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Predicting and controlling the concentrations of redox-sensitive elements are primary concerns for environ-
mental remediation of contaminated sites. These predictions are complicated by dynamic flow processes as hy-
drologic variability is a governing control on conservative and reactive chemical concentrations. Subsurface
heterogeneity in the form of layers and lenses further complicates the flow dynamics of the system impacting
chemical concentrations including redox-sensitive elements. In response to these complexities, this study inves-
tigates the role of heterogeneity and hydrologic processes in an effective parameter upscaling scheme from the
column to the landfill scale. We used a Markov chain Monte Carlo (MCMC) algorithm to derive upscaling coeffi-
cients for hydrological and geochemical parameters, which were tested for variations across heterogeneous
systems (layers and lenses) and interaction of flow processes based on the output uncertainty of dominant bio-
geochemical concentrations at the Norman Landfill site, a closed municipal landfill with prevalent organic and
trace metal contamination. The results from MCMC analysis indicated that geochemical upscaling coefficients
based on effective concentration ratios incorporating local heterogeneity across layered and lensed systems pro-
duced better estimates of redox-sensitive biogeochemistry at the field scale. MCMC analysis also suggested that
inclusion of hydrological parameters in the upscaling scheme reduced the output uncertainty of effective mean
geochemical concentrations by orders of magnitude at the Norman Landfill site. This was further confirmed by
posterior density plots of the scaling coefficients that revealed unimodal characteristics when only geochemical
processes were involved, but produced multimodal distributions when hydrological parameters were included.
The multimodality again suggests the effect of heterogeneity and lithologic variability on the distribution of
redox-sensitive elements at the Norman Landfill site.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge about effective hydrologic and geochemical properties at
field scales is necessary in predicting and managing the fate and trans-
port of reactive contaminants from landfill and waste management
sites. However, the transition of biogeochemical processes across scales
is not well understood. Therefore, the challenge is to acquire detailed
, Lawrence Berkeley National
720, USA.
knowledge of key processes at individual scales and identify the
dominant linkages to predict geochemical dynamics from one scale to
the other.

Reactive transport is strongly influenced by hydrological processes
across different spatial scales (Kimball et al., 1994; Vogel and Roth,
2003; Jardine, 2008). Temporal hydrologic variations such as seasonali-
ty and direction of groundwater flow,water table dynamics, and precip-
itation events also strongly influence reactive transport processes
(Prommer et al., 1998; McGuire et al., 2000; Cozzarelli et al., 2011;
Arora et al., 2013). For example, Fendorf et al. (2010) suggested
that the patterns of groundwater recharge and discharge, especially
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groundwater pumping and time since recharge, were important factors
influencing arsenic concentrations in South and Southeast Asia. Further-
more, hydrological parameters or process interactions that are applica-
ble at one scale may not necessarily be applicable to other scales (van
Grinsven and van Riemsdijk, 1992; White and Brantley, 2003). For ex-
ample, variations in hydraulic conductivity, which are known to affect
contaminant transport, have to be evaluated based on the scale of
study (Hunt, 2003; Schulze-Makuch and Cherkauer, 2004). Hydrologic
processes themselves exhibit scale variability (Bloschl and Sivapalan,
1995) and are affected by a number of physical attributes such as topog-
raphy, vegetation, and other characteristics of the porous media (Sharma
et al., 2006; Das et al., 2008; Jana and Mohanty, 2012a). Therefore, it is
crucial to isolate andunderstand the contribution of hydrological process-
es to geochemical concentrations across scales.

Apart from hydrologic variations, understanding the natural vari-
ability of geochemical processes is difficult from the standpoint of
heterogeneity in the subsurface. Structural heterogeneity resulting
from the presence of macropores and fractures leads to preferential
flowmovement and faster pathways for contaminants to reach ground-
water (Mohanty et al., 1998; Jarvis et al., 2007; Arora et al., 2011). Het-
erogeneity in the formof textural interfaces and lithological variations is
known to intensify biogeochemical activity and affect the distribution of
chemical concentrations. In their study, Hansen et al. (2011) clearly
demonstrated that heightened redox activity was observed at small
scale interfaces of a layered soil column as compared to two texturally
homogeneous soil columns. Similarly, Schilling and Jacobson (2012) in-
dicated that variations in nutrient concentrations were closely related
to lithologic variations within the Cedar River floodplain in Iowa. They
demonstrated that water beneath sand-dominated ridges was aerobic,
had higher concentrations of NO3-N, and lower concentrations of
dissolved organic carbon (DOC) as compared to the anaerobic ground-
water beneath shales that had lower NO3-N and higher DOC. While
the influence of physical, chemical, and biological heterogeneities on
reactive transport processes is recognized (Dagan, 1984; Cushman and
Ginn, 1993; Werth et al., 2006; Liu et al., 2014), an upscaling approach
that incorporates the influence of subsurface heterogeneity from fine
(e.g., column) to coarse (e.g., field) scales is lacking.

Upscaling is the process of replacing such heterogeneous systems
with effectivemean properties that capture the key field scale behavior,
such as by matching hydrologic fluxes and geochemistry data from the
field site (Rubin, 2003; Zhu andMohanty, 2002, 2003, 2004; Vereecken
et al., 2007). Most upscaling schemes for soil hydrologic and reactive
transport parameters homogenize the effect of heterogeneity in their
derivation of effective parameter values (Zhu and Mohanty, 2006;
Mohanty and Zhu, 2007; Vereecken et al., 2007; Dentz et al., 2011).
These include approaches such as volume averaging, stochastic averag-
ing, and homogenization, among others (e.g., Gelhar and Axness, 1983;
Dagan, 1984; Whitaker, 1999; Lunati et al., 2002). However, real‐world
applications of solute scaling schemes require that the effect of small-
scale heterogeneity on redox activity and geochemical parameters be
incorporated into these schemes. For example, Onsoy et al. (2005) con-
cluded that themismatch between effectivemean concentrations and ni-
trate observations at the field scale was a result of the heterogeneous flux
conditions that were not accounted for by the mass-balance approach
used in their study. In the same way, Khaleel et al. (2002) indicated that
dispersivity values at the field scale were dependent on geologic forma-
tions, and averaged concentration profiles for flow parallel to bedding
were highly skewed and affected by geologic layering.

Certain upscaling techniques such as themulti-continuum approach
andmoment equations have also been developed to describe heteroge-
neity in porous media (Haggerty and Gorelick, 1995; Oates, 2007;
Neuman and Tartakovsky, 2008; Deng et al., 2010). However, most of
these process-based upscaling approaches suffer from an increasingly
greater number of mechanistic details, while parameter-based upscaling
approaches target only a single or a couple of flow and transport param-
eters like hydraulic conductivity, reactive surface area, reaction rate
parameters, retardation factor, or macrodispersion coefficients (Dai
et al., 2009; Dentz et al., 2011; Soltanian et al., 2015). It is also widely
known that the scale dependence of these parameters is usually a result
of concentration gradients across physical, chemical, or biological hetero-
geneities (Valocchi, 1985; Steefel et al., 2005; Li et al., 2006; Scheibe et al.,
2006; Ritzi et al., 2013). In contrast, the novelty of this study is that it deals
with subsurface heterogeneities by directly employing local measure-
ments of solute concentrations in the upscaling algorithm.

In this study, Bayesianmethods are used to develop an upscaling al-
gorithm that identifies scale-appropriate hydrological and geochemical
parameters to represent the transition of chemical concentrations
across lithological heterogeneities. Because flow and transport in
porous media pose a nonlinear inverse problem and can potentially
lead to non-unique solutions for the unknown parameters (Ginn and
Cushman, 1990; McLaughlin and Townley, 1996), Bayesian methods
have the advantage of treating these hydrologic and geochemical
parameters in a probabilisticmanner. Bayesianmethods, andparticular-
ly Markov chain Monte Carlo (MCMC) techniques, can thus explore
parameter space efficiently and reduce uncertainty associated with pa-
rameter values (Vrugt and Dane, 2005; Vrugt et al., 2008; Smith and
Marshall, 2008). Given that Bayesian methods have the ability to com-
bine prior information with direct observations, these methods have
been increasingly used to upscale soil hydrologic properties and param-
eters (Efendiev et al., 2005; Das et al., 2008; Sams and Saussus, 2011;
Jana and Mohanty, 2012b). However, upscaling reactive transport
parameters or properties using Bayesian methods has been limited at
best (Chen et al., 2009, 2012; Deng et al., 2010). As suggested above,
most of these studies target a single or a few parameters (e.g., sorption
coefficients) pertaining to a dominant reactive transport process
(e.g., mineral dissolution or precipitation reactions), or else suffer
from model uncertainty issues stemming from linking geochemical
concentrations to indirect observations (e.g., petrophysical relationships,
pseudo models). To our knowledge, this is the first study that presents
an integrated upscaling framework that accounts for both hydrological
and geochemical parameters and uses direct fine scale geochemical
datasets to predict effective upscaled concentrations across heteroge-
neous formations using Bayesian methods.

The objectives of this study are to isolate and quantify the influence
of (i) lithologic heterogeneity (lenses, layers) and (ii) hydrological
parameters on effective upscaled geochemical concentrations at the
coarse scale. The remainder of this paper is organized as follows:
Section 2 introduces the integrated upscaling framework featured in
this research and presents a brief description and overview of Bayesian
methods; Section 3 presents the heterogeneous system considered in
this work; Section 4 presents results on two cases: one for validation
and another for application of the upscaling algorithm; Section 5
describes the limitations of this work, and Section 6 offers relevant
conclusions obtained from this work and its applicability beyond
the current study.

2. Approach

In this section, the development of an integrated upscaling algorithm
using Bayesian methods is described. Fig. 1 illustrates the framework for
developing such an algorithm that examines the scale dependency of re-
active transport processes as a result of (i) subsurface heterogeneity and
(ii) hydrological parameters.

For verifying the effect of heterogeneity on upscaling coefficients,
two different mathematical structures, i.e. with and without heteroge-
neous formulations, are proposed. For verifying the effect of hydrologic
processes, two different sets of input parameters, i.e. with and without
upscaling soilwater retention parameters, are considered. As Fig. 1 illus-
trates, the upscaling algorithm requires the selection of the mathemat-
ical structure of themodel (with or without considering heterogeneous
formulations). Next, prior probabilities of parameters are established
based on the choice of the parameter set (with or without upscaling



Fig. 1. Schematic of the upscaling algorithm for testing the heterogeneity hypothesis (Case A) and integrated modeling framework (Case B).
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soil water retention parameters). Then, likelihood probabilities are gen-
erated depending on the choice of the mathematical model and the pa-
rameter set. The upscaling algorithm established is thus able to produce
full probability distributions for the selected parameters.

The heterogeneity formulations are based on the conceptual model
framework of Arora (2012) and Arora et al. (2012a). This conceptual
model describes distinct geochemical properties in close proximity to
spatial heterogeneities and has been validated at the column scale for
both infiltration and drainage scenarios. Fig. 2 demonstrates the appli-
cation of this model to an experimental soil columnwherein a low per-
meability clay lens is embeddedwithin a high permeability sandmatrix
(Arora, 2012; Arora et al., in review). Thus, two facies (r1 and r2) coin-
cidentwith the lithological features (sandmatrix and clay lens) are able
to represent distinct zones and depth-dependent distributions of sulfate
concentrations (associated with the dominant redox processes). A sim-
ilar approach considering reactive facies distribution has been used to
model reactive transport processes at the Savannah River site (Sassen
et al., 2012) aswell as to capture the chemical heterogeneity of sorption
factors and subsequently, to upscale retardation factors (Deng et al.,
2013). In this study, a depth-wise model that preserves the spatial
representation of the conceptual model shown in Fig. 2 is considered
to include the influence of lithological heterogeneity on chemical
concentrations in the scaling scheme. Therefore, the effective mean
chemical concentrations bUN at the coarse scale as a function of depth
d1 for the rth facie are given by (modified from (Evans, 2003)):

Ucoarse;d1r

D E
¼

Ufine;dr−Ucoarse;d1r

� �
Uτ

fine;dU
γ
coarse;d1r R

1−τ−γ ð1Þ

where the subscripts coarse and fine represent the corresponding scale
of observation/prediction, d1 and d denote the depth at the coarse and
fine scale, respectively, U is the chemical concentration at the fine
scale of observation, Ū is the average chemical concentration at the
coarse scale of observation, r belongs to the set of facies as defined by
lithological characteristics (or the conceptual framework), and τ and γ
are statistical scaling coefficients. The number of depth points d is
chosen based on measurements at the fine scale. An equal number of
d1 points are assumed at the coarse scale such that they are equi-
spaced in the rth facie. Both τ and γ are restrained such that τ + γ b 1
and the correct relation between variables across scales is preserved.
For homogeneous soil properties, τ has a value close to 1 (~0.99) and
deviates from this value with addition of heterogeneity. This study
thus found that both τ and γ are representative of the heterogeneous



Fig. 2. Conceptual framework showing the effect of lithological heterogeneity on sulfate
concentration in a column setup with facies r1 and r2 (Modified from Arora, 2012). r1
represents the sand matrix and r2 represents the clay lens.

431B. Arora et al. / Science of the Total Environment 512–513 (2015) 428–443
properties of the porous media and signify the non-linearity in geo-
chemical concentrations resulting from this heterogeneity across scales.
R is a characteristic overall ratio, which considering the heterogeneous
formulation is given by:

R ¼ Ufine;dr

Ucoarse;d1r
ð2Þ

and is 1 otherwise. The choice of the geochemical variable U is site spe-
cific, and is dependent on the dominant redox processes (e.g., sulfate or
iron reduction at the Norman Landfill site).

2.1. Description of Bayesian Methods

As mentioned above, this study focuses on developing an integrated
hydrologic and geochemical parameter upscaling algorithm, using
Bayesian methods, to estimate effective mean concentrations across a
heterogeneous formation. Bayesianmethods provide a statistical frame-
work for obtaining an improved estimate of parameter distributions by
combining preexisting (prior) knowledge with what is known about
those parameters through observed data and model output. Fig. 1 illus-
trates the methodology of the Bayesian framework, where Case A is
used for verifying the hypothesis regarding the heterogeneity formula-
tions, and Case B is used for testing the inclusion of hydrological param-
eters in the upscaling scheme. A scaling parameter β is used to account
for scale disparity in hydrological parameters and as described above,
two such parameters (τ and γ) are used for upscaling geochemical pa-
rameters. A non-informative prior is assigned to these parameters
(e.g., β ~ U[0,1]) so that no preference is given to any specific parameter
domain. Here, the likelihood is a function of the time series of observa-
tions of redox-sensitive elements at the coarse scale as a function of
depth. Therefore, the general relationship applied for upscaling geo-
chemical parameters is given by Eqs. (1) and (2), and for soil hydrologic
parameters is given by Das et al. (2008):

θs;coarse
D E

¼ θβs;fine ð3Þ

where bθs,coarseN is the effective value of the saturated water content at
the coarse scale and θs,fine is the saturated water content at the fine
scale. The scaling coefficient β has a value of 1 for homogeneous soil
systems, and less than 1 for heterogeneous systems such that the effect
of variations in soil type and lithology is accounted for. Eq. (3) is also ap-
plied to other soil water retention parameters.

The resulting upscaling algorithm is able to provide the conditional
posterior distribution of parameters using the Bayes' framework:

p ΘjDð Þ ¼ f DjΘð Þπ Θð Þ
π Dð Þ ð4Þ

where D is the observed data at the coarse scale, f(D|Θ) is the likelihood
function summarizing the model for the data given the parameters,
π(D) is a normalizing constant, π(Θ) is the prior joint probability for
the upscaled parameters, and Θ is the parameter set. The input param-
eter set is defined as Θ1 = {τ, γ} when only geochemical parameters
are considered, and as Θ2 = {θβr,fine, θβs,fine, αβ

fine, nβfine, Kβ
s,fine, τ, γ}

when hydrological parameters are also included in the upscaling algo-
rithm.Here, θr is the residualwater content, Ks is the saturated hydraulic
conductivity [LT−1], α [L−1] and n [−] are empirical parameters deter-
mining the shape of the hydraulic conductivity functions (van
Genuchten, 1980), and other symbols are as defined previously. Once
the conditional posterior probability is known, the marginal posterior
distribution p(.|D) for any upscaled parameter (e.g., saturated soil
water content, θβs,fine) is given by integrating over the set of all other
geochemical and soil hydrologic parameters (θ2, θ3,…., θtot) contained
in the set Θ apart from θ1 (=θβs,fine) such that:

p θs;coarse
D E���D� �

¼

Z Z Z
θ2 ; ::;θtot

f DjΘð Þ � π Θð Þdθ2 ::dθtot
π Dð Þ : ð5Þ

The main complication in solving Eq. (5) is the intractability of
the multi-dimensional integration and the computation of π(D). A
possible solution is to use any MCMC algorithm that generates a
sequence of parameter sets, {Θ(0), Θ(1),.., Θ(t)} that converge to
the stationary target distribution for large number of iterations t
(Gelman et al., 1995).

The adaptive MCMC scheme of Harrio et al. (2001), which satisfies
our need for resolving a large number of hydrological and geochemical
parameters, is used in this study. Harrio et al. (2001) chose a multivar-
iate normal distribution as the proposal density, and resolved correla-
tion among parameters by employing a fixed covariance matrix ∑ for
a finite number of initial iterations (t0), and then updating∑ as a func-
tion of all the previous iterations:

∑i ¼ ∑0; i≤t0
skCov Θ1;Θ2; ::::;Θiter−1ð Þ þ skεIk; iNt0

�
ð6Þ

where i is the current iteration,∑0 is the initial covariancematrix based
on prior information, k is the dimension of Θ, is a small parameter cho-
sen to ensure that∑i does not become singular, Ik is the k-dimensional
identity matrix, and sk is a scaling parameter that depends only on k. A
basic choice for the scaling parameter can be sk=(2.4)2 / k for Gaussian
targets and Gaussian proposals (Gelman et al., 1995). To decrease the
computational cost, Harrio et al. (2001) also described the method to
obtain ∑ at the next iteration (i + 1) as:

∑iþ1 ¼ i−1
i

∑i þ
sk
i

iΘi−1Θ
T
i − iþ 1ð ÞΘiΘ

T
i þ εIk

� �
: ð7Þ

The AMCMC algorithm used in this study can be summarized as
follows:

1. Choose a starting point of the candidate vector, Θ(i) = Θ(0) with a
covariance matrix ∑i = ∑0.

2. Draw a candidate vector Θ(i + 1) from the previous vector Θ(i)
based on the proposal density q(Θ(i + 1)|Θ(i)) ~ N(Θ(i),∑i),
where Θ(i) and∑i define the current state of the chain.∑i is calcu-
lated based on the iteration i using Eq. (6).
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3. If q(Θ(i+1)) / q(Θ(i))≥ 1, accept the new candidate vectorΘ(i+1),
else draw a random number r from a uniform distribution U[0,1]. If
r b q(Θ(i + 1)) / q(Θ(i)), accept Θ(i + 1), else remain at the current
position Θ(i).

4. Iterate steps 2 and 3 for i = 1, 2,……., t.

The characteristic feature of this adaptive MCMC algorithm is that it
updates all elements ofΘ simultaneously and reduces computation time
(Atchadé and Rosenthal, 2005; Arora et al., 2012b).

2.2. Implementation of Bayesian methods

There are certain well-known implementation issues associated
with Bayesianmethods, such as determining the number of sufficient it-
erations, and the rate of convergence, among others (Cowles and Carlin,
1996; Brooks and Roberts, 1998). In this study, a variety of graphical and
quantitative techniques are used to diagnose the convergence of MCMC
chains. The most frequently used graphical technique involves examin-
ing trace plots of the likelihood sampled by theMCMC chain. Apart from
Fig. 3.Map showing i) the location of the Norman Landfill site (Breit et al., 2005) and the lithol
Scholl et al., 1999),where the rectangles represent the upscaled domain for this study, and ii) a s
2011; Hansen et al., submitted for publication).
examining trace plots and analyzing posterior means, variances and
standard errors, a quantitative diagnostic known as the Geweke z
score is used in this study (Geweke, 1992). The Geweke test splits the
MCMC chain into two “windows”: the first window contains the begin-
ning 20% of the chain, and the second contains the last 50% of the chain.
If the MCMC chain converges to a stationary distribution, the means of
the two windows are equal and the Geweke test statistic or the chi-
squared marginal significance for the two means yields a value within
(−2,2). If the Geweke chi-squared estimate does not lie within this
95% band, it indicates autocorrelation in the chain and the need to run
more iterations to reach a stationary target distribution (Woodard,
2007).

3. Case study

In this section, we describe the coarse and fine scale datasets from
the Norman Landfill site and experimental soil columns used to illus-
trate the upscaling methodology and understand the limitations of
this approach.
ogical heterogeneity encountered across different well locations at the site (Modified from
chematic of the layered and lensed columnswith instrumentation (Modified fromHansen,



Fig. 4. Observed and predicted effective concentrations (mg/L) for i) infiltration and ii) drainage experiments of the lensed column.
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3.1. Site description

The field scale data for verifying the upscaling algorithm were ob-
tained from the Norman Landfill site. The Norman Landfill is a closed
municipal landfill that operated for 63 years in the city of Norman, Okla-
homa (Fig. 3i). The site sits on permeable Canadian River alluvium that
is about 10 to 15 m thick and overlies a low-permeability shale and
mudstone confining unit known as the Hennessey Group. The aquifer
material is predominantly sand and silty sand with intermittent mud
layers and clay lenses (Scholl and Christenson, 1998). Near the landfill,
the groundwater is shallow (about 2 m deep from the land surface)
(Scholl and Christenson, 1998).
Table 1
Root mean square error (RMSE) between two sets of observations and predictions of the lense

RMSE considering collocated probe measurements NO3
− (infiltration)

Cl− (infiltration)
NO3

− (drainage)
SO4

2− (drainage)
RMSE considering fraction collector measurements NO3

− (infiltration)
Cl− (infiltration)
NO3

− (drainage)
SO4

2− (drainage)
The Norman Landfill has been designated as a U.S. Geological Survey
research site and active investigations have been conducted on its biogeo-
chemistry since 1995. Several studies have indicated that sulfate reduc-
tion, iron reduction, and methanogenesis are important biogeochemical
processes at the site (Cozzarelli et al., 2000; Eganhouse et al., 2001;
Grossman et al., 2002). In a subsequent study analyzing 3-year data
from an abandoned Canadian River channel at the site (also known as
“the slough”), Báez-Cazull et al. (2008) reported that seasonal rainfall pat-
terns were dominant factors in controlling iron and sulfate reduction.
Cozzarelli et al. (2011) confirmed that chemical concentrations in the
plume boundaries are affected by hydrologic processes at various time
scales. Their analysis further revealed the spatial variability in chemical
d column.

RMSE considering upscaled
predictions using a single
effective value

RMSE considering upscaled
predictions using the
heterogeneity formulation

2.57 5.50
5.55 3.60

104.88 88.88
230.22 189.74

1.76 2.74
0.28 0.00
2.28 0.00

281.07 238.75



Table 2
Rainwater composition from standards prepared by theNational Bureau of
Standards (SRM 2694) matching rainfall chemistry at the Norman Landfill
site.

Constituent type Concentration (mg/L)

pH 4.3
Ca 0.014
Cl 0.24
K 0.052
Mg 0.024
Na 0.205
SO4

2− 2.69
F 0.054
NO3

− 0.501
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concentrations across the leachate plume. They concluded that the upper
boundary of the leachate plume is an active redox locationwhile the cen-
ter of the plume is depleted in sulfate and has low oxidation capacity.
Thus, the Norman Landfill provides an opportunity to develop and verify
our upscaling algorithm that incorporates temporal hydrologic variability
and spatial heterogeneity within the site.
Fig. 5.Uncertainty in estimating effective nitrate and bromide concentrations (mg/L) at the IC 5
ratios i) without and ii) with the heterogeneity formulation.
3.1.1. Field scale measurements
We tested the performance of the upscaled parameters using select-

ed wells at the Norman Landfill that have vertical (lithological) hetero-
geneity similar to the experimental soil columns (Fig. 3). Twomultilevel
wells IC 36 and IC 54 located on a transect parallel to groundwater flow
were employed for verifying the integratedMCMC algorithmat this site.
Fig. 3i illustrates the geologic map of the Norman Landfill site including
the location of these wells with intermittent mud layers. The rectangles
in Fig. 3i correspond to the domain matching with the soil columns
employed for the upscaling algorithm. A detailed description of the
soil columns is described in Section 3.2 and a discussion on the limita-
tions of reproducing this vertical heterogeneity is provided in Section 5.

Data from both wells included hydraulic head, specific conduc-
tance, δ2H, chloride, sulfate, nitrate, and non-volatile dissolved or-
ganic carbon (NVDOC). Specific conductance was measured using a
portable meter, anions were analyzed using an ion chromatograph,
NVDOC concentrations were determined following the method of
Qian and Mopper (1996), and isotopic analyses were done by equil-
ibration with gaseous hydrogen for δ2H. Further details concerning
the chemical methods are provided elsewhere (Scholl et al., 2006;
Cozzarelli et al., 2011).
4 well from a drainage experiment of the lensed soil columnwith geochemical parameter



Table 3
Initial parameter values and uncertainty range of soil hydraulic parameters used in the
MCMC simulations.

Soil hydraulic parameters Initial values Initial uncertainty range

Sand θr (−) 0.027 Fixeda

θs (−) 0.321 0.36–0.42
α (cm−1) 3.18 0–0.14
n (−) 1.60 1.1–2.9
Ks (cm·min−1) 0.636 1.85–37
l (−) 0.50 Fixedb

Loam θr (−) 0.015 Fixeda

θs (−) 0.385 0.35–0.41
α (cm−1) 2.02 0–0.14
n (−) 1.86 1.38–2.22
Ks (cm·min−1) 0.141 0.003–5.53
l (−) 0.50 Fixedb

a To reduce the number of fitting parameters, some parameters were fixed based
on optimal HYDRUS simulation.

b Tortuosity parameter was fixed at 0.5 (Mualem, 1976).

Fig. 6. Uncertainty in estimating effective sulfate and chloride concentrations (mg/L) at the IC 54 well from an infiltration experiment of the lensed soil column with geochemical parameter
ratios i) without and ii) with hydrological parameters in the upscaling scheme.
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3.2. Soil column setup

Two experimental soil columns were constructed to mimic the
spatial heterogeneity observed at the Norman Landfill site: a layered
column and a lensed column (Fig. 3ii) (Hansen, 2011; Hansen et al.,
submitted for publication). The soil for both columns was collected
from the Norman Landfill site. Two soil types were collected from the
site: alluvial, fine-grained sand from the banks of the Canadian River
and organic-rich loam from the slough. As suggested above, the slough
is an adjacent abandoned river channel that was intermittently exposed
to landfill leachate (Becker, 2002). The soil was air-dried, ground, and
repacked using a piston compactor to attain a dry bulk density of
1.4 mg/m3 for the sand and 1.0 mg/m3 for the loam soil. The sand-over-
loam layered soil column was 40 cm in length and 15 cm in diameter
(Fig. 3ii). It had 18 cm of sand over 22 cm of loam. The lensed column
had two horizontally offset lenses of loam within a matrix of sand. The
lensed soil column was 60 cm in length and 15 cm in diameter (Fig. 3ii).

The experimental setup was such that a rainfall simulator with a
matching diameter disc (15 cm) was used for introducing rainwater to
the columns (Fig. 3ii). Hence, a flux-type top boundary condition was
used. The bottom boundary was open to atmosphere (free drainage
condition). A fraction collector was used intermittently to collect sam-
ples from the bottom of the soil columns.
3.2.1. Column scale measurements
Hydrological and geochemical dataweremonitored using collocated

probes installed at various depths within the columns (Fig. 3ii). In
particular, tensiometer and time-domain reflectometry (TDR) probes



Table 4
Geweke convergence statistic for MCMC chains using the integrated
upscaling framework.

Scaling coefficient Geweke z score

τ 1.21
γ 1.97
β 1.80
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were used tomonitor pressure head andwater content profiles, respec-
tively. Lysimeters with amber vials were used to collect low volume
porewater (less than 7 ml) for geochemical analyses. The sampled
porewater was used to analyze pH, alkalinity, major anions (Cl−, Br−,
SO4

2−, and NO3
−) and cations (Ca2+, K+, Na+, and NH4

+). In addition, re-
duced species of iron and sulfur, and redox potential (Eh) were quanti-
fied voltametrically using a hanging drop mercury electrode. Further
information on the experimental setup and analyses can be obtained
elsewhere (Hansen et al., 2011, submitted for publication).
4. Results and discussion

We illustrate the power and applicability of the developed upscaling
algorithm by means of two different fine to coarse scale datasets. The
Fig. 7. Uncertainty in estimating effective sulfate and ferrous iron concentrations (mg/L) at th
parameter ratios i) without and ii) with the heterogeneity formulation.
first case verified and tested the developed algorithm by upscaling geo-
chemical concentrations from point to column scale. In this case, point
scale data measured in one of the lenses were upscaled to obtain col-
umn scale data encompassing the heterogeneity around the other
lens. The second case explored the applicability of theMCMC algorithm
in upscaling lensed column data to the IC 54 well and layered column
data to the IC 36 well (see Fig. 3). For both the layered and lensed
columns, the upscaling algorithm was used to understand the effect of
heterogeneity and inclusion of hydrologic parameters on effective geo-
chemical concentrations at the Norman Landfill site.
4.1. Verification

The upscaling algorithm was tested on two criteria: (i) to check its
applicability from any fine scalemeasurement (e.g., point) to the coarse
scale (e.g., column) and (ii) to confirm the choice of the heterogeneity
formulation that preserves the spatial representation of dominant
redox processes. For the first criterion, effective geochemical concentra-
tions obtained from the upscaling algorithm were validated on the
lensed column by upscaling point scale observations of sulfate, nitrate,
and chloride from one lens to the other lens, and comparing these
upscaled values with the column scale data. For the second criterion,
the upscaling algorithm was again tested on the lensed column by
e IC 36 well from an infiltration experiment of the layered soil column with geochemical
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upscaling these concentrations from the point to the column scale.
However, for this criterion, a single effective concentration bUcoarseN

was also calculated by weighting over depth for all facies:

Ucoarseh i ¼
X
r

X
d1

Ufine;dr−Ucoarse;d1r

� �
Uτ

fine;dU
γ
coarse;d1r R

1−τ−γ
ð8Þ
Fig. 8. Uncertainty in estimating effective sulfate and bromide concentrations (mg/L) at the IC 3
ratios i) without and ii) with the heterogeneity formulation, and iii) in combination with hydr
while the depth wise geochemical concentrations were obtained using
the heterogeneity formulation (Eqs. (1) and (2)). If the geochemical pa-
rameters are truly independent of the heterogeneity formulation, then a
single effective concentration obtained using Eq. (8)would be represen-
tative of geochemical concentrations around the lensed heterogeneity.

Fig. 4 illustrates the results of upscaling point scale observations of
nitrate and chloride for an infiltration experiment, and nitrate and
6well from a drainage experiment of the layered soil columnwith geochemical parameter
ological parameters.
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sulfate for a drainage experiment of the lensed column. Two sets of obser-
vations were used for verifying the upscaling algorithm: (i) collocated
probe measurements representing point scale data (squares) and (ii)
fraction collector measurements representing column scale data (star).
Fig. 4 thus displays two sets of observations –— squares representing ob-
served geochemical concentrations around the lower lens of the column
and star representing observed data from the fraction collector; and two
sets of upscaling algorithmpredictions –—a dashed line representing pre-
dicted concentrations obtained fromupscaling of data using a single effec-
tive value from Eq. (8) and a solid line representing predictions with the
heterogeneity formulation using Eqs. (1) and (2). First, comparing the
prediction of the upscaling algorithms to collocated probemeasurements
(squares) indicates that the distribution and both the increasing and de-
creasing trends of nitrate, chloride, and sulfate around the lower lens
are better described by the heterogeneity formulation (solid line) as com-
pared to a single effective value prediction (dashed line). Second, compar-
ing the prediction of the upscaling algorithms to fraction collector
measurements (star) indicates that the heterogeneity formulation (solid
line) consistently reproduces these column scale measurements as com-
pared to a single effective value prediction (dashed line).

These comparisons were further quantified using the root mean
squares error. Table 1 illustrates the root mean square error (RMSE)
between the two sets of upscaling algorithm predictions and the two
sets of geochemical observations. The single effective concentration
model displays a lower RMSE only in nitrate concentration for the infil-
tration experiment of the lensed column. A consistently lower RMSE ob-
tained using the heterogeneity formulation for all other concentrations
confirms the choice of the proposed upscaling algorithm in preserving
Fig. 9. Parameter trace plots and posterior density plots of geochemical scaling coefficients i) w
soil column.
the trendof the local depth variations at the point scale and reproducing
the column scale measurements as compared to a single effective value
(Table 1). Thus, a satisfactory match of the effective geochemical
concentrations to the column data confirms the applicability of this
upscaling algorithm from fine to coarse scales.

4.2. Upscaling from the lensed soil column to the IC 54 well profile

The approach described above was further applied to upscale domi-
nant redox concentrations from the lensed heterogeneity at the column
scale to a similar vertical heterogeneity at the IC 54 well. MCMC itera-
tionswere run for testing each hypothesis, i.e. the heterogeneity formu-
lation and the inclusion of hydrological parameters in the upscaling
algorithm. It is worthwhile to mention that to extract the effect of hy-
drologic variability on the upscaling scheme, infiltration and drainage
scenarios at the landfill site were separated using a wavelet analysis
study. Arora et al. (2013) have specifically identified the influence of in-
filtration and drainage events on conservative indicator and reactive
concentrations for the Norman Landfill site on a temporal scale. Thus,
observations for infiltration and drainage at the field scale correspond
to the monthly data for May and September, respectively. Efforts were
also made to ensure that the rainwater composition used for the in-
filtration experiments at the column scale matched the rainfall chemis-
try at the landfill site (Table 2).

Figs. 5 and 6 show the results of the MCMC simulations and the
effective upscaled geochemical concentrations for the IC 54 well. Fig. 5
indicates that a reasonable fit is achieved for a drainage event when
the heterogeneity formulation is applied for both nitrate and bromide
ithout and ii) with the heterogeneity formulation for a drainage experiment of the layered



Fig. 10. Parameter trace plots and posterior density plots of geochemical scaling coefficients i) without and ii) with the heterogeneity formulation for an infiltration experiment of the
layered soil column.
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concentrations, even though the geochemical scaling coefficients are
derived using sulfate (the dominant biogeochemical process as de-
scribed in Section 2). The results indicate that the prediction accuracy
has significantly improved as predicted nitrate concentrations lie be-
tween 0 and 0.05 mg/L using the heterogeneity formulation as opposed
to between 0 and 6000 mg/L without the heterogeneity formulation,
while observations lie between 0.2 and 0.3 mg/L. In particular, RMSE
Fig. 11. Posterior density plots of the hydrologic scaling coefficient using the integrated upsca
decreased four orders of magnitude for nitrate concentrations when
the heterogeneity formulation was used. Similarly, RMSE for bromide
concentrations decreased two orders of magnitude when the heteroge-
neity formulation was used for upscaling.

The integrated upscaling algorithm was further tested by including
soil hydrologic parameters in the upscaling scheme. Fig. 6 emphasizes
the role of hydrological parameters in improving the predictions of
ling framework for i) infiltration and ii) drainage experiments of the layered soil column.



Table 5
Prior and posterior covariance matrix for a drainage experiment of the lensed column.

Covariance matrix Soil hydraulic parameters

θr θs α n Ks

Priora θr 1
θs −0.07 1
α −0.19 −0.55 1
n −0.42 0.42 −0.40 1
Ks 0.0 0.04 −0.03 0.03 1

Posterior θr 1
θs 0.14 1
α 0.40 −0.47 1
n −0.57 0.25 0.44 1
Ks −0.23 0.27 −0.27 −0.57 1

a The initial covariance structure is obtained from previous experience with the model
for this data (Vrugt et al., 2003; Arora et al., 2012b).
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geochemical concentrations at the field scale during an infiltration
event. Table 3 summarizes the initial soil hydrologic parameter values
and their uncertainty ranges employed for the MCMC simulations. The
initial values for soil water retention parameters were either obtained
from laboratory measurements or inversely estimated using HYDRUS-
1D (Hansen et al., 2011). The initial uncertainty range included here-
in was based on the UNSODA database for sand and loam soil types
Fig. 12. Posterior density plots of the geochemical scaling coefficients using i) nitrate and ii) iron
layered soil column.
(Nemes et al., 1999, 2001). A normal distribution was assigned as a
prior to soil hydrologic parameters based on previous experiences with
upscaling using Bayesian methods (Das et al., 2008). Fig. 6 indicates that
the improvement obtained in conservative indicator concentrations
(i.e., chloride) ismuch larger than that obtained in reactive concentrations
(i.e., sulfate) when hydrological parameters are included in the upscaling
scheme. This is also evident from the RMSE values obtained for sulfate
(=427.85) as compared to chloride concentrations (=205.77). Although
RMSE values (calculated using average MCMC predictions) are large,
Fig. 6 clearly demonstrates that almost all predictions of sulfate and chlo-
ride are included within the 95% uncertainty bounds when hydrological
parameters are included in the upscaling algorithm.

For the scaling coefficients, the convergence of MCMC chains to the
true posterior density was assessed using the Geweke z statistic apart
from using the trace plots. For the integrated upscaling framework,
Table 4 lists the Geweke z score for the scaling coefficients. Given that
the z scores lie between −2 and 2, it confirms the convergence of all
scaling coefficients using the AMCMC algorithm.

4.3. Upscaling from the layered soil column to the IC 36 well profile

The MCMC algorithm was also used to upscale the layered column
data to the IC 36well. Asmentioned earlier, the lithological heterogene-
ity between the IC 36 well and the layered column mimic each other
concentrations in the integrated upscaling framework for an infiltration experiment of the
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closely, and the infiltrating water chemistry used for column scale
experiments is similar to the observed rainfall at the landfill site
(Table 2). Fig. 7 compares the effective sulfate and ferrous iron con-
centrations obtained as a function of depth at the IC 36 well with
(Eqs. (1) and (2)) and without the heterogeneity formulations
(Eq. (1), R = 1) for an infiltration scenario. Fig. 7 demonstrates that
the predictions of sulfate are included within the 95% uncertainty
bounds when the heterogeneity formulation was used in the upscaling
algorithm. The predictions of ferrous iron are also significantly im-
proved with the heterogeneity formulation even though the geo-
chemical scaling coefficients are derived by considering sulfate as the
dominant redox process. RMSE values also show two orders of magni-
tude improvement in predicting sulfate concentrations and an order
of magnitude improvement in predicting ferrous iron concentrations
using the heterogeneity formulation.

To further evaluate the integrated upscaling approach, the effective
sulfate and bromide concentrations were compared without (Fig. 8i)
and with the heterogeneity formulation (Fig. 8ii), as well as without
(Fig. 8i, ii) and with the upscaling of hydrological parameters (Fig. 8iii)
for a drainage scenario. The results from the MCMC iterations indicate
that a significant improvement is observed in the predictions of the reac-
tive component (SO4

2−) using the integrated upscaling approach, while
orders of magnitude improvement is obtained for the tracer component
(Br−), as can be seen in the transition from Fig. 8i to iii. Comparatively,
an order of magnitude improvement in sulfate concentrations is not ob-
tained because the geochemical scaling coefficients are already based on
sulfate. This is also evident in RMSE values obtained without and with
the heterogeneity formulation, as well as with the inclusion of hydrolog-
ical parameters in the upscaling scheme. A discussion of possible reasons
for this disparity in improvements in conservative and redox-sensitive el-
ements is provided in Section 5.

A key issue in successfully implementing theMCMC algorithm is the
choice of the burn-in period and thinning of the chain. Burn-in length is
the initial number of iterations of the MCMC chain that need to be
discarded before reaching the stationary distribution (Gelman et al.,
1995). For this study, each MCMC chain was run for 10,000 iterations,
and the initial 1000 iterations were discarded as the burn-in length.
Figs. 9 and 10 show the trace plots with 10,000 iterations and the poste-
rior distributions of the geochemical scaling coefficients (τ and γ) using
the AMCMC technique for drainage and infiltration experiments of the
layered soil column, respectively. The posterior density plots of τ and
γ with and without the heterogeneity formulation in Figs. 9 and 10
were realized after discarding the burn-in length and thinning of the
MCMC chain.

For both infiltration and drainage events, the trace plots of Figs. 9
and 10 indicate good mixing of the chain as the AMCMC iterates seem
to traverse the entire parameter distribution to yield good estimates of
the geochemical scaling parameters. It can be seen that the sequence
of draws converges quickly to the true target density, within 10,000 it-
erations, using the AMCMC technique with 25–28% acceptance ratio.
Note that the posterior density plots for both τ and γ portray skewed
distributions without the heterogeneity formulation (Figs. 9i and 10i),
and are strongly correlated to each other as τ = 1 − γ − e (where e
is a small number, less than 0.01, for both infiltration and drainage sce-
narios). Themeans of the geochemical scaling coefficients are also quite
similar for infiltration (τ = 0.9959 and γ = 0.0020) and drainage sce-
narios (τ = 0.9952 and γ = 0.0040) when the heterogeneity formula-
tion is not considered. This clearly indicates that the geochemical
scaling coefficients are unable to reproduce the behavior of hydrologic
events (infiltration, drainage, etc.) and distribution of chemicals around
the heterogeneity through this formulation, and therefore exhibit a spu-
rious correlation. On the other hand, this behavior is not observedwhen
the heterogeneity formulation is considered and the geochemical
scaling coefficients are normally distributed and not correlated as the
relationship described above. In fact, the means and the correlation
structure between τ and γ are different for the infiltration and drainage
scenarios as indicated by their different ranges and density plots when
the heterogeneity formulation is considered (Figs. 9ii and 10ii).

Fig. 11 demonstrates that the posterior density distribution of the
hydrologic scaling coefficient (β) is multimodal for both infiltration
and drainage events as compared to the unimodal nature of the posteri-
or distributions for both geochemical scaling coefficients (Figs. 9 and
10). The multimodality can result from the inherent structure of the
prior, such as the use of a multivariate normal prior applied in this
study (Escobar andWest, 1995). However, several studies have indicat-
ed that these modes in the posterior distribution are related to the
different domains or layers of a soil system. For example, Arora et al.
(2012b) obtained different modes for soil hydraulic parameters within
the same parametric distribution in their analysis of soil columns with
different macropore distributions. Similarly, de Rooij et al. (2004) sug-
gested that the different modes of soil hydrologic parameters obtained
in their study were reflective of the different soil depths and retention
functions of the plow layer and the subsoil. For our study, the posterior
distribution of β is again suggestive of the effect of layering and hetero-
geneity, especially the different retention and hydraulic conductivity
functions of the sand and loam soil types.

4.4. Effect of parameter correlation on upscaling

Table 5 summarizes the prior and posterior correlation structure of
soil hydrologic parameters for a drainage experiment of the lensed
column using the AMCMC algorithm. The results presented in Table 5 il-
lustrate that we end upwith different correlation coefficients for all pa-
rameters. This result is also valid for all parameters of the layered
column (not shown here). The difference in initial and posterior covari-
ance matrices could be a result of the adaptive nature of the MCMC
algorithm. However, the posterior correlation coefficients are less than
0.6 for all parameters suggesting that the interaction among parameters
is not restricting us from obtaining a unique parameter set for the
upscaling coefficients. In fact, by employing the AMCMC algorithm
that updates the parameter correlation simultaneously, we have
strengthened the upscaling framework used in this study.

5. Limitations of the study

Despite the multi-scale verification and advanced stochastic tech-
niques used in this study, there are certain limitations to our approach.
First, this study does not mimic the thickness, lateral positions, or the
interaction among multiple heterogeneous structures observed at the
landfill site in the constructed soil columns. Thus, we are unable to eval-
uate the effect this has on the upscaled hydrologic and geochemical co-
efficients. Several studies have shown that upscaled parameters are
affected by the geological characteristics and arrangement of lithologic
units in the subsurface system (Khaleel et al., 2002; Onsoy et al., 2005;
Deng, 2009). Although a complete representation of spatial heterogene-
ity will definitely improve the upscaling framework and predictions of
conservative and reactive concentrations at the field scale, such a de-
tailed analysis is beyond the scope of the current study.

Second, the geochemical scaling coefficients used for obtaining the
conservative and reactive chemical concentrations at the field scale
are based on the dominant biogeochemical processes. For the case of
the Norman Landfill site, we used sulfate reduction as a dominant pro-
cess and incorporated the distribution of sulfate around the heterogene-
ity in the upscaling framework. The scaling coefficients obtained were
quite similar when nitrate concentrations were used but were different
when iron concentrations were used instead of sulfate (Fig. 12). This
is because iron reduction is also a dominant biogeochemical process at
the Norman Landfill site (Cozzarelli et al., 2000; Eganhouse et al.,
2001; Grossman et al., 2002). If geochemical concentrations for the
dominant processes are unavailable at one or both scales or knowledge
about the dominant processes is lacking, then this upscaling framework
is limited in its applicability. Therefore, we encourage users to identify
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the dominant redox processes and evaluate the results for upscaling
geochemical concentrations for those processes before transferring re-
sults from this study.

6. Conclusions

Geochemical concentrations of conservative and reactive contami-
nants in groundwater are key parameters for assessing contaminant
plume migration, evaluating health risks, and planning remedial ac-
tions. However, a systematic upscaling methodology that serves as a
link between knowledge gained at the laboratory scale and application
needed at the field scale in the presence of physical and geochemical
heterogeneities has been lacking. We present a new integrated upscaling
framework that addresses the effect of lithological heterogeneity (lenses
and layers) using direct geochemical datasets and includes the influence
of hydrologic parameters on solute concentrations at the coarse scale
using Bayesian methods.

This upscaling framework was tested and applied to the Norman
Landfill site by upscaling geochemical concentrations from constructed
soil columns with similar vertical heterogeneities as found at the site.
The results of the MCMC simulations indicated that the inclusion of
soil hydrologic parameters along with the geochemical scaling coeffi-
cients increased the prediction accuracy, especially for conservative in-
dicators, by orders of magnitude. In addition, the use of a heterogeneity
formulation in the likelihood function significantly improved the pre-
diction of geochemical concentrations at the landfill site. This study
also identified multimodal characteristics only in the hydrologic scaling
coefficient (β). This multimodality emphasizes the influence of subsur-
face heterogeneity and two different soil types (sand and loam) on pos-
terior distribution of β. This is similar to conclusions made in other
studies where the multimodality in soil hydrologic parameters was re-
flective of the different soil layers and soil water retention functions
(de Rooij et al., 2004; Arora et al., 2012b).

This study highlights that the use of Bayesian methods and AMCMC
in developing the upscaling framework is advantageous because they
provided an objective framework for the selection of the likelihood
function (with or without heterogeneous formulations), the choice of
model parameters (with or without upscaling soil water retention
parameters), and catering to a large number of parameters. As a result,
a robust integrated upscaling framework was developed, which was
verified by upscaling from point measurements to the column scale
and applied to upscale solute concentrations from column to the field
scale. Therefore, this integrated upscaling algorithm can be readily
transferred to other fine or coarse scale datasets as long as the dominant
redox processes are known and representative facies concentrations are
available at both scales.
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