean DOY: 199.
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3.3. Total Interactions, Linearity, and
Nonlinearity
For additive models, since there are no parame-
ter interactions first-order (Si) and total order
(STi) sensitivity indices are equal (Si 5 STi) and
sum to 1 [Saltellii et al., 2004]. We observe higher
order interactions in higher VWC and SM condi-
tions. In SMAPVEX12 fields, ZRT model is nearly
linear with nonlinearity increasing with growing
canopy, displaying second-order interactions of
�2% seen on all sampling days, and increasing
up to � 4 % at the end of field campaign Fig-
ures 5b and 6b. And, total interactions of �
5% are seen on almost all days but increases
up to �10% on DOY: 199 in SMAPVEX12 fields
(Figures 5c and 6c). In case of SMEX02 fields,
ZRT model is more nonlinear with second-
order interactions increasing from 5 to 10%, in
corn and up to 7% in soybean, with total inter-
actions of �15% because of higher VWC and
roughness conditions. In case of corn fields,
first-order effects are contributed by vegeta-
tion whereas in soybean fields first-order
effects are contributed by roughness condi-
tions, which are otherwise shielded by corn
plants and displayed through second-order
interactions (Figure 3b).

4. Conclusions

GSA method is particularly useful to analyze nonlinear models with higher order interactions. Using GSA for
Zero-Order Radiative Transfer (ZRT) model resulted in primarily four parameters (SM, VWC, S, and L) in
SMEX02 region and one parameter (SM) in SMAPVEX12 region to be sensitive to brightness temperature, with
sensitivities showing a temporal variation. Also, parameter interactions increased with VWC and roughness
conditions. The soil-vegetation interactions are realized through (SM, VWC), (SM, B), (S, VWC), (L, VWC), (S, B),
(SM, L), and (SM, S). A clear distinction between the similar influence of surface roughness and vegetation
parameters are achieved, along with spatio-temporally varying parameter interactions which enhanced our
understanding of ZRT and will improve soil moisture retrievals. Based on our analysis of GSA for ZRT model
under different spatio-temporal conditions, we have proposed a conceptual model Figure 8. Considering the
SMAPVEX12 fields to be water rich environment (due to higher observed SM) and SMEX02 fields to be energy
rich environment (due to lower SM and wide ranges of TSURF), our results indicate that first-order effects of
parameters changes with water and energy rich environments. Particularly, parameter interactions were
observed to be higher and diverse in energy rich environments (SMEX02) than water rich environments
(SMAPVEX12). Even under the similar vegetation effects, DOY: 199 (SMAPVEX12) and DOY: 168 (SMEX02) we
observe reduced parameter interactions in water rich fields (SMAPVEX12) than SMEX02 fields. The conceptual
model in Figure 8 represents the water-rich and energy-rich environments with different parameter signifi-
cance and interactions. The brightness temperature (TB) in energy rich environment is more sensitive to
parameters such as S, L, TSURF, VWC, B, and their interactions, whereas for water-rich environments we tend
to observe TB highly sensitive to SM and low parameter interactions. The transition between these two
environments occurs through exchange of energy and water with either increase or decrease of land-
surface interactions. This analysis is particularly relevant for recently launched Soil Moisture Active Passive
(SMAP) mission for improved theoretical developments in radiative transfer models under highly hetero-
geneous landscapes and different hydro-climates. Accounting for the higher order interactions in the soil
moisture retrieval algorithm will significantly improve accuracy of soil moisture product. Nonetheless this

Figure 8. Proposed conceptual diagram, where interactions observed
in the Energy rich environments are different and higher than those
observed in Water rich environments. Different parameters are repre-
sented by different where parameter’s contribution is represented by
circle size and parameter interaction by the arrow thickness.
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is challenging task since the sensitivity of many parameters are not time stable, but vary with wetness
and vegetation conditions.

Future scope of this work can include developing hydro-climate specific soil moisture retrieval algorithm.
Also the sensitivity of B parameters changes with vegetation water content, thus developing a combined
vegetation parameter is very relevant. This will avoid using constant look up tables for B parameter. This
analysis can also be extended in developing a unified soil moisture map using different satellites (SMOS,
SMAP), sensors (active/passive), and frequencies (L, C, X).

In summary:

1. Attenuation of soil emission by vegetation parameters (VWC, B) can be significant in structured plants
(corn). And, interactions appear to increase with roughness and SM conditions.

2. The effects of B and albedo are not realized in soybean plants but show significant contribution in struc-
tured vegetation such as corn plants. These parameters show increasing sensitivity with increasing VWC
and SM. Thus, assuming a constant value of B under all SM and VWC conditions will affect soil moisture
retrieval accuracy.

3. For similar surface roughness conditions, sensitivity to roughness parameters is higher in wet soils than
dry soils. Because of only skin depth emission in case of moist soils, radiations are more perturbed due to
surface roughness in wet soils than in dry soils.

4. SM and TSURF show a monotonically decreasing sensitivity function, whereas VWC, S, L, and B show a
monotonically increasing sensitivity function with increase in SM. CF sensitivity shows an increasing func-
tion up to the transition SM, after which it drops exponentially with increase in SM. This peak observed at
the transition SM changes with the percentage of clay fraction.

5. Pixels with soil moisture below the transition soil moisture (which is variable with clay content) prove to
show high sensitivity to brightness temperature (TB). This sensitivity decreases exponentially with
increase in soil moisture due to increasing sensitivity of other soil and vegetation parameters. Thus, soil
moisture retrieval accuracy degrades with increasing wetness if effects of soil-vegetation parameters are
not accurately accounted.
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