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[1] Soil moisture (SM) at the local scale is required to account for small-scale spatial
heterogeneity of land surface because many hydrological processes manifest at scales
ranging from cm to km. Although remote sensing (RS) platforms provide large-scale soil
moisture dynamics, scale discrepancy between observation scale (e.g., approximately
several kilometers) and modeling scale (e.g., few hundred meters) leads to uncertainties in
the performance of land surface hydrologic models. To overcome this drawback, we
developed a new deterministic downscaling algorithm (DDA) for estimating fine-scale soil
moisture with pixel-based RS soil moisture and evapotranspiration (ET) products using a
genetic algorithm. This approach was evaluated under various synthetic and field
experiments (Little Washita-LW 13 and 21, Oklahoma) conditions including homogeneous
and heterogeneous land surface conditions composed of different soil textures and
vegetations. Our algorithm is based on determining effective soil hydraulic properties for
different subpixels within a RS pixel and estimating the long-term soil moisture dynamics
of individual subpixels using the hydrological model with the extracted soil hydraulic
parameters. The soil moisture dynamics of subpixels from synthetic experiments matched
well with the observations under heterogeneous land surface condition, although
uncertainties (Mean Bias Error, MBE : �0.073 to �0.049) exist. Field experiments have
typically more variations due to weather conditions, measurement errors, unknown bottom
boundary conditions, and scale discrepancy between remote sensing pixel and model grid
resolution. However, the soil moisture estimates of individual subpixels (from the airborne
Electronically Scanned Thinned Array Radiometer (ESTAR) footprints of 800 m � 800 m)
downscaled by this approach matched well (R : 0.724 to �0.914, MBE : �0.203 to �0.169
for the LW 13; R : 0.343–0.865, MBE : �0.165 to �0.122 for the LW 21) with the in situ
local scale soil moisture measurements during Southern Great Plains Experiment 1997
(SGP97). The good correspondence of observed soil water characteristics �(h) functions
(from the soil core samples) and genetic algorithm (GA) searched soil parameters at the LW
13 and 21 sites demonstrated the robustness of the algorithm. Although the algorithm is
tested under limited conditions at field scale, this approach improves the availability of
remotely sensed soil moisture product at finer resolution for various land surface and
hydrological model applications.

Citation: Shin, Y., and B. P. Mohanty (2013), Development of a deterministic downscaling algorithm for remote sensing soil moisture
footprint using soil and vegetation classifications, Water Resour. Res., 49, doi:10.1002/wrcr.20495.

1. Introduction

[2] Land surface soil moisture (SM) is a pivotal factor
related to land-atmosphere interactions, surface runoff proc-
esses, and ground water recharge in hydrology. In general,

in situ soil moisture data have the limited availability at the
spatiotemporal scales. Point-scale soil moisture data sets are
time consuming, expensive, and do not provide a uniform
representation at larger scales. Remote sensing (RS) techni-
ques can provide an attractive alternative to direct measure-
ment. Ottl�e and Vidal-Madjar [1994] derived land surface
soil moisture using thermal infrared remote sensing.
Directly active [Ulaby et al., 1996] and passive microwave
[Njoku and Entekkabi, 1996] remote sensing approaches
were developed to estimate surface soil moisture dynamics.
However, the use of RS pixel-based data is limited due to
the scale discrepancy between observed RS resolution and
required modeling resolution [Engman, 1991; Entekhabi
et al., 1999]. In this regard, downscaling schemes are
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necessary to improve the availability of subpixel soil mois-
ture products from RS footprints/pixels for agriculture and
water resources management at the field scale.

[3] A few studies have explored downscaling or disag-
gregation methods for extracting subgrid soil moisture esti-
mates within a RS pixel. Crow et al. [2000] downscaled
spaceborne soil moisture products to obtain surface soil
dielectric values approximating to volumetric soil moisture
content using a soil dielectric inversion model. Merlin
et al. [2005; 2012] developed a downscaling method using
fine-scale optical data during the Soil Moisture and Ocean
Salinity (SMOS) mission [Kerr et al., 2001] to improve the
availability of SMOS near-surface soil moisture at the sub-
grid scale. Currently, visible/infrared RS data (i.e., normal-
ized difference vegetation index-NDVI, land surface
temperature, etc.) have been used in downscaling SMOS
footprints [Chauhan et al., 2003; Merlin et al., 2008; Piles
et al., 2010; Piles et al., 2011]. In their studies, high resolu-
tion soil moisture estimates were obtained by combining
coarse-scale (i.e., 40 km � 40 km) SMOS soil moisture
footprints to finer-scale (i.e., 1 km � 1 km) vegetation
index and surface temperature data in the spatial domain
based on regression models. Also, an interpolation
approach of passive microwave data based on fine-scale
active microwave data was developed by Kim and Barros
[2002] and further refined by Das et al. [2008] particularly
for the Soil moisture Active and Passive (SMAP) mission.

[4] From the hydrologic process point of view, both soil
textures and evaporatranspiration (ET) influence soil mois-
ture dynamics across the land surface because ET returns to
the atmosphere via evaporation (E) and transpiration (T)
[Huxman et al., 2005; Boulet et al., 1997; van Keulen and
Hillel, 1974; Yamanaka and Yonetani, 1999]. In semiarid
regions, E may account for more than half of ET [Huxman
et al., 2005], while soil moisture is the main source of
water for T in the entire root zone. This indicates that ET
significantly influences the water cycle at the near surface
and in the root zone [Xevi et al., 1996], but it has not been
considered yet in scaling down RS soil moisture products.
Various approaches have been developed for estimating
spatially distributed ET such as Simplified Surface Energy
Balance Index (S-SEBI) [Roerink et al., 2000], Mapping
Evapotranspiration at high Resolution and with Internalized
Calibration (METRIC) [Allen et al., 2007], Surface Energy
Balance Algorithm for Land (SEBAL) [Bastiaanssen et al.,
1998, 2005], and Surface Heat Budget of the Arctic Ocean
(SHEBA) [Su, 2002], among others. Thus, spatially distrib-
uted ET values can be used to capture the variability of
land surface within a RS pixel.

[5] Airborne/satellite-scale soil moisture footprints pro-
vide available large-scale applications, because of their spa-
tiotemporal extents [Kerr et al., 2001; Njoku et al., 2003;
Entekhabi et al., 2010; Das et al., 2011]. However, agricul-
tural activities particularly occur at finer scale ranging from
several hundred meters to several kilometers. To date, few
studies have addressed the issue of downscaling remotely
sensed soil moisture footprints (e.g., airborne Electronically
Scanned Thinned Array Radiometer, ESTAR, Polarimetric
Scanning Radiometer, PSR, space-borne Soil Moisture
Ocean Salinity, SMOS, and Soil Moisture Active and Pas-
sive, SMAP sensors), and resolving them at fine scales (e.g.,
for individual fields with homogeneous soil and vegetation).

Mascaro et al. [2010] suggested the predictive skill of land
surface models to account for small-scale heterogeneity of
soil moisture using a calibrated multifractal model during
the Southern Great Plains experiment in 1997 (SGP97).
Ines et al. [2013] developed a stochastic disaggregation
method for soil moisture using a simulation-assimilation
scheme. This approach extracts soil type identification (rep-
resenting soil hydraulic properties) and subarea fractions of
corresponding soil-vegetation combinations within a RS
soil moisture product. However, the stochastic disaggrega-
tion method estimates only the soil characteristics (soil ID
values) and subarea fractions (%) by the soil-vegetation
combinations within a pixel in a probabilistic sense without
their specific locations practically recognized. In order to re-
alize the maximum potential of RS data, downscaling to the
highest possible resolution is required [e.g., Merlin et al.,
2008; Das et al., 2011]. Further, a few downscaling algo-
rithms mentioned above can scale down airborne/satellite-
scale soil moisture data at the spatial domain, but they still
have limitations in providing continuous soil moisture dy-
namics with the time series.

[6] The main goal of this study is to develop and test a
new downscaling algorithm with pixel-based soil moisture
and evapotranspiration. The primary objectives are two-
fold: (1) to develop a deterministic downscaling algorithm
(DDA) using a genetic algorithm (GA) scheme for produc-
ing subpixel level soil moisture products from large-spatial
scale data in time continuous manner and (2) to assess the
robustness of this approach for remotely sensed data under
real and synthetic experiments across different hydro-
climate conditions.

2. Materials and Methods

2.1. Deterministic Downscaling Algorithm (DDA)

[7] Heterogeneity across the land surface comprises dif-
ferent soil textures and vegetation covers (assuming the
case of flat topography). Various soil-vegetation combina-
tions have their unique characteristics of soil moisture and
evapotranspiration dynamics as illustrated in Figure 1a. As
we capture the distributed ET values of various soil-
vegetation combinations within a pixel, the SM estimates
and their locations corresponding to the distributed ET val-
ues can be obtained at subpixel levels. Here high resolution
RS images provide finer-scale ET products across the
land surface [Roerink and Menenti, 2000]. Thus, in this
study we developed a deterministic downscaling algorithm
(DDA) for extracting fine-scale soil moisture (for subpix-
els) within a RS footprint using pixel-based SM and ET.

[8] Basically, the spectral mixtures within a RS pixel-
based product have linear relationships indicating that the
response of each subpixel in any spectral wavelength can
be considered as a linear combination of the responses of
each component which is assumed to be in the mixture
[Holben and Shimabukuro, 1993; Ferreira et al., 2007].
Thus, each image (subpixel) contains land surface informa-
tion with respect to the fraction and spectral response of
each component within the ground resolution unit. Hence,
individual subpixel spectral images (ai ¼ 1, . . . M,j ¼ 1, . . . ,N),
which have the soil components (P¼{si,j}) in equation (1),
can be practically designed as a linear mixture [Ferreira
et al., 2007; Ines et al., 2013] (equations (2)–(4)) as below,
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where P: the variables whose si,j component is the soil hy-
draulic properties of all the soil contained within the ij pixel,
�sub,i,j,t: the simulated soil moisture of individual subpixel in
the time index (t), i: the row number of subpixels with the do-
main (M), j: the column number of subpixels with the domain
(N), �avg,t: the average soil moisture of individual subpixels
(�sub,i,j,t) in the time index (t), ETsub,i,j,t: the simulated evapo-
transpiration of individual subpixel with the time index (t),
ETavg,t: the average evapotranspiration of individual subpixels
(ETsub,i,j,t) with the time index (t), ETRSsub,i,j,t: the RS evapo-
transpiration product of individual subpixel with the time
index (t), ETRSavg,t: the average RS evapotranspiration prod-
ucts of individual subpixels (ETRSsub,i,j,t) with the time index
(t). The si,j component can be constrained based on the num-
ber of soil textures available (see in Table 1) in equation (5).

[9] We used the unmixing model (equation (6)) designed
to solve P (si,j component) using a simulation-optimization

Figure 1. (a) Description of the deterministic downscaling algorithm, (b) simple (2 � 2 matrix), rela-
tively simple (3 � 3 matrix), and relatively complex (4 � 4 matrix) land surface conditions, (c) homoge-
neous soil columns with the free drainage condition and various shallow ground water table depths (GW
�200, �150, �100 cm).
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scheme based on inverse modeling [Ines and Droogers,
2002; Ines and Mohanty, 2008a, 2008b; Ines and Mohanty,
2009; Shin et al., 2012]. The unmixing model indicates
that a RS soil moisture product (�RS,t) can be estimated by
the average simulated soil moisture (�avg,t(P)) with adding
an error term (et). As mentioned above, the classifications
of different soils and vegetations have their own SM and
ET characteristics. Hence, as we can obtain fine-scale
remotely sensed ET estimates for individual subpixels, soil
moisture corresponding to each ET value (that can repre-
sent soil texture) can be inferred as the disaggregated
results. Thus, our approach extracts the soil components
(si,j) and their specific locations within a RS product by
capturing the ET values (ETavg,t) of individual subpixels.
Then, an optimization scheme randomly generates the soil
ID values for subpixels and searches for the solutions,
which have the minimum differences between mixed/aver-
aged (subpixels) observations and simulations (SM/ET)
under the assumption that the exact solutions have no dif-
ferences (et¼ 0). To minimize the error (et) between the
observed versus simulated SM and ET by tuning a hydro-
logical model, we used a genetic algorithm. The objective
(Z(P)) and fitness (Fitness(P)) functions are shown in equa-
tions (7) and (8),

hRS;t Pð Þ ¼ havg;t Pð Þ þ et 8t ð6Þ

Z Pð Þ ¼ Min
1

T

XT

t¼1

ff � jhavg;t � hRS;tj þ 1� fð Þ
(

�jETavg;t � ETRSavg;tjg
� ð7Þ

Fitness Pð Þ ¼ Max Z Pð Þ½ ��1 ð8Þ

where �RS,t : the remotely sensed soil moisture product with
the time index (t), Z(P) : The objective (minimizing) func-
tion (note that all variables were normalized based on their
observation range), f : the weighting factor (0< f< 1.0)
indicating that the weighting factor of 0.1 means more
weight is given to ET and the weighting factor of 0.9 means
more weight to SM, and Fitness(P) : the maximization
function if Z(P) is minimized.

[10] This approach can disaggregate RS products at sev-
eral kilometers scales, but each subpixel still has the vari-
ability across the land surface. In order to search effective
soil parameters values that can represent the soil moisture
dynamics of individual disaggregated subpixels, we used a
genetic algorithm (GA)-based optimization. GAs are search
algorithms to solve the optimized solutions for complex
problems based on the survival of competing mechanism
[Holland, 1975; Goldberg, 1989]. GAs are influenced by
not only initial random generator seeds (i.e., �3000,
�2000, �1000, etc.), but also by the number of parameters

Table 1. Physical Soil Texture Database for the Deterministic Downscaling Algorithm

Soil ID Soil Textures

Shape Parameters Scaling Parameters Hydraulic Conductivity

� n �res �sat Ksat �

1a Sandy Loam 0.021 1.61 0.067 0.37 41.6 0.5
2b Sandy Loam 0.075 1.89 0.065 0.41 106.1 0.5
3c Sandy Loam 0.027 1.45 0.039 0.39 38.3 �0.861
4a Loam 0.025 1.31 0.083 0.46 38.3 0.5
5b Loam 0.036 1.56 0.078 0.43 25.0 0.5
6c Loam 0.011 1.47 0.061 0.40 12.1 �0.371
7a Silt 0.006 1.53 0.123 0.48 55.7 0.5
8b Silt 0.016 1.37 0.034 0.46 60.0 0.5
9c Silt 0.007 1.68 0.050 0.49 43.8 0.624
10a Silt Loam 0.012 1.39 0.061 0.43 30.5 0.5
11b Silt Loam 0.020 1.41 0.067 0.45 10.8 0.5
12c Silt Loam 0.005 1.66 0.065 0.44 18.2 0.365
13a Sandy Clay Loam 0.033 1.49 0.086 0.40 9.7 0.5
14b Sandy Clay Loam 0.059 1.48 0.100 0.39 31.4 0.5
15c Sandy Clay Loam 0.021 1.33 0.063 0.38 13.2 �1.280
16a Clay Loam 0.030 1.37 0.129 0.47 1.8 0.5
17b Clay Loam 0.019 1.31 0.095 0.41 6.2 0.5
18c Clay Loam 0.016 1.42 0.079 0.44 8.2 �0.763
19a Silty Clay Loam 0.027 1.41 0.098 0.55 7.4 0.5
20b Silty Clay Loam 0.010 1.23 0.089 0.43 1.7 0.5
21c Silty Clay Loam 0.008 1.52 0.090 0.48 11.1 �0.156
22b Sandy Clay 0.027 1.23 0.100 0.38 2.9 0.5
23c Sandy Clay 0.033 1.21 0.117 0.39 11.4 �3.665
24a Silty Clay 0.023 1.39 0.163 0.47 8.4 0.5
25b Silty Clay 0.005 1.09 0.070 0.36 0.5 0.5
26c Silty Clay 0.016 1.32 0.111 0.48 9.6 �1.287
27a Clay 0.021 1.20 0.102 0.51 26.0 0.5
28b Clay 0.008 1.09 0.068 0.38 4.8 0.5
29c Clay 0.015 1.25 0.098 0.46 14.8 �1.561

aUNSODA [Leij et al., 1999].
bSoilSurvey [Wösten et al., 1994].
cRosetta [Schaap et al., 1999].
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(P) to be searched from unknown spaces. In this study, we
selected the Ensemble Multiple Operators Genetic Algo-
rithm (EMOGA) (Y. C. Shin, and B. P. Mohanty (2012),
Development of drought severity assessment framework
using remotely sensed soil moisture products with climate
changes, submitted to Water Resources Research, 2013).
The Multiple Operators Genetic Algorithm (MOGA) has
the unique ability that reproduces the fittest chromosomes
(P) in the individual population as much as the number of
chromosomes (parameters : M�N) to be searched (see Fig-
ure 2). The reproduced chromosomes (RC¼ 1, . . . ,M�N)
have new genetic information through the GA operators
(selection, crossover, and mutation) and explore more
search spaces. Then, the MOGA restarts when the chromo-
somes are converged to one region, which means that the
better chromosomes are not searched compared to the pre-
vious strongest one for past 50 generations (note that the
number of generations is subjective) at the converged
region before the GA process is completed. With the
restarting technique, the MOGA provides new genetic
materials through the creep and jump mutation operators
[Ines and Honda, 2005]. The MOGA always remembers
the previous (g�1) elite chromosomes and reproduce in the
next generation [Ines and Mohanty, 2008a]. We integrated
a random resampling (ensemble e) algorithm (IBM Pro-
grammers’ Guide) [Efron, 1982] into the MOGA for
searching more unknown spaces, called EMOGA. EMOGA
generates the soil parameters (chromosomes) along the
given generations for individual ensembles (e) with differ-
ent random generator seeds. Then, the parameter set, which
has the best fitness in the given generations, of each ensem-
ble for different random generator seeds was selected and
used for uncertainty analysis.

[11] This approach with the EMOGA uses a physically
based (1-D) soil water atmosphere plant (SWAP) model to
simulate soil water flow between the soil, water, atmos-
phere, and plant system [Kroes et al., 1999; van Dam
et al., 1997]. The SWAP model calculates the soil water
flow based on Richards’ equation in equation (9).

@h

@t
¼ C hð Þ @h

@t
¼
@ K hð Þ @h

@z þ 1
� �h i
@z

� S hð Þ ð9Þ

where � : the soil moisture content (cm3 cm�3), K(h) : the
hydraulic conductivity (cm d�1), h : the pressure head (cm),
z : the soil depth (cm) taken positively upward, t : the
time (d), C(h) : the differential water capacity (cm�1), and
S(h) : the actual soil moisture extraction rate by plants
(cm3 cm�3 d�1) defined as equation (10).

S hð Þ ¼ aw hð ÞTpot

Zr
ð10Þ

where Tpot : the potential transpiration (cm d�1), Zr : the
rooting depth (cm), and �w : the reduction factor as function
of h and accounts for water deficit and oxygen stress
[Feddes et al., 1978]. The soil hydraulic functions defined
by the Mualem-van Genuchten equations [van Genuchten,
1980; Mualem, 1976] allow the use of soil hydraulic pa-
rameters as inputs to the SWAP model.

Se ¼
h hð Þ � hres

hsat � hres
¼ 1

1þ jahjn
� �m

ð11Þ

KðhÞ ¼ KsatS
k
e ½1� ð1� S1=m

e Þm�2 ð12Þ

where Se : the relative saturation, �res : the residual water
contents (cm3 cm�3), and �sat : the saturated water contents
(cm3 cm�3), � (cm�1), n, m, and � : the shape parameters
of the retention and the conductivity functions, Ksat : the
saturated hydraulic conductivity (cm d�1), and m¼ 1� 1/n,
respectively.

[12] The SWAP model considers various top and bottom
boundary conditions such as weather conditions, water ta-
ble depths, flux, and surface drain, etc. [van Dam et al.,
1997]. The SWAP model has three crop routines: (i) a sim-
ple model to simulate the impacts of weather, soil feature,
and plant type, (ii) a detailed model (WOFOST), and (iii)
the same model attuned to simulate grass growth. In this
study, we used the simple and detailed (WOFOST 6.0, see
details in Supit et al. [1994]) models for grass and wheat,
respectively. Also, water management modules (irrigation
and drainage) are available in SWAP [van Dam et al.,
1997; van Dam, 2000]. The SWAP model estimates the
potential evapotranspiration (ETpot) using the Penman-
Monteith equation and partitions the potential transpiration
(Tpot) and soil evaporation (Epot) by the leaf area index or
the soil cover fraction. ETpot is estimated based on the min-
imum value of canopy resistance and actual resistance and
then in turn ETact is determined by the root water uptake
reduction due to water and salinity stress. This hydrological
model performs well under various meteorological condi-
tions [Wesseling and Kroes, 1998; Sarwar et al., 2000;
Droogers et al., 2000; Singh et al., 2006].

2.2. Physical Soil Texture Database

[13] When the land surface within a RS product is com-
posed of several soil textures (e.g., sandy loam, silt loam,
and clay loam, etc.), we traditionally need to search the
effective soil hydraulic parameters (�, n, �res, �sat, Ksat) for
each soil unit, which means that the parameter estimation

Figure 2. Schematic of ensemble multiple operators
genetic algorithm (EMOGA) for searching the soil hydrau-
lic parameters based on the resampling (ensemble) process
in the unknown space.
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would take a large combinational problem. We suggest a
physical soil texture database including various soil infor-
mation from the UNSODA [Leij et al., 1999], Staring soil
database [Wösten et al., 1994] and Rosetta [Schaap et al.,
1999] in Table 1. This database contains the soil hydraulic
properties (29 soil textures) of Mualem-van Genuchten
functions. Using the physical soil texture database, the soil
hydraulic information (si,j) corresponding to the soil ID val-
ues can be provided for individual soil unit in the model
performance.

2.3. Simplified-Surface Energy Balance Index
(S-SEBI) Model

[14] Evapotranspiration is the process by which liquid
water evaporates from open water, soil, and plant surfaces
to the atmosphere across the land-atmosphere boundary.
Remote sensing measurements of the surface energy bal-
ance provide a means to evaluate spatially and temporally
distributed vegetation conditions at large scales [Moran
et al., 1995; Moulin et al., 1998]. In this study, we selected
a Simplified-Surface Energy Balance Index (S-SEBI)
model for calculating pixel-based evapotranspiration (ET,
mm d�1) estimates using RS products [Roerink and
Menenti, 2000]. The land surface energy balance can be
solved on a pixel by pixel basis using RS (e.g.,
LANDSAT-TM, Moderate Resolution Imaging Spectrora-
diometer, MODIS, Advanced Very High Resolution Radi-
ometer, AVHRR, etc.) data sets. The land surface energy
balance is given by,

Rn ¼ G0 þ H þ �E ð13Þ

where, Rn : the net radiation [W/m2], G0: the soil heat flux
[W/m2], H : the sensible heat flux [W/m2], and �E : the
latent heat flux [W/m2].

[15] The S-SEBI model uses scanned spectral radiance
(visible, near-infrared, and thermal infrared range) for esti-
mating surface reflectance, surface temperature, and vege-
tation index under clear weather conditions. We used the
LANDSAT-TM images (30 m � 30 m) described in Table
2 to compute fine-scale pixel-based ET using the S-SEBI
model.

2.4. Data Assimilation Framework

[16] In order to assess our proposed methodology, we
conducted synthetic and field validation experiments under
the rain-fed condition including: (i) Case 1—synthetic
experiments with various land surface conditions, (ii) Case
2—impacts of different vegetation covers (assumed that
the land surface has a uniform vegetation cover) and the
presence of shallow ground water tables under the synthetic

conditions, and (iii) Case 3—field validation experiments,
respectively. The synthetic condition meant that the
observed soil moisture dynamics were generated by the
hydrological model simulations using the real weather data
(i.e., precipitation, wind speed, maximum and minimum
temperature, humidity, and solar radiation) and the refer-
ence soil parameters (�, n, �res, �sat, �sat) from literatures
(i.e., UNSODA [Leij et al., 1999], Soil Survey [Wösten
et al., 1994], Rosetta [Schaap et al., 1999], etc.) in a for-
ward mode, while the in situ/RS soil moisture data were
used as observations for the field validation experiments.

[17] In Case 1,we designed the synthetic (simple – 2 � 2
matrix, relatively simple – 3 � 3 matrix, and relatively
complex – 4 � 4 matrix at the airborne footprint-scale, Fig-
ure 1b) land surface conditions representing homogeneous
and heterogeneous land surface with free drainage (indicat-
ing semi/arid regions) at the Lubbock site (1 March to
31 July 2002) in Texas. Furthermore, we tested our
approach under the complex (6 � 6 matrix) condition that
can represent relatively larger-scale domains (compared to
the other synthetic conditions above) including three differ-
ent soil textures (sandy loam, silt loam, and clay loam) and
vegetation covers (grass, maize, and wheat) in Figure 3.

[18] We collected the daily weather data sets (i.e., pre-
cipitation, wind speed, maximum and minimum tempera-
ture, and solar radiation) at the Irrigation Technology
Center (http://texaset.tamu.edu/index.php). In this study,
evapotranspiration component is the major factor for down-
scaling RS soil moisture products. To confirm the impact
of ET component for the downscaling process, we analyzed
the characteristics of (synthetic) soil moisture (0–1 cm) and
ET dynamics by the combinations of different soil textures
(see Table 1: i.e., Soil ID: 1—sandy loam, 4—loam, 7—
silt, and 13—sandy clay loam) and various vegetation
covers (wheat, soybean, grass, and maize). The various
weighting factors (0.1–0.9) for the objective function
(equation (7)) were also tested under the relatively simple
land surface condition.

[19] Additional experiments were conducted to evaluate
the impacts of various vegetation covers (wheat, soybean,
grass, and maize) and varying the shallow ground water

Table 2. Description of the LANDSAT-TM Data

Image Character Value

Sensor LANDSAT-TM
Path/Row 28/36
Acquisition date (time) 20 Apr 1997 (16:35:29)

7 Jun 1997 (16:37:10)
9 Jul 1997 (16:38:16)

Reference system UTM-24N
Resolution Band 1–7 (30 m � 30 m)

Figure 3. Grid domain for the complex land surface con-
dition in Case 1 (6 � 6 matrix).
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table depths of �200, �150, and �100 cm (Figure 1c)
under the relatively simple land surface condition for Case
2, respectively. The bottom flux (positive upward) is set to
test that the interdependency assumption used in the
inverse modeling is still executable when the soil water
flow in the unsaturated zone is dominated by the bottom
boundary condition, e.g., by major upward flows from the
ground water table [Walker et al., 2001; van Dam, 2000].

[20] For the field validation experiments (Case 3), we
selected the Little Washita watershed (LW 13 and 21 foot-
prints) in Oklahoma during the simulation period (1 March
to 31 July 1997) as shown in Figure 4. The in situ soil
moisture data (0–5 cm) were measured during the Southern
Great Plains experiment (SGP97) from 18 June 1997 to 18
July 1997 [Mohanty and Skaggs, 2001]. The daily volumet-
ric soil moisture data sets (24/17 days for the LW 13/21
sites) were measured at the 49 (7 � 7) sampling points,
except for the heavy rainfall events. We used the airborne
Electronically Scanned Thin Array Radiometer (ESTAR,
800 m � 800 m) pixel-based soil moisture products for 17
days at the LW sites during the SGP97 period [Jackson
et al., 1999]. This approach downscaled the ESTAR soil

moisture products under the relatively simple land surface
condition and was validated for subgrid (or subpixel) soil
moisture values with the in situ soil moisture measure-
ments. The soil core samples in the soil depth of 3–9 cm
were collected to obtain the soil hydraulic properties
[Mohanty et al., 2002] at the field sites. The subpixels a1,3

and a2,3 at the LW 13 site (Figure 4) have three and two
soil core samples (i.e., soil hydraulic properties), respec-
tively. Soil core samples at the subpixels a1,1 and a1,3 were
taken at the LW 21 site. Besides soil moisture dynamics
(�(t)) at the 49 in situ sampling locations for LW 13 and 21
(Figure 4), we further validated the downscaling approach
through the comparison of (optimized versus observed) soil
water retention functions (�(h)). They were derived by the
searched soil ID values (in terms of their soil hydraulic pa-
rameters in Table 1) and field-observed soil hydraulic prop-
erties in Table 3. We excluded the hydraulic conductivity
(K(h)) functions for validation, because of the extreme var-
iations in Ksat (5.063–129.427 mm d�1).

[21] The pixel-based ET (30 m � 30 m) estimates using
the LANDSAT-TM data sets were computed by the
S-SEBI model [Roerink and Menenti, 2000] for a few days

Figure 4. (a) Oklahoma, (b) Little Washita (LW) watershed, (c) LW 13 site, and (d) LW 21 site includ-
ing the in situ soil moisture sampling points and weather stations for the field experiments.

Table 3. Soil Hydraulic Properties Derived by the Soil Core Samples Obtained at the LW 13 and 21 Sites

Sites Soil Depth Subpixel (ai,j) �a na �res
a �sat

a Ksat
a

LW 13 3–9 cm 3 (a1,3) 0.009 1.430 0.115 0.354 6.679
0.015 1.204 0.002 0.322 5.063
0.026 1.229 0.109 0.366 5.702

6 (a2,3) 0.012 1.262 0.106 0.435 129.427
0.009 1.387 0.068 0.387 22.550

LW 21 3–9 cm 1 (a1,1) 0.006 1.581 0.117 0.429 31.795
3 (a1,3) 0.009 1.734 0.115 0.432 17.885

aField observations [Mohanty et al., 2002].
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(i.e., 3 days for LW13 and 2 days for LW 21) during the
simulation period due to the limited available LANDSAT-
TM data sets and weather condition. The LW 13 and 21
sites have predominantly loam and silt loam soils from
[Mohanty et al., 2002]. During the simulation period for
the LW 21 site, two thirds were covered by the winter
wheat, and the other third was covered by the short native
grass. The wheat cover area is flat (slope less than 1%), and
the grass cover area has a rolling slope (3–12%). The LW
13 site also has rolling topography with grass cover and a
small pond in sub-pixel a2,1 as shown in Figure 5. We set
the different crop growing periods (1 March to 27 June for
the wheat and grass cover at the LW 21 site and 1 March to
31 July for the LW 13 site), because wheat was harvested
on 27 June at the LW 21 site. Daily climatic data sets for
the model input were collected from the USDA-
Agricultural Research Service micronet weather station

(ARS 136/149 for the LW 13/21 sites, http://ars.mesonet.
org/) in Oklahoma.

[22] In this study, we assumed that the remote sensing
pixel (field) composed of parallel stream tubes or soil col-
umns (subpixels) and the vertical soil columns are discre-
tized by 33 texturally homogeneous computational layers.
The soil profile was discretized at the intervals of 1 cm for
the top 10 cm (1–10th layer) from the soil surface. For the
soil depths of 10–60 cm (11–20th layer) and 60–200 cm
(21–32nd layer), vertical grid intervals of 5 cm and 10 cm
were used (except 20 cm in the 33rd layer). The initial con-
ditions (h(z,t ¼ 0)¼�100 cm) were specified for the soil
columns in the synthetic cases. We tested this approach
under the free drainage and various ground water table
depths (�200, �150, and �100 cm), because of the
unknown bottom boundary conditions at the field sites. We
assumed that the initial conditions were in equilibrium with
the bottom boundary conditions. The model parameters
used for genetic algorithm and SWAP for the synthetic and
field validation experiments were shown in Table 4.

[23] For the uncertainty analysis, we used the
simulation-optimization scheme (SWAP-EMOGA) with
resampling (the number of ensemble members e) and mul-
tipopulation by various random generator seeds (�3000,
�2000, and �1000) and respectively selected the maxi-
mum fitness for the individual simulations. Using the
selected solutions (e � three different random seeds), we
estimated the Pearson’s correlation (R) and mean bias error
(MBE). The 695 percent confidence interval (95PCI) of
the selected solutions was also calculated.

3. Results and Discussions

3.1. Synthetic Experiments: Various Land Surface
Conditions

[24] The various combinations of soil textures (soil ID:
1, 4, 7, 13) and vegetation covers (wheat, soybean, grass,
and maize) have their unique characteristics of soil water
retention, soil hydraulic conductivity, soil moisture dynam-
ics, and evapotranspiration as shown in Figure 6. The �(h)
and K(h) functions of silt (ID: 7) soil were higher than
those of loam (ID: 4), sandy clay loam (ID: 13), and sandy
loam (ID: 1) soils (Figures 6a and 6b). Figures 6c and 6d
show the impacts of various vegetation covers on estimat-
ing the SM and ET dynamics with a loam (ID: 4) soil.

Figure 5. Digital elevation method (DEM) for the study
sites at the Little Washita (LW) watershed in Oklahoma;
(a) LW 13 site, (b) LW 21 site.

Table 4. Modeling Conditions of Genetic Algorithm and SWAP Model

Synthetic Experiments Field Experiments

GA Parameters
Number of population 30 30
Number of seed �3000, �2000, �1000 �3000, �2000, �1000
Number of generation 5000 5000
Number of search restart 4 (relatively complex/complex conditions)
Number of ensemble 10 10

Modeling Conditions
Top boundary Time-dependent flux/head Time-dependent flux/head
Bottom boundary Free drainage, Free drainage,

Ground water table Ground water table
Depth (�100, �150, �200 cm) Depth (�100, �150, �200 cm)

Initial conditions h(z,t¼0)¼�100 cm Equilibrium with bottom boundary conditions
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Overall, the grass cover with the average soil moisture
(0.287 cm3 cm�3) contains more moisture in the soil matrix
than others (soybean—0.233, maize—0.221, and wheat—
0.183 cm3 cm�3) during the simulation period. However,
average ET estimates (wheat—2.504, soybean—2.278,
maize—1.866, and grass—1.159 mm day�1) are contrary
to the SM trends, except for the soybean cover, which has
both relatively high SM and ET. It suggests that the vegeta-
tion covers influence not only the ET estimates but also soil
moisture. In the context, Pollacco and Mohanty [2012] pro-
vided possibility of soil moisture and evapotranspiration

coupling (or decoupling) at different soil moisture thresh-
olds in the root zone.

[25] We tested the range of weighting factors f (0.1–0.9)
for DDA with the relatively simple land surface condition
in Case 1. When the weighting factors (f) were in the
ranges of 0.1–0.5, the derived solutions were identified
well with the synthetic observations in Table 5. The
derived soil ID values (si¼ 1, . . . ,3,j¼ 1, . . . ,3) of individual
subpixels with the weighting factor (f¼ 0.1) have the high-
est fitness than others (f¼ 0.2–0.5). But when more weights
(f¼ 0.6–0.9) were given to the soil moisture, the maximum

Figure 6. Various characteristics of the combinations of soil textures (soil ID: 1—sandy loam, 4—
loam, 7—silt, and 13—sandy clay loam) and vegetation covers (wheat, soybean, grass, and maize) ; (a)
soil water contents (�(h)), (b) hydraulic conductivities (K(h)), (c) soil moisture dynamics (cm3 cm�3) for
loam (4), (d) evapotranspiration (mm day�1) for loam (4).

Table 5. Solutions (Soil ID) of Subpixels Derived by the Deterministic Downscaling Algorithm Using the Genetic Algorithm
(EMOGA) Based on the Various Weighting Factors (f¼ 0.1–0.9) Under the Relatively Simple Land Surface Condition for Case 1

Subpixel (ai,j)
Observations

(Soil ID)a

Relatively Simple Land Surface Condition

Weighting Factor

f¼0.1 f¼0.2 f¼0.3 f¼0.4 f¼0.5 f¼0.6 f¼0.7 f¼0.8 f¼ 0.9

Maximum fitness 1.11E 1 07 9.44Eþ 06 8.39Eþ 06 7.33Eþ 06 6.27Eþ 06 5.84Eþ 05 1.82Eþ 02 7.86Eþ 05 2.21Eþ 02
a1,1 4 4 4 4 4 4 7 7 1 5
a1,2 7 7 7 7 7 7 1 22 7 18
a1,3 13 13 13 13 13 13 13 13 13 1
a2,1 1 1 1 1 1 1 1 1 1 1
a2,2 4 4 4 4 4 4 13 18 1 7
a2,3 7 7 7 7 7 7 4 7 7 5
a3,1 13 13 13 13 13 13 7 11 4 1
a3,2 1 1 1 1 1 1 4 1 4 20
a3,3 1 1 1 1 1 1 1 1 13 7

aSoil identification (soil ID) values from the physical soil texture database. Vegetation cover: wheat crop. Bold: the exact solution searched.
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fitness decreased. Furthermore, the soil ID values for sub-
pixels with the weighting factors (f¼ 0.6–0.8) were not
matched well with the observations compared to the results
for the weighting factors (f¼ 0.1–0.5). Most of all, the
DDA showed good matching with the synthetic observa-
tions (soil ID), but the specific locations of derived soil ID
values were not matched in the range of f¼ 0.6–0.9. It
demonstrated that the ET component assigns the down-
scaled soil moisture estimates (by the searched soil ID val-
ues) of individual subpixels to the specific locations within
a RS product. Thus, subsequently we used the selected
weighting factor (f¼ 0.1) for the synthetic (Cases 1 and 2)
and field validation experiments (Case 3).

[26] Table 6 shows the derived solutions (soil ID) under
various land surface conditions in Case 1. The solutions for
each subpixel are fairly well identified (minimum uncer-
tainties) with the synthetic observations under the simple
land surface condition. The results with the relatively sim-
ple land surface condition also matched well with the
observations, even though they have small errors for sub-
pixels (a1,1, a1,2, a1,3, a2,1, a2,2, a3,3). However, the uncer-
tainty ranges of solutions increased considerably when the
land surface condition becomes complex. The DDA
approach found the exact soil ID values (a1,1: 4, a1,2: 7,
a1,3: 7, a1,4: 13, a2,1: 27, a2,2: 4, a2,3: 1, a2,4: 20, a3,1: 20,
a3,2: 7, a3,3: 4, a3,4: 7, a4,1: 13, a4,2: 27, a4,3: 27, a4,4: 1
from the physical soil texture database in Table 1) of sub-
pixels, but the solution uncertainties for the relatively com-
plex condition were considerably higher than those of the
simple and relatively simple conditions. Figures 7 and 8
show the soil moisture dynamics (derived by the searched
solutions in Table 4) estimated by this approach and ET for
the subpixels under the relatively complex land surface
condition (results for the simple and relatively simple con-
ditions are not shown). The soil moisture dynamics of sub-
pixels (a1,1, a2,2, and a4,3) showed a bias compared to the

observations as the mean bias error (MBE) were �0.031,
�0.049, and 0.049, respectively. But the other subpixels
matched well to the observations with �0.021 to �0.013
for the MBE. The simulated ET values tend to show similar
pattern as the results of soil moisture, where the subpixels
(a1,1, a2,2, and a4,3) have more uncertainties (MBE :
�0.009, �0.014, and �0.011) than those of the other pixels
(MBE : �0.006 to 0.000). From the results for the subpixels
of a1,2 (silt and soybean), a1,3 (silt and wheat), and a2,2

(loam and soybean), we confirmed that different vegetation
covers of subpixels (soybean for a1,2 and wheat for a1,3)
with the same soil texture (ID: 7) influence not only the
soil moisture, but also ET estimates. Soil moisture dynam-
ics of subpixels (a1,2 and a2,2) with different soil textures
(ID: 4, 7), which have the same vegetation cover (soy-
bean), were affected by different soil textures (silt versus
loam), but these soils have relatively less impacts on the
ET dynamics. On the basis of above findings, we suggest
that the ET component is the key factor for the proposed
downscaling approach.

[27] Additionally, we tested our approach under the com-
plex condition (that can represent larger scales) composed
of three different soils (sandy loam, silt loam, and clay
loam) and vegetations (grass, maize, and wheat) in Table 7.
The model outputs had more uncertainties compared to
those of the simple, relatively simple, and relatively com-
plex conditions. For this reason, we calculated the average
of fitness for the ensemble (e¼ 10) results (as the unfil-
tered) and only selected the solutions (as the filtered) above
the average fitness value. Our approach found the filtered/
unfiltered soil ID values well at the subpixels for sandy
loam (ai¼ 1,..,2,j¼ 1, . . . ,6) and clay loam (ai¼ 5,..,6,j¼ 1, . . . ,6)
soils with small uncertainties, but silt loam soil
(ai¼ 3,..,4,j¼ 1, . . . ,6) had relatively more uncertainties (espe-
cially for ai¼ 3,j¼ 1). Also, the model outputs for the grass
cover with silt loam soil showed limitations in extracting

Table 6. Solutions (Soil ID) Derived by the Deterministic Downscaling Algorithm Using the Genetic Algorithm (EMOGA) Under the
Simple, Relatively Simple, and Relatively Complex Land Surface Conditions for Case 1

Subpixel (ai,j)

Simplex Land Surface Condition
Relatively Simple Land

Surface Condition Relatively Complex Land Surface Condition

Observations
(Soil ID)a

Vegetation
coverb

Solution
(Soil ID)

Observations
(Soil ID)a

Vegetation
coverb

Solution
(Soil ID)

Observations
(Soil ID)a

Vegetation
coverb

Solution
(Soil ID)

a1,1 4 1–4 4 4 1 4,7 4 1 4,27
a1,2 7 1–4 7 7 1 4,7 7 2 7,15,27
a1,3 13 1 1,13 7 1 6,7,26,29
a1,4 13 1 5, 13
a2,1 13 1–4 13 1 1 1,4 27 2 4,10,27
a2,2 1 1–4 1 4 1 4,13 4 2 4,7,10,27
a2,3 7 1 7 1 1 1
a2,4 20 1 20
a3,1 13 1 13 20 2 4,20,27
a3,2 1 1 1 7 2 7,27
a3,3 1 1 1,13 4 1 4,27
a3,4 7 1 6,7,29
a4,1 13 1 5,13
a4,2 27 2 10,11,20,27
a4,3 27 2 4,7,8,10,11,18,27,28
a4,4 1 1 1

aSoil identification (soil ID) values from the physical soil texture database.
bVegetation covers: 1—wheat, 2—soybean, 3—grass, 4—maize. Bold: the exact solution searched.
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the soil ID information compared to maize and wheat. It
might indicate that silt loam soil causes larger uncertainties
in the model performance compared to others as shown in
the findings of Ines and Mohanty [2008a] and Shin et al.
[2013]. Although the unfiltered solutions had uncertainties
for silt loam soil, the filtered ones could provide the more
reliable disaggregated results for individual subpixels.
Based on the filtered solutions, we compared the observed
and estimated soil moisture dynamics in Figure 9. Note that
we added the 630% errors of the averaged (filtered)
ensemble results to provide the reliable uncertainty
ranges, and the ET results were excluded for the sake of
brevity. As shown in Table 7, the estimated soil moisture
dynamics (filtered) at the subpixels with sandy loam
(ai¼ 1,..,2,j¼ 1, . . . ,6) and clay loam (ai¼ 5,..,6,j¼ 1, . . . ,6) soils
perfectly matched the observations with R (1.000) and
MBE (0.000), but silt loam soil had the relatively lower sta-
tistics (R : 0.946–1.000 and MBE : �0.073 to 0.032).
Although the observed/simulated soil moisture dynamics
were compared based on the filtered solutions under the
complex land surface condition, these findings supported
that our approach can be extended to satellite-scale soil
moisture footprints (i.e., 25 km � 25 km, 40 km � 40 km,
etc.) in future.

3.2. Impacts of Various Vegetation Covers and
Shallow Ground Water Tables

[28] Table 8 shows the results of various vegetation cov-
ers (wheat, soybean, grass, and maize) under the synthetic
condition in Case 2. Overall, the DDA approach searched
well the soil ID values of subpixels with various land cov-
ers under the relatively simple condition, although the solu-
tions with the wheat and soybean covers have more
uncertainties than those of the grass and maize crops. The
derived soil ID values for the maize cover perfectly
matched with the synthetic observations. The results with
different water table depths (�200, �150, and �100 cm)
showed somewhat the similar trend with those of the free
drainage condition (Table 9). The solutions with the GW
�100 cm had more variations than those of GW �150 cm
indicating that the estimations of soil parameters are
affected due to the upward flow of shallow ground water ta-
ble. The soil ID values with the GW �200 cm relatively
had less uncertainties in modeling, but the results (ID: 1-
sandy loam) of subpixels (a1,1 and a2,2) were not matched
with the observation (ID: 4-Loam). The soil ID values (ID:
1, 4) had the similar soil hydraulic properties (see Table 1)
indicating that this approach can be affected by the

Figure 7. Soil moisture dynamics (0–1 cm) of subpixels downscaled by the deterministic downscaling
algorithm using the genetic algorithm (EMOGA) under the relatively complex land surface condition for
Case 1.
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nonsensitivity of the similar soil water content (�(h)) and
hydraulic conductivity (K(h)) functions. Overall, the
impacts of shallow ground water tables were less sensitive
than the vegetation covers, which mean that the land sur-
face conditions (e.g., soil textures, land covers, atmospheric
condition, etc.) influence this approach more than the shal-
low ground water tables.

3.3. Field Validation Experiments

[29] Figure 10 shows the statistics (maximum, minimum,
median, and first/third quartiles of solutions) of model per-
formance with free drainage condition and various ground
water table depths for the field validation experiments in
Case 3. We tested various bottom boundary conditions for
the field sites under the free drainage and ground water
tables (�200, �150, and �100 cm) in modeling, and the
derived solutions for the ground water depth (GW) of
�100 cm and free drainage condition at the LW 13 and 21
sites identified better with the measurements than those of
the other conditions, respectively. Thus, we selected the
bottom boundary conditions of GW �100 cm (LW 13) and
free drainage (LW 21) for the field sites. The soil ID values
derived by this approach were shown in Table 10. The solu-
tions (soil ID values) of subpixels vary across the range of

sandy loam (ID: 2, 3), loam (ID: 6), silt (ID: 8), silt loam
(ID: 10), and silty clay loam (ID: 21) at the LW 13 site.
However, loam and silt soils (ID: 6, 8) were dominant
(60.0–90.0%) in the solutions of subpixels compared to the
actual soil textures (loam predominantly, sandy loam, and
silt loam soils). Similar trends were also shown in the
results of the LW 21 site. The range of derived solutions
including sandy loam (ID: 1, 2, 3), loam (ID: 5), silt (ID:
7, 9), silt loam (ID: 12), and sandy clay loam (ID: 13, 14)
is more variable than those of the LW 13 site. As men-
tioned above, the soil water retention (�(h)) and hydraulic
conductivity (K(h)) curves from the physical soil texture
database across a range of pressure heads have similarity
indicating that the search of soil textures (soil ID values)
by this approach can be limited due to the nonsensitivity of
�(h) and K(h) functions (as in Figure 11). However, this
approach still searched silt and silt loam soils (ID: 7, 9, 12)
as the dominant soils (36.7–73.3%) for the individual sub-
pixels, except for the subpixels of a2,1 and a2,3. When we
compared the solutions at the LW 13 and 21 sites, a sandy
clay loam soil (ID: 14) was relatively more prominent in
the derived solutions (a1,1 and a2,1) at the LW 21 site. This
is because soil moisture at the LW 21 site were measured
only for 17 days during the dry season indicating that the

Figure 8. Evapotranspiration of subpixels by the deterministic downscaling algorithm using the
genetic algorithm (EMOGA) under the relatively complex land surface condition for Case 1.
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Table 7. Solutions (Soil ID) Derived by the Deterministic Downscaling Algorithm Using the Genetic Algorithm (EMOGA) Under the
Complex Land Surface Condition for Case 1a

ai,j

j¼1 (v1) j¼2 (v1) J¼3 (v2) j¼4 (v2) j¼5 (v3) j¼6 (v3)

Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered

i¼1 (s1) 1 1,19,28 1 1,17 1 1 1 1 1 1,13 1 1

i¼2 (s1) 1 1,20 1 1,20,29 1 1,13 1 1 1 1,13 1 1,17

i¼3 (s2) 3,15,18,26 3,6,8,15,18,
26,27,29

6,9,10,18 3,6,9,10,
12,18,26

6,10 6,10,26 6,8,10 6,8,10,29 6,8,10,29 6,8,10,
19,20,29

6,10,
15,18

6,8,10,15,
18

i¼4 (s2) 3,10,8,26 3,4,9,10,
15,18,26

7,9,10,
15,21

7,8,9,10,
15,21

10,18 6,10,18,
26

8,10 4,8,18,26 6,10,18 6,9,10,18 10,18,27 4,8,10,11,
18,19,27

i¼5 (s3) 16 9,13,16 16 13,14,16 16 16 13,16 13,16 13,16 13,16 16 3,5,16

i¼6 (s3) 16 13,16 16 2,13,16 16 13,16 16 13,16 16 1,16,22 16 13,16

aFiltered indicates the solutions selected above the average of 10 ensemble solutions. Unfiltered indicates the 10 ensemble solutions. s1: sandy loam,
s2: silt loam, s3: clay loam, v1: grass, v2: maize, v3: wheat. Bold: the exact solution searched.

Figure 9. Soil moisture dynamics (0–1 cm) of subpixels downscaled by the deterministic algorithm
using the genetic algorithm (EMOGA) under the complex land surface condition for Case 1.
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actual soil conditions could favor more a sandy or sandy
clay loam soil. On the contrary, the LW 13 site has a small
pond (subpixel: a2,1) as shown in Figure 5, which means
that the actual field site has more moisture explaining better
solutions for the shallow GW of �100 cm than the others.
Thus, it is not unusual that this approach searched different
soil ID values, even though the field sites have similar soil
textures.

[30] Figure 12a shows the measured (in situ) and down-
scaled soil moisture dynamics of subpixels (ai :1,..,3,j :1,..,3) at
the LW 21 site. Overall, the approach downscaled reason-
ably well the soil moisture estimates (R : 0.343–0.865 and
MBE : �0.165 to �0.122) for the individual subpixels with
the measurements, although the soil moisture values in the
subpixels (a1,3, a2,2, a3,1) have uncertainties (below 0.1 cm3

cm�3). The lowest soil moisture simulated by the hydrolog-
ical model was about 0.1 (cm3 cm�3), but the in situ soil
moisture measurements are even lower than the simulated
estimates (<0.1 cm3 cm�3), which means that the hydro-
logical model is less sensitive during the dry condition. We
also compared the �(h) functions derived by the dominant
soil ID values (ID: 9, 14 for the subpixel a1,1, and ID: 9,
12 for the subpixel a1,3) for the individual subpixels with
the observed �(h) functions measured with the soil core
samples collected at the LW 21 sites (shown in Figures 12b
and 12c). The derived �(h) functions, which have silt (ID:
9) and silt loam (ID: 12) soils, in the subpixel a1,3 matched
well with the observed soil water retention curve, but the

�(h) functions of subpixel a1,1 have a bias compared to the
observation, especially for sandy clay loam (ID: 14) soil.
Pixel-based simulated ET estimates for the LW 21 site
were illustrated in the Figure 13. The simulated ET esti-
mates (MBE : �4.378 to �3.630, R is excluded, because of
few data sets) with a wheat crop (at the subpixels a1,2, a1,3,
a2,2, a2,3, a3,2, a3,3) are higher than those of the grass cover
(subpixels: a1,1, a2,1, a3,1). On DOY 190, ET was relatively
underestimated compared to the observations, because
wheat crop was harvested at the LW 21 site on 27 June
(DOY 178) and converted to bare ground. Overall,
although DDA estimated soil moisture and ET at subpixel
level have errors due to inherent weaknesses of the adopted
hydrological model (SWAP) and limited field measure-
ments, the approach generally shows good performance for
downscaling the remote sensing (ESTAR with 800 m �
800 m footprints) soil moisture products.

[31] The downscaled soil moisture dynamics (MBE :
�0.203 to �0.169) at the LW 13 site showed more varia-
tions than those (MBE : �0.165 to �0.122) of the LW 21
site, although the correlations (R : 0.724–0.914) for LW13
are better than those (R : 0.343–0.865) for the LW 21 site in
Figure 14a. The simulated soil moisture for the subpixels
(a1,1, a1,2, a1,3, a2,1, a2,3, a3,1) are underestimated compared
to the in situ measurements (a1,1, a1,2, a1,3, a2,1, a2,3, a3,1)
at LW13. We suggest that as the land surface at the LW 13
site has a significant slope compared to the flat terrain of
LW 21 site (<2% slope) indicating that topography causes

Table 8. Solutions (Soil ID) Derived by the Deterministic Downscaling Algorithm Using the Genetic Algorithm (EMOGA) With Vari-
ous Vegetation Covers (Wheat, Soybean, Grass, and Maize) Under the Relatively Simple Land Surface Condition for Case 2

Subpixel (ai,j) Observationsa (Soil ID)

Relatively Simple Land Surface Condition

Wheat Soybean Grass Maize

a1,1 4 4 4 4,10,18 4
a1,2 7 7,10 7 7 7
a1,3 13 1,5,13 7,13 13 13
a2,1 1 1,4 1,13 1 1
a2,2 4 4,13 4,27 4 4
a2,3 7 7,10 4,7,13 7 7
a3,1 13 13 1,7,13 13 13
a3,2 1 1 1 1 1
a3,3 1 1 1 1 1

aSoil identification (soil ID) values from the physical soil texture database. Bold: the exact solution searched.

Table 9. Solutions (Soil ID) Derived by the Deterministic Downscaling Algorithm Using the Genetic Algorithm (EMOGA) for Differ-
ent (Shallow) Ground Water Table Depths (�200, �150, and �100 cm) With the Wheat Crop Under the Relatively Simple Land Sur-
face Condition for Case 2

Subpixel (ai,j) Observationsa (Soil ID) GW—100 cm GW—150 cm GW—200 cm

a1,1 4 4,27 4 1
a1,2 7 7,12 7,9,12 7,12
a1,3 13 13 13 13
a2,1 1 1 1 1
a2,2 4 4,27 4 1
a2,3 7 7,9,12 7,9,12 7,12
a3,1 13 5,13 13 1,13
a3,2 1 1 1 1,13
a3,3 1 1 1 1

aSoil identification (soil ID) values from the physical soil texture database. Bold: the exact solution searched.
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more uncertainties in downscaling of the RS soil moisture
products than for a flat site. The derived �(h) functions with
the solutions (ID: 8-dominant, silt soil) of the subpixels (3
and 6) are compared with the observations in Figures 14b
and 14c. The estimated �(h) function in the subpixel 6
(a1,3) somewhat corresponded well to the observed �(h)
function, but the water retention curve in the subpixel 3
(a2,3) deviated from the observed curve. Overall, the simu-
lated ET estimates matched the pixel-based ET with the
correlations (R : 0.368–0.990) and uncertainties (MBE :
�4.652 to �4.171). However, pixel-based ET estimation of

subpixel (a3,1) on DOY 158 was considerably higher than
other values estimated by the S-SEBI model (Figure 15),
because of a noise within the pixel and the presence of a
small pond. The presence of pond is ignored during hydro-
logic model simulation. In summary, the DDA approach
has uncertainties for extracting the soil ID values of subpix-
els within the RS soil moisture footprints based on certain
landscape features that are not accounted in the hydrologic
model. However, the �(h) functions, soil moisture dynam-
ics �(t), and ET(t) estimates of individual subpixels
matched reasonably well with the observations and demon-
strated the applicability of our approach at the field scale.
Our proposed approach has been validated under the lim-
ited conditions due to the lack of measurements. However,
this algorithm could provide the reliable downscaled results
using the limited RS data in a real world condition. Future
field studies can be designed to implement and test this
algorithm at much larger scale for (recently deployed and
upcoming) satellite-based soil moisture (e.g., European
Space Agency’s SMOS, NASA’s SMAP) platforms. While
the approach should theoretically work on any flat land-
scapes, uncertainty due to complex terrains and additional
computational demand for downscaling from such large
footprints (e.g., 40 km � 40 km) need to be evaluated. Fur-
ther, different remote sensing based evapotranspiration
algorithms have been developed in the recent years with in-
herent limitations and advantages. Difference in algorithms
might cause uncertainties in pixel-scale ET values. Com-
parison across different remote sensing based ET algo-
rithms could be explored in the future in the context of the
performance of the proposed downscaling algorithm.

4. Concluding Remarks

[32] We developed a deterministic downscaling algo-
rithm using the ensemble multiple operators genetic algo-
rithm (EMOGA) for estimating the (subpixel) finer-scale

Figure 10. Maximum fitness of the field experiments (10
ensembles � three different random number generator
seeds) with the various bottom boundary conditions (free
drainage condition and GW�100, �150, �200 cm); (a)
LW 13 site, (b) LW 21 site.

Table 10. Solutions (Soil ID) Derived by the Deterministic Downscaling Algorithm Using the Genetic Algorithm (EMOGA) at the LW
13 and 21 Sites for Case 3a

Study Sites

Subpixel (ai,j)

a1,1 a1,2 a1,3 a2,1 a2,2 a2,3 a3,1 a3,2 a3,3

Soil ID % Soil ID % Soil ID % Soil ID % Soil ID % Soil ID % Soil ID % Soil ID % Soil ID %

LW 13 3 10.0 2 10.0 3 6.7 3 16.7 2 3.3 2 6.7 2 3.3 2 3.3 2 3.3
6 23.3 3 30.0 6 23.3 6 36.7 3 6.7 3 10.0 3 23.3 3 6.7 3 3.3
8 63.3 6 30.0 8 66.7 8 46.6 6 33.3 6 40.0 6 16.7 6 30.0 6 26.7
21 3.4 8 30.0 10 3.3 8 50.0 8 43.3 8 56.7 8 56.7 8 56.7

21 6.7 21 3.3 10 6.7
21 3.3

Sum 100 100 100 100 100 100 100 100 100
LW 21 9 43.3 9 30.0 12 26.7 14 50.0 5 13.3 2 33.3 9 73.3 9 53.3 1 13.3

5 6.7 1 10.0 2 16.7 9 43.3 9 30.0 12 20.0 14 23.3 1 23.3 2 10.0
14 43.3 2 23.3 9 26.7 3 3.3 1 20.0 1 23.3 1 3.4 5 6.7 5 10.0
13 3.3 12 13.3 1 16.7 1 3.4 12 23.3 9 13.4 12 13.3 9 43.3
1 3.4 5 20.0 5 6.7 2 13.4 7 3.3 2 3.4 12 23.4

7 3.4 3 3.3 5 3.3
7 3.4 14 3.4

Sum 100 100 100 100 100 100 100 100 100

aSee Table 1 for soil identification (soil ID) values from the physical soil texture database. Bold: the exact solution searched.
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Figure 11. (a) Soil water contents (�(h)) and (b) hydraulic conductivities (K(h)) of physical soil texture
database.

Figure 12. (a) Soil moisture dynamics (0–5 cm) of subpixels downscaled by the deterministic downscaling
algorithm using the genetic algorithm (EMOGA) at the LW 21 site in Oklahoma, (b) �(h) functions of the ob-
servation and solutions (soil ID: 9, 14), and (c) �(h) functions of the observation and solutions (soil ID: 9, 12).
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soil moisture from the remotely sensed (RS) soil moisture
(SM) and evapotranspiration (ET) products based on
inverse modeling under different hydro-climatic regions.
We extracted the pixel-based soil ID values (representing
soil textures) of subpixels within the RS pixel and simu-
lated the long-term SM and ET dynamics through the
hydrological model using the searched (soil ID) results of
subpixels. Synthetic experiments were conducted under
various (simple, relatively simple, relatively complex, and
complex) land surface conditions with different vegetation
covers (wheat, soybean, grass, and maize) and shallow
ground water tables (�100, �150, and �200 cm), respec-
tively. Then, we validated the applicability of this approach
with the in situ soil moisture measurements and �(h) curves
derived by the soil hydraulic parameters obtained from the
soil core samples collected at the field (LW 13 and 21) sites
in Oklahoma.

[33] The synthetic cases showed the robustness of the
algorithm for extracting the soil ID values of subpixels.
Under the simple, relatively simple, relatively complex,

and complex land surface conditions, this approach fairly
identified the solutions of subpixels, although uncertainties
were included in the derived solutions. Land covers had
more impacts on the model performance than the presence
of shallow ground water tables. In the field experiments,
the downscaled soil moisture estimates of subpixels (from
ESTAR footprint) showed the moderate correlation (R :
0.724–0.914, MBE : �0.203 to �0.169 for LW 13; R :
0.343–0.865, MBE : �0.165 to �0.122 for LW 21) with the
in situ measurements. Mostly, DDA searched loam, silt,
and silt loam soils (soil ID: 6, 8, 7, 9, 12) as dominant soils
at the individual subpixels compared to the observations
(predominantly loam and silt loam) at the LW 13 and 21
sites. Although there exist uncertainties due to the non-
uniqueness of solutions (e.g., similarities of soil hydraulic
responses among the soil textures included in the physical
soil texture database, colinearity of covariates, inherent
weakness of hydrological model structures, and errors in
measurements and initial/bottom boundary conditions)
and few pixel-based ET measurements available, the results

Figure 13. Evapotranspiration of subpixels by the deterministic downscaling algorithm using the
genetic algorithm (EMOGA) at the LW 21 site in Oklahoma.
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show good performance of the approach. In other words,
the soil moisture estimates downscaled by the deterministic
downscaling algorithm matched well with the generated
observations under synthetic conditions and field measure-
ments during the SGP97 hydrology experiment. The
good match of observed (field-observed soil hydraulic
properties) and simulated (derived-soil ID values) �(h)
functions supports the robustness of our approach further in
downscaling the RS products at the airborne footprint
scales. On the basis of these findings, we suggest that the
deterministic downscaling algorithm with the genetic algo-
rithm (EMOGA) can be useful for downscaling the
remotely sensed soil moisture products at the spatiotempo-
ral scales using the pixel-based evapotranspiration. Also,
we could condition our approach selectively for providing
disaggregated results in the spatial or temporal domain

only. It will greatly assist in providing model outputs that
can meet various users’ need. However, the disaggregation
algorithm might be limited due to the environmental factors
(i.e., qualities of RS soil moisture and evapotranspiration,
weather forcings/conditions, soils, vegetations, etc.) indi-
cating that the use of qualified input data under appropriate
weather conditions is required. Currently, downscaling
satellite-scale soil moisture footprints (i.e., SMOS or
SMAP, 40 km � 40 km, AMSR-E, 25 km � 25 km, etc.)
was not tested in this study due to the lack of detailed finer
scale soil moisture data, and the limited computation ability
in the model performance on the PC environment, etc.
within the large footprints currently. However, our pro-
posed algorithm can be extended to disaggregate satellite-
scale soil moisture products with subpixel levels ranging
several hundred meters to kilometers. Thus, these products

Figure 14. (a) Soil moisture dynamics (0–5 cm) of subpixels downscaled by the deterministic down-
scaling algorithm using the genetic algorithm (EMOGA) at the LW 13 site in Oklahoma, (b) �(h) func-
tions of the observation and solutions (soil ID: 8), and (c) �(h) functions of the observation and solutions
(soil ID: 8).
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could be further evaluated for improvement in modeling
skills in the context of land-atmosphere interaction, hydrol-
ogy, and general circulation.

[34] Acknowledgments. The research was partially funded by
NASA-THP grants (NNX08AF55G, NNX09AK73G) and NSF (CMG/
DMS) grants (0621113, 0934837).
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