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[1] The temporal variability observed in redox sensitive species in groundwater can be
attributed to coupled hydrological, geochemical, and microbial processes. These controlling
processes are typically nonstationary, and distributed across various time scales. Therefore,
the purpose of this study is to investigate biogeochemical data sets from a municipal landfill
site to identify the dominant modes of variation and determine the physical controls that
become significant at different time scales. Data on hydraulic head, specific conductance,
�2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected
between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet
analysis on this geochemical data set indicates that variations in concentrations of reactive
and conservative solutes are strongly coupled to hydrologic variability (water table
elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic
framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month
scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can
be associated with different sources (FeS cycling, recharge events) and sinks (uptake by
vegetation) depending on the well location and proximity to the leachate plume. Results
suggest that nitrate concentrations show multiscale behavior across temporal scales for
different well locations, and dominant variability in dissolved organic carbon for a closed
municipal landfill can be larger than 2 years due to its decomposition and changing content.
A conceptual framework that explains the variability in chemical concentrations at different
time scales as a function of hydrologic processes, site-specific interactions, and/or coupled
biogeochemical effects is also presented.
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1. Introduction

[2] The leaching of reactive contaminants from landfill
and waste management sites is controlled by multiple geo-
chemical, hydrological, and microbiological factors, and
occurs across various time scales [Christensen et al., 2001;
Cozzarelli et al., 2001; Jardine, 2008; Bjerg et al., 2011].
Knowledge about the temporal variability of reactive con-
taminants in groundwater is important to assess contami-
nant plume migration, evaluate associated health risks, and

undertake timely action. However, temporal patterns and
nonlinear interactions in biogeochemical processes control-
ling this variability are poorly understood in groundwater
systems.

[3] The majority of organic and inorganic contaminants
in the subsurface are affected by the hydrological and geo-
chemical properties of the porous media [Mercer, 1983].
Hydrologic variations including water table elevation and
precipitation play a pivotal role in the migration and distri-
bution of contaminants in groundwater. For example, Fen-
dorf et al. [2010] suggested that the patterns of recharge
and discharge of groundwater, especially groundwater
pumping and time since recharge, were important factors
influencing arsenic concentrations in South and Southeast
Asia. The impact of seasonal rainfall events on redox proc-
esses at a shallow, sandy aquifer contaminated with petro-
leum hydrocarbons and chlorinated solvents was addressed
by McGuire et al. [2000]. They concluded that changes in
concentrations of redox-sensitive chemicals appeared to be
related to rainfall events at monthly and larger (3 year)
time scales. Several other studies have documented the im-
portance of hydrologic controls (changes in direction and
seasonality of flow, recharge timing, transition across
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hydrologic boundaries, etc.) on geochemical concentrations
at both laboratory column and landfill scales [Mitchell and
Branfireun, 2005; Cozzarelli et al., 2011; B. Arora et al.,
Redox geochemistry within homogeneous and layered soil
columns under varying hydrological conditions, submitted
to Water Resources Research, 2013; D. Hansen et al., Bio-
geochemical cycling in heterogeneous unsaturated soils : A
comparison between live and sterilized sediments, submit-
ted to Vadose Zone Journal, 2013]. Topographic and land-
scape controls such as shifts in vegetation structure and
density can also contribute to spatio-temporal dynamics of
water content availability and infiltration characteristics of
the porous media [Asseng et al., 2001; Raz-Yaseef et al.,
2010; Jana and Mohanty, 2012].

[4] Apart from hydrologic variations, geochemical proc-
esses are also known to affect redox dynamics in ground-
water systems. The progression of redox reactions and
subsequent transformation of contaminants is based on
thermodynamic energy yields as aerobic respiration, nitrate
reduction, manganese reduction, iron reduction, sulfate
reduction, and methanogenesis [Chapelle, 2001; Megoni-
gal et al., 2004]. However, heterogeneities in contaminant
load (e.g., changes in organic carbon content and metals),
aquifer composition (e.g., presence of iron and/or manga-
nese oxides), geologic framework, etc., can result in a de-
parture from the characteristic spatial sequence of redox
zones [Champ et al., 1979; Heron and Christensen, 1995;
Heron et al., 1998; Christensen et al., 2000; Van Breuke-
len et al., 2003; Harris et al., 2006]. Redox dynamics can
be spatially variable and intensified at the plume fringe,
where they are governed by the differences between the
composition of the landfill and the mineralogy of the aqui-
fer as well as by seasonal biogeochemical cycling [Kjeld-
sen et al., 1998; Sinke et al., 1998; McGuire et al., 2002;
Scholl et al., 2006; Tuxen et al., 2006]. Apart from being
spatially heterogeneous, the distribution of redox species
can be temporally variable as many of the redox reactions
are microbially mediated. Differences in microbial popula-
tions, community structures, and their biotic interactions
(e.g., biomass accumulation and competition) can add to
the temporal variability of the distribution of contaminants
[Röling et al., 2001; Jolley et al., 2003; Haack et al.,
2004].

[5] Therefore, the release of contaminants is a function
of the complex interactions between physical factors (e.g.,
porosity, permeability, and dilution), chemical mechanisms
(e.g., adsorption, redox, and precipitation), geological con-
trols (e.g., lithologic variations, depositional patterns, and
presence of fractured rock), ecological interactions (e.g.,
type of vegetation and rooting depth), and microbial activ-
ities (e.g., biodegradation and biotransformation) [Chris-
tensen et al., 2000; Bjerg et al., 2003, 2011; Wanty and
Berger, 2006; Pacific et al., 2011]. For example, the pro-
gression of redox zones is affected by the supply rate of ter-
minal electron acceptors, which is governed by
permeability and hydrologic recharge events, and by the
presence of oxidized minerals, which is controlled by the
geologic framework of the aquifer [Lovley and Chapelle,
1995; Kamolpornwijit et al., 2003; Mukherjee et al.,
2008]. Consequently, microbial activity is influenced by
hydrological and geological processes that control the
transport of terminal electron acceptors and the distribution

of redox and other reactant species [Hunter et al., 1998;
Haack and Bekins, 2000; Geesey and Mitchell, 2008]. In
return, microbial processes utilize these reactants and mod-
ify the chemical composition of the groundwater. Biotic
degradation of organic carbon can change pH and ground-
water alkalinity, thus affecting geochemical mechanisms
(such as precipitation and sorption), while biomass accu-
mulation can impede flow, thus affecting hydrological vari-
ables (such as permeability and aquifer porosity) [Mills
et al., 1989; Taylor and Jaffe, 1990; Kusel, 2003]. There-
fore, the distribution of redox-sensitive compounds is gov-
erned by an aggregation of linked hydrological and
biogeochemical processes.

[6] Since these biogeochemical interactions are nonlin-
ear and complex, changes to measured water chemistry pa-
rameters (such as pH, SO4

2�) can indicate the influence of
multiple processes simultaneously. Moreover, the time
frame of analysis is an important factor when considering
changes in chemical composition, redox state, microbial
community structure, vegetation growth, or other external
forcing [Bloschl and Sivapalan, 1995; Langmuir, 1997;
Smith, 2007]. Therefore, wavelet analysis is considered to
be an apt technique for carrying out this time scale analysis
of water chemistry parameters [Kumar and Foufoula-Geor-
giou, 1997].

[7] Wavelet analysis is a technique that can decompose
the data into time and frequency domains simultaneously
[Foufoula-Georgiou and Kumar, 1994; Torrence and
Compo, 1998]. This time frequency localization property
enables wavelet functions to reveal the natural variability
of a data set that other techniques miss, such as detecting
discontinuities, seasonal trends, and long-term patterns of
the data set [Daubechies, 1992; Merry and Steinbuch,
2005; Sang, 2012]. Percival [2008] presents an example of
two time series that are difficult to differentiate by simple
statistical measures like the sample mean and variance,
whereas wavelet analysis can meaningfully differentiate
the overall variance structure of the two series. Classical
methods like Fourier analysis are also not suitable for ana-
lyzing the natural frequencies of biogeochemical data sets
as they represent the aggregation of many nonstationary
processes [Lau and Weng, 1995; Milne et al., 2009].
Although a relatively new technique, wavelet analysis has
been used to extract the dominant frequencies of precipita-
tion and runoff data in the Aegean region of Turkey and
highlight the time scale relationship of this rainfall-runoff
data [Partal, 2012]. Similarly, wavelets have been imple-
mented to capture vegetation dynamics at a regional scale
and associate these with seasonal changes in vegetation
phenology [Martinez and Gilbert, 2009]. Zhang et al.
[2006] analyzed temporal trends and frequency changes in
three major stations of Yangtze River, China, using simple
linear regression, Mann–Kendall test, and wavelet trans-
form analysis. They concluded that Mann–Kendall and para-
metric t-test suggest a decreasing trend in the upper Yangtze
River, but wavelet analysis reveals that the changes in
stream flow are not influenced by a single factor like climatic
change, but by multiple factors like destruction of vegeta-
tion, land reclamation, and other human activities.

[8] In summary, variations in water chemistry parame-
ters are difficult to interpret as soil hydraulic properties,
chemical reactions, microbial composition, and external
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forcing (such as rainfall events and aquifer withdrawal)
change with time. Therefore, this study is an effort to
understand the temporal changes in leachate composition
and extract their linkages to hydrological and geochemical
processes using wavelets. The specific objectives of this
study are to (i) extract the natural variability of the biogeo-
chemical data set from a closed municipal landfill site and
(ii) identify the dominant processes that attenuate and/or
control this temporal distribution of landfill leachate.

2. Field Procedures

2.1. Site Description

[9] The Norman Landfill is a closed municipal landfill
that operated for 63 years in the city of Norman, Oklahoma
(Figure 1). By the mid 1990s, the leachate plume from the
site extended approximately 250 m downgradient toward
the Canadian River [Scholl and Christenson, 1998]. Near
the landfill, the groundwater is shallow (about 2 m deep
from the land surface) [Scholl et al., 2006; Cozzarelli

et al., 2011]. Previous hydrologic investigations reveal the
dynamic nature of the water table with diurnal fluctuations
in response to transpiration, observed seasonal variations as
large as 1.4 m from winter to summer, and rapid variations
in response to rainfall events [Scholl et al., 2005]. The sea-
sonality of the water table position is primarily attributed to
rainfall and evapotranspiration. Oklahoma has a continental
climate, and the character of rainfall varies with the sea-
sons. On an average, the climatological maximum for rain-
fall occurs in May and a secondary maximum occurs in
September [Comrie and Glenn, 1998]. In their study, Scholl
et al. [2005] indicated that rainfall events can elevate the
water table within 0.6–2 days, and the residence time of the
groundwater is on the order of days depending on the sea-
son and other recharge events. The riparian zone near the
landfill is responsible for water-level decline during the
growing season (mid-April to October) [Scholl et al.,
2005].

[10] Analyses of groundwater samples have indicated
that the leachate also interacts with a former Canadian

Figure 1. Map depicting the location of the Norman Landfill site and the multilevel sampling wells
(IC 36, IC 54, and IC South) overlain on the potentiometric surface.
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River channel, referred to as the slough [Becker, 2002]
(Figure 1). The slough is an ephemeral wetland that is an
expression of the local water dynamics. Seasonal variations
in the slough water depth can be as much as 1 m deep in
the spring to dry in summer and occur in response to
groundwater and precipitation [Christenson et al., 1999;
Lorah et al., 2009]. The slough and the leachate contami-
nated groundwater are hydrologically connected such that
the groundwater discharges into the slough along the north-
east bank while the slough recharges the groundwater along
the southwest bank [Scholl et al., 2005; Lorah et al., 2009].

[11] The biogeochemistry of the site indicates sulfate
reduction, iron reduction, and methanogenesis to be impor-
tant processes for degradation of organic matter [Cozzarelli
et al., 2000; Eganhouse et al., 2001; Grossman et al.,
2002]. B�aez-Cazull et al. [2008] reported that seasonal rain-
fall patterns were dominant controls on redox zonations,
especially for iron and sulfate reduction, while analyzing 3
years of data from the slough. They also concluded that
exact temporal controls on the fate of iron could not be
determined because of multiple biogeochemical controls.
Cozzarelli et al. [2011] confirmed that chemical concentra-
tions in the plume boundaries are affected by hydrologic
processes at various time scales. Their analysis of the
plume-scale data revealed that the upper boundary of the
leachate plume is an active redox location, while the center
of the plume is depleted in sulfate and has low oxidation
capacity. The spatial variability of biogeochemical proc-
esses is also evident in the existing conceptual framework

of the Norman Landfill site (Figure 2). Therefore, the Nor-
man Landfill provides an opportunity to study the temporal
variability of biogeochemical processes in the leachate
plume and identify the physical controls governing contam-
inant distributions at different locations within the site.

2.2. Data Description

[12] Three multilevel wells located on a transect parallel
to the groundwater flow were used to collect the biogeo-
chemical data at the Norman Landfill site (Figure 1). These
wells have screens set at different elevations to capture the
dynamics of the local water table [Scholl et al., 2006].
The landfill well (IC 36) is located 35 m from the edge of
the landfill mound, the slough well (IC 54) is located 7 m
south of the slough, and the control well (IC South) is 85 m
downgradient from the slough [Breit et al., 2005]. The
wells are named as such because the geochemical charac-
teristics of the IC 36 well suggest its interactions with the
leachate plume, the IC 54 well with the slough and the
leachate plume, and the IC South with background ground-
water concentrations or recharged slough water [Breit
et al., 2005]. The control well (IC South) is located in an
area that was prone to flooding during the 1980s and has
sparse vegetation due to the activity of the river channel
[Schlottmann, 2001]. In contrast, the vegetation is quite
dense near the landfill and slough wells with mature trees
and understory [Tuttle et al., 2009]. The differences in geo-
chemical characteristics and hydrologic interactions
between the three well locations are evident in Figure 2,

Figure 2. Conceptual map showing the depth and location of the multilevel wells with respect to the
biogeochemical zones (modified from Cozzarelli et al. [2011]). Evaporated water refers to the slough
water that is relatively enriched in 18O as a result of evaporation of surface water. Water-level monitor-
ing at the landfill well (WLMLF) and other multilevel sampling wells (MLS) at the Norman Landfill site
are also shown in the figure.
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which represents the distinct biogeochemical zones for the
wells using the conceptual framework of the Norman Land-
fill site.

[13] Wavelet analysis was performed on data collected
between 1998 and 2000 from the control, landfill, and
slough wells (Table 1) [Cozzarelli et al., 2011]. This data
set contains hydrological and geochemical indicators
including hydraulic head, specific conductance, �2H, bro-
mide, chloride, sulfate, nitrate, and nonvolatile dissolved
organic carbon (NVDOC) at all well locations. Monthly
data collected at a minimum of eight depth levels for each
well resulted in approximately 200 data points for each
variable. Specific conductance was measured using a porta-
ble meter, anions were analyzed using ion chromatograph,
NVDOC concentrations were determined following the
method of Qian and Mopper [1996], and isotopic analyses
were done by equilibration with gaseous hydrogen for �2H.
A more detailed description of the analytical methods can
be obtained from Scholl et al. [2006].

3. Methods

3.1. Wavelet Analysis

[14] Since groundwater systems are complicated by linked
biogeochemical processes, wavelets offer a powerful tech-
nique to analyze the observed redox patterns and identify the
dominant processes that control water chemistry variations
in the temporal domain. Wavelets have the ability to provide
high interscale decorrelation especially when the contribut-
ing biogeochemical processes are interlinked and have mul-
tiscalar characteristics [Diou et al., 1999]. Therefore, a
wavelet transform is performed on the Norman Landfill data
set to obtain a comprehensive view of the frequency varia-
tions over time, and a multilevel decomposition (MLD) anal-
ysis is conducted to obtain the physical controls governing
biogeochemical patterns at different time scales. These tech-
niques are described in the following sections.
3.1.1. Time Frequency Analysis

[15] The wavelet transform is one of the most favored
time frequency analysis methods for characterizing multi-
scale, nonstationary processes across spatial and temporal
scales [Shao et al., 2003; Addison, 2005; Das and
Mohanty, 2008; Beecham and Chowdhury, 2010]. The con-
tinuous wavelet transform (CWT) is obtained by decom-
posing the data D(t) with a wavelet function  (t) and
generating wavelet coefficients W that indicate the level of
correlation between the wavelet function and the data:

WD a; bð Þ ¼
Z1
�1

��a;b tð ÞD tð Þdt ð1Þ

where t is time, � denotes the complex conjugate of the
wavelet function, and the wavelet function is described by

�a;b tð Þ ¼ 1ffiffiffi
a
p �

t � b

a

� �
; a > 0; �1 < b <1 ð2Þ

where a is the scale parameter that controls the dilation or
contraction, and b is the shift parameter that determines the
location of the wavelet. This flexibility of the wavelet to be
stretched and translated in both time and frequency
domains is useful for identifying localized, intermediate,
and long-term patterns existing across different time scales
[Kumar and Foufoula-Georgiou, 1997]. The choice of the
wavelet function is not arbitrary and must satisfy the basic

properties of (i) zero mean

Z 1
�1

� tð Þdt ¼ 0

� �
, (ii) unit

energy

Z 1
�1

�2 tð Þdt ¼ 1

� �
, and (iii) conservation of energy

during transformation [Daubechies, 1992; Farge, 1992].
[16] A wide variety of wavelet functions exist in the lit-

erature and present the advantage of allowing the most
appropriate wavelet (irregular, asymmetrical, and other
wave shapes) to be chosen for the time series data as
opposed to Fourier analysis, which is restricted to revealing
the sinusoid features of the data [Addison, 2005; Fugal,
2009]. In this study, Morlet wavelet is used to extract the
dominant frequencies within the biogeochemical data set as
it has a shape similar to the time series data of the Norman
Landfill site. Morlet wavelet is obtained by localizing a
complex sine wave with a Gaussian envelope. This wavelet
has both complex and real parts and, therefore, enables the
identification and fine tuning of significant frequencies
[Lau and Weng, 1995; Hariprasath and Mohan, 2009].

3.1.2. Local and Global Wavelet Spectrums
[17] The modulus of the wavelet coefficients is used to de-

velop a continuous-time power spectrum pD(a,b) defined as:

pD a; bð Þ ¼ WD a; bð ÞW �
D a; bð Þ ¼ jWD a; bð Þj2 ð3Þ

[18] This wavelet power spectrum is advantageous as it
provides the variance of the time series in both frequency
and time domains [Guan et al., 2011]. This local power
spectrum can be averaged along the time axis to obtain the
global wavelet spectrum [Torrence and Compo, 1998]:

W
2

a; bð Þ ¼ 1

N

XN�1

n¼0

jWD a; bð Þj2 ð4Þ

where N is the length of the data.
[19] A 5% significance level for the global wavelet spec-

trum and the confidence interval of the contours in the local
power spectrum are determined with a significance testing
on the background spectrum. The distribution of the local
wavelet power spectrum at each time t and scale a is given
as [Torrence and Compo, 1998]:

Table 1. Sampling Frequency for Different Wells for Wavelet Analysis

Wells Analyzed Well Screens Elevation Based on Center of the Screen (m) Analyzed Dates (month/year)

Control well (IC South) 5 to 14 327.995 to 329.355 May 1998 to May 2000
Landfill well (IC 36) 7 to 17 328.385 to 329.730 Nov 1998 to May 2000
Slough well (IC 54) 7 to 14 328.265 to 329.230 May 1998 to May 2000
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jWD a; bð Þj2

�2
) 1

2
Pk�

2
2 ð5Þ

where �2 is the variance, �2 is the chi-square value
obtained for the chosen confidence level, and Pk is the
mean spectrum at the Fourier frequency k that corresponds
to a. For the red-noise background spectrum, Pk is obtained
as [Torrence and Compo, 1998; Partal, 2012]:

Pk ¼
1� �2

1þ �2 � 2�cos 2�k=Nð Þ ð6Þ

where � is the assumed lag-1 autocorrelation, and k (¼
0 . . . N/2) is the frequency index. The lag-1 autocorrelation
coefficient is taken here to be 0.72. The confidence inter-
vals for the contour lines of the local wavelet power spec-
trum are thus obtained by choosing a red-noise background
spectrum with a particular confidence (such as 75%, 50%,
25%, and 5%) for �2. A 5% significance level for the global
wavelet spectrum is obtained using a white-noise back-
ground spectrum. The global wavelet spectrum can also be
fitted by a chi-square distribution of the form �v

2/v, where
the degree of freedom v can be estimated as follows [Tor-
rence and Compo, 1998]:

v ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tavg�t

�a

� �s
ð7Þ

where tavg is the number of points averaged over, �t is the
sampling frequency, and � is the empirically derived decor-
relation factor for time averaging. Based on Torrence and
Compo [1998], � is taken here to be 2.32. Wavelet software
provided by C. Torrence and G. Compo (http://atoc.colora-
do.edu/research/wavelets/) is used in this study for obtain-
ing the local wavelet power spectrum, the global power
distribution, and the confidence intervals.
3.1.3. Wavelet Cross-Spectrum

[20] The physical relationship between two time series in
the time frequency domain can be obtained using wavelet
cross-spectrum analysis. A wavelet cross-spectrum pro-
vides the opportunity to quantify the correlation between
the wavelet power spectra of two variables (D1, D2)
[Grinsted et al., 2004]:

pD1;D2 a; bð Þ ¼ WD1 a; bð ÞW �
D2 a; bð Þ ð8Þ

[21] This wavelet cross-spectrum can be decomposed
into modulus ıpD1, D2(a,b)ı and phase angle � D1, D2(a,b) as
[Maraun and Kurths, 2004]:

pD1;D2 a; bð Þ ¼ jpD1;D2 a; bð Þjei�D1;D2 a;bð Þ ð9Þ

such that the modulus quantifies the power, and phase angle
represents the delay in the time-dependent relationship
between D1 and D2. For the Norman Landfill data set, it is
desirable to know how two nonstationary geochemical vari-
ables vary in time.

3.1.4. Multilevel Decomposition
[22] The wavelet decomposition technique, as the name

implies, decomposes the original data into a number of fre-

quency bands at discrete levels or time scales. At the first
step, the time series data is split into two to reveal the high-
pass bandwidth or the detailed components, and the low-
pass bandwidth or the approximate components [Misiti
et al., 2008; Kia et al., 2009; Quiroz et al., 2011]. Each
low-pass bandwidth is further decomposed to obtain the
next level of hierarchy. This technique thus provides the
opportunity to throw out the noise (detailed components)
and retrieve the smoothed trend of the data (approximate
components) at each level. The decomposition levels are
based on the total number of data points and the sampling
frequency [Mallat, 1999].

[23] The hierarchical details and approximations are
obtained by iteratively applying a high-pass filter and an
associated low-pass filter, which must satisfy certain condi-
tions including orthonormality [Labat et al., 2000; Percival
and Walden, 2000]. In the wavelet analysis, a wavelet func-
tion  (t) constitutes the high-pass filter, and its scaling
function �(t) forms the low-pass filter. The choice of the
wavelet function is such that it is orthogonal to both trans-
lates and dilates, while the scaling function is only orthogo-
nal to the translates [Kumar and Foufoula-Georgiou,
1997]. The detail (Dm) and approximation (Am) components
at any decomposition level m are thus given by:

Dm tð Þ ¼
X1

k¼�1
W m; kð Þ m;k tð Þ ð10Þ

Am tð Þ ¼
X1

k¼�1
S m; kð Þ�m;k tð Þ ð11Þ

where, k is a discrete location index, and S are the scaling
coefficients analogous to the wavelet coefficients. In multi-
level decomposition (MLD), a discretized version of equa-
tion (1) is used where the wavelet function is scaled by
powers of two such that a¼ 2m and shifted by integers such
that b¼ k2m [Martinez and Gilabert, 2009].

[24] In this study, the wavelet decomposition is carried
out using the Daubechies 5 (Db5) wavelet and scaling func-
tions, which satisfy the orthogonality requirement. Figure 3
illustrates the shape of the Db5 wavelet and scaling func-
tions and the four levels of decomposition obtained from
them. The hierarchical approximations and details {(a1,
d1), (a2, d2), (a3, d3), (a4, d4)} follow dyadic sampling
(powers of two) to capture the natural frequencies within
the biogeochemical data at 2, 4, 8, and 16 month scales,
respectively. Although seasonal variability is usually
observed at 1, 3, 6, and 12 month scales, these dyadic
decomposition levels still present an opportunity to investi-
gate the event-scale, intra-annual, and biannual trends
observed in the Norman Landfill data set.

4. Results and Discussion

[25] Wavelet analysis is used in this study to obtain the
dominant variations in the biogeochemical data set and
identify the different processes that control these variations
at dominant time scales. This section demonstrates the use
of continuous and discrete wavelet techniques described in
the previous section to investigate the time series behavior
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of geochemical variables at the control, landfill, and slough
wells.

4.1. Temporal Variations and Governing Processes at
the Control Well

[26] Figure 4 depicts the temporal characteristics of chlo-
ride, sulfate, and bromide at the control (IC South) well

from May 1998 to May 2000. As described in the previous
section, Morlet wavelet is employed to study the temporal
variations in the data set. The edge effects of time fre-
quency analysis, represented by the cone of influence (indi-
cated by cross-hatched regions in the continuous wavelet
spectrum) are excluded from this analysis [Guan et al.,
2011]. Based on the Morlet wavelet, all three time series

Figure 3. Scheme of the multilevel decomposition (MLD) using Db5 wavelet and scaling functions.
#2 represents the decomposition by a power of two.

Figure 4. Time frequency analysis at the control well for (i) chloride, (ii) sulfate, and (iii) bromide data
displaying time record, continuous wavelet spectrum, and global wavelet spectrum. In the time series
graphs, the thickness of the cylinder signifies the concentration value, and the colors represent the well
screens 5–14. In the wavelet power spectrum, the cross-hatched regions signify the cone of influence, the
contour levels are chosen so that 75%, 50%, 25%, and 5% of the wavelet power is above each level,
respectively, and the color bar signifies the strength of power in the wavelet spectrum. In the global wave-
let spectrum, dashed line is the 5% significance level using a white-noise background spectrum.
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depict a single dominant scale close to the 12 month period
as represented by red contours in their wavelet power spec-
tra (Figure 4b). These red contours are statistically signifi-
cant at the 75% confidence level based on the background
spectrum. This dominant frequency is also evident in the
global wavelet spectrum (Figure 4c) for all three geochemi-
cal variables at the 5% significance level despite the large
differences in their temporal data set (Figure 4a). There is
however a discontinuity in the dominant frequency (red
contours) at different times for the three variables, with
chloride displaying this discontinuity between August and
September 1999, bromide between April and November
1999, and sulfate beyond April 1999 in Figure 4b. The rea-
sons for this temporal disparity will be explored using
MLD analysis. Another interesting feature in the wavelet
power spectra is the small-scale behavior that shows con-
sistent patterns (contours with 50% confidence level) at a 4
month period for chloride data, and somewhat repetitive
behavior for bromide data. Since chloride and bromide act
mainly as conservative indicators of water flow, these small
scale patterns could be representative of seasonal hydro-
logic events.

[27] The cross wavelet transform is used in this study to
describe the physical relationships between bromide and
chloride data in the time frequency space. Figure 5a clearly
indicates that bromide and chloride data are significantly
correlated with each other at the control well. The modulus
of the cross wavelet transform further suggests that both
signals have significant correlation around scale 8 except in

the interval between April and October 1999, which reveals
the quasi-periodic nature of this correlation (Figure 5b).
The angle plot (Figure 5c) of the normalized data reveals
that the phase lag behavior of the two signals is not consist-
ent throughout the data set. A clear indication of this phase
lag behavior and the relative phase difference between the
two signals can be obtained from wavelet coherence analy-
sis (not shown here) [Grinsted et al., 2004]. The angle plot
(Figure 5c) again suggests the time-localized correlation
between bromide and chloride, which could be attributed to
similar (conservative) transport behavior but different sour-
ces that augment bromide and chloride concentrations at
the landfill site. As both signals are conservative indicators
of water flow, results pertaining to bromide only will be
described.

[28] To further analyze and temporally isolate the proc-
esses affecting these dominant frequencies, a multilevel
decomposition is performed on the bromide and sulfate
data using Db5 wavelet (Figure 6). As mentioned in the
previous section, this filtering removes the noise (detailed
components) from the data and keeps only the approxima-
tions at each scale. The approximations reveal the
smoothed trend in the bromide data and are therefore com-
pared with water table elevation and rainfall data to further
isolate and identify the hydrologic processes affecting bro-
mide time series (Figure 6(i)). Figure 6(i) illustrates that
monthly precipitation events exceeding a certain limit act
as discrete episodes that correspond to the ‘‘approxima-
tion’’ of bromide at 8 months (a3). For example, each of the

Figure 5. Cross wavelet analysis of bromide and chloride signals at the control well from May 1998 to
May 2000: (i) time records of normalized bromide and chloride data and (ii) modulus and angle of the
wavelet cross-spectrum.
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rainfall peaks in May 1998, September–October 1998, June
1999, and September 1999 are clearly discernible as humps
in the ‘‘approximation’’ of bromide. The smaller mounds in
March and December 1999 in the approximation profile
also correspond to precipitation events (indicated by lines
in Figure 6(i)). These rainfall peaks are significantly corre-
lated with bromide approximation (correlation coef-
ficient¼ 0.54) at the 90% confidence level. A significant
portion of these temporal trends are also associated
with water table elevation data (indicated by arrows in
Figure 6(i)) with moderate correlation (correlation coef-
ficient¼ 0.50). In particular, the dip observed in July–Au-
gust 1998 and August 1999 in the approximate coefficients
of bromide corresponds to groundwater decline in these
months, and the slight increase in groundwater table in Jan-
uary and December 1999 is also captured by the approxi-
mation profile. The detailed components at four levels of
decomposition in Figure 6(iii) reveal frequency-specific
behavior, and the d4 component reveals a peak around July
1998 that coincides with a water table elevation that falls

below a certain limit (Figure 6(i)). The groundwater data in
Figure 6(i) also indicates that the summer was relatively
dry for 1998 (lowest water level elevation¼ 328.6 m) as
compared to 1999 (lowest water level elevation¼ 328.8
m). As suggested earlier, this MLD technique provides
increasingly finer details at each scale. The detailed compo-
nents (d1–d3) further confirm the discontinuity in dominant
frequency as suggested by the continuous wavelet spec-
trum. The annual periodic component in the bromide time
series is therefore replaced by 5–7 month components that
correspond to hydrologic data. Therefore, rainfall recharge
events and seasonal variability of the groundwater table
affect wavelet coefficients at semiannual scales (�8
months) and can be associated with the temporal dynamics
of bromide concentrations at the control well.

[29] A multilevel decomposition is also performed on
sulfate data to identify the governing processes controlling
its temporal variability at the control well. Previous studies
have identified several sources of sulfate at the landfill site
(such as organosulfur compounds, mineral weathering from

Figure 6. Multilevel decomposition of (i) bromide and (ii) sulfate data at the control well displaying
approximate coefficients at 8 months, monthly groundwater elevation, and precipitation record, and (iii)
detailed coefficients of bromide at dyadic scales of 2 (d1), 4 (d2), 8 (d3), and 16 (d4). Two consecutive
dashed/solid lines show trends matching between the approximate signal and the precipitation data, and
arrows show trends matching between the approximate signal and groundwater elevation data.
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Figure 7. Time frequency analysis at the landfill well for (i) bromide, (ii) �2H, (iii) sulfate, and (iv)
specific conductivity data displaying continuous power spectrum and global wavelet spectrum. The
cross-hatched regions in the wavelet power spectrum signify the cone of influence, the contour levels are
chosen so that 75%, 50%, 25%, and 5% of the wavelet power is above each level, respectively, and the
color bar signifies the strength of power in the wavelet spectrum. In the global wavelet spectrum, dashed
line is the 5% significance level using a white-noise background spectrum.

Figure 8. Cross wavelet analysis of bromide and specific conductivity signals at the landfill well from
November 1998 to May 2000: (i) time records of normalized specific conductivity and bromide data and
(ii) modulus and angle of the wavelet cross-spectrum.
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barite, pyrite, iron oxide minerals, etc.) and demonstrated
the influence of recharge events on sulfur cycling and its
transport to deeper depths [Scholl et al., 2006; Tuttle et al.,
2009]. However, this study compares the approximations at
the scale of the dominant frequency (a3¼ 8 months) and
hydrologic data to reveal the temporal dynamics of proc-
esses controlling sulfate concentrations at the control well
(Figure 6(ii)). As expected, there are striking similarities
between the seasonal groundwater variations (indicated by
arrows) and rainfall events (indicated by lines) with trends
in sulfate data. The rainfall events in September 1998,
March–June 1999, and April 2000 are evident as humps in
the ‘‘approximation’’ of sulfate. The decline in groundwater
in July–August 1998 and 1999 and the slight increase in
January 1999 is again visible in the sulfate data. Both
groundwater variations (correlation coefficient¼ 0.55) and
rainfall events (correlation coefficient¼ 0.45) show moder-
ate correlations with sulfate ‘‘approximation’’ at 8 month
scales at the 90% confidence level. Notice the low levels of
sulfate concentrations observed following a rainfall event

even with an increasing water table elevation such as Octo-
ber–November 1998 and 1999, and January 2000. This
decrease in sulfate concentrations is attributed to dilution
and sulfate reduction processes at the control well [Scholl
et al., 2006]. The detailed component d4 (not shown here)
further confirms this decrease in sulfate concentrations fol-
lowing the rainfall events of September 1998 and 1999.

[30] In summary, temporal variations in bromide and sul-
fate data at the control well show annual periodicity (�12
month) and are significantly dominated by water table vari-
ability and precipitation events. The temporal anomalies at
the dominant scale of variation are related to hydrologic
variability for bromide and hydrologic and sulfate reduc-
tion processes for sulfate.

4.2. Temporal Variations and Governing Processes at
the Landfill Well

[31] Figure 7 represents the temporal dynamics of bro-
mide, �2H, sulfate, and specific conductivity at the landfill
(IC 36) well from November 1998 to May 2000. An annual

Figure 9. Multilevel decomposition of (i) bromide and (ii) sulfate data at the landfill well displaying
approximate coefficients at 8 months, monthly groundwater elevation, and precipitation record, and (iii)
detailed coefficients of sulfate at dyadic scales of 2 (d1), 4 (d2), 8(d3), and 16 (d4). Two consecutive
dashed/solid lines show trends matching between the approximate signal and the precipitation data, and
arrows show trends matching between the approximate signal and groundwater elevation data.

ARORA ET AL: TEMPORAL DYNAMICS AT THE NORMAN LANDFILL SITE

11



periodic component is again visible in the wavelet spectra
for all four time series data as denoted by the red contours
with 75% confidence level (Figure 7a). This annual compo-
nent also shows dominance at the 5% significance level
(indicated by dashed lines in Figure 7b) in the global wave-
let spectra. These periodic structures show time localization
and disappear beyond April 1999 for bromide, beyond July
1999 for sulfate and specific conductivity, and show tempo-
ral irregularity in �2H data. These annual components are
therefore replaced by 4 month components for bromide and
specific conductivity, and a 7 month component for sulfate.
Regarding the small scales (2–4 months), repetitive struc-
tures (contours with 50% confidence level) are again visi-
ble for bromide, �2H, and sulfate time series but not for
specific conductivity. Since these variables have different
contributing processes, the temporal discrepancies present
in the wavelet power spectrum for each signal are different.

[32] Wavelet cross spectrum analysis conducted on bro-
mide and specific conductivity is illustrated in Figure 8.
Figure 8a suggests that bromide and specific conductivity
signals at the landfill well are significantly correlated with
each other. Figure 8b reveals strong correlations at the
dominant scale of variation (scale 8). The modulus of cor-
relation at higher time periods (50–64 months) can be
ignored in this analysis. The angle plot (Figure 8c) as well
as wavelet coherence analysis (not shown here) again
reveal that the phase lag behavior is not consistent through-
out the data set, thereby suggesting a time-varying correla-
tion between the two signals. Similarly, wavelet cross
spectrum analysis suggests a high correlation between bro-

mide and �2H signals in displaying the periodic annual
component (not shown here). As a result, a multilevel
decomposition is performed only with respect to bromide
and sulfate at the landfill well.

[33] After removing the noise components, the ‘‘approxi-
mation’’ of bromide is again compared with hydrologic
variations at the landfill well (Figure 9(i)). The rainfall
peaks (indicated by lines) in April and December 1999 are
clearly evident in the approximation profile of bromide.
The rainfall event in April 2000 also coincides with an
increase in bromide content. A decrease in water table
(indicated by arrows) in July–August 1999 and an increase
in October 1999 and March 2000 are also well represented
by the approximate coefficients. Apart from November–
February time frames for both 1998–1999 and 1999–2000
years, the approximate coefficients of bromide show con-
siderable matching with groundwater table (correlation
coefficient¼ 0.64) and rainfall data (correlation coef-
ficient¼ 0.44) at the 90% confidence level. Since the
region around the landfill well is densely vegetated, a
decrease in evapotranspiration processes observed during
the winter months seems to be contributing to variations in
bromide transport processes during these time frames.
Scholl et al. [2005] estimated evapotranspiration rates
using diurnal water table fluctuations and reported that
transpiration had a considerable effect on the water table
during the July–October time period. Therefore, a compre-
hensive analysis of the hydrologic interactions including
evapotranspiration losses at the landfill well is able to
explain the variability in bromide concentrations at this
location.

[34] The ‘‘approximation’’ component of sulfate at the
dominant scale of variation (a3 ¼ 8 months) is also com-
pared with hydrologic fluctuations (Figure 9(ii)). These
groundwater variations (correlation coefficient¼ 0.59) and
rainfall peaks (correlation coefficient¼ 0.45) are again
found to be moderately correlated with approximate coeffi-
cients of sulfate at the 90% confidence level. The rainfall
peaks in April 1999, June 1999, September 1999, and April
2000 are visible as humps in the approximation profile of
sulfate. The water table rise in March 1999 and decline in
May and July 1999 are also captured by the ‘‘approxima-
tion’’ of sulfate at 8 month scales. Again, the November–
February time frames for both 1998–1999 and 1999–2000
years show poor matching. The trend analysis also reveals
a mismatch with a peak in sulfate concentrations around
July 1999. Therefore, scale decomposition with all detailed
components of sulfate time series is illustrated in
Figure 9(iii). The decomposition in the details of sulfate
concentrations at the landfill well leads to the identification
of three components with very different behaviors. First, a
large peak is located around January 1999; second, several
smaller peaks are located around December 1998, March,
June, and July of 1999, and third, a discontinuity is
observed around November 1999 to March 2000 in the d1

component. The d2 component also reveals an amplitude
reduction in sulfate frequency from November 1998 to
March 1999 to the rest of the time series. These detailed
components suggest that large peaks in sulfate concentra-
tions in the beginning time frame (November 1998 to
March 1999) correspond to a large reoxidation event that
possibly led to the dissolution of aquifer solids (barite, iron

Figure 10. Time frequency analysis at the slough well for
(i) bromide and (ii) sulfate data displaying continuous
power spectrum and global wavelet spectrum. The cross-
hatched regions in the wavelet power spectrum signify the
cone of influence, the contour levels are chosen so that
75%, 50%, 25%, and 5% of the wavelet power is above
each level, respectively, and the color bar signifies the
strength of power in the wavelet spectrum. In the global
wavelet spectrum, dashed line is the 5% significance level
using a white-noise background spectrum.
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sulfide minerals) because such high sulfate concentrations
cannot be attributed to background groundwater or rainfall
alone or that the aggregation of various processes (rainfall
recharge, vegetative decay, mineral dissolution, etc.) simul-
taneously resulted in such an event [Schlottmann, 2001].
Previous studies have documented the importance of barite
dissolution and its influence on sulfate concentrations at the
landfill site [Tuttle et al., 2009; Cozzarelli et al., 2011].
Also, these larger peaks occur immediately following low
sulfate concentrations, and several factors (water table var-
iations, undersaturation with respect to sulfate due to
increased sulfate reduction and/or iron sulfide formation,
etc.) can contribute to an increase in the dissolution rate
[Ulrich et al., 2003; Cozzarelli et al., 2011]. The smaller
peaks that are spread across different times indicate an
increase in sulfate concentrations in response to rainfall
events or sulfur cycling as a result of reoxidation of iron
sulfide minerals with an increase in groundwater table

[Ulrich et al., 2003; B�aez-Cazull et al., 2008]. This sulfur
cycling also constitutes a sulfate reduction step, which is
visible as the decrease in sulfate concentrations (in addition
to dilution) immediately following a rainfall event (Figure
9(ii)). The discontinuity around November 1999 to March
2000 constitutes a significant decrease in sulfate concentra-
tions (greater than those observed for November 1998 to
March 1999) and may stem from strong vegetation dynam-
ics at the site. Uptake of sulfate by plant roots is an impor-
tant process near the landfill well [Tuttle et al., 2009], and
this frequency may be reduced during the winter months.
This study confirms previous investigations by Scholl et al.
[2006] that isotopically traced the vertical transport of
recharge water for a single rain event of September 1998
and indicated that sulfur redox processes in the top 2 m of
the site are associated with recharge events and seasonal
patterns of groundwater. Thus, this study does not provide
a new conceptual framework for sulfur redox cycling but

Figure 11. Multilevel decomposition of (i) bromide data at the slough well displaying approximate
coefficients at 8 months, monthly groundwater elevation, and precipitation record, (ii) time record of
wetland water level (modified from Scholl et al. [2005]), and (iii) detailed coefficients of bromide at
dyadic scales of 2 (d1), 4 (d2), 8(d3), and 16 (d4). Two consecutive dashed/solid lines show trends match-
ing between the approximate signal and the precipitation data, arrows show trends matching between the
approximate signal and groundwater elevation data, and ovals represent matching between the approxi-
mate signal and wetland water level.
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provides a clear temporal breakdown of the processes that
become significant at different times using wavelet
analysis.

[35] In summary, an annual periodic component again
dominates different geochemical concentrations at the
landfill well. The temporal patterns of geochemical varia-
bles are strongly guided by hydrologic variations and
affected by vegetation dynamics in the winter months. The
multilevel decomposition of sulfate reveals sources (FeS
cycling, rainfall events, and increased barite dissolution
rate) and sinks (uptake by plant roots) of sulfate at different
time frames between November 1998 and May 2000.

4.3. Temporal Variations and Governing Processes
at the Slough Well

[36] Figure 10 demonstrates the temporal evolution of
bromide and sulfate at the slough (IC 54) well. The wavelet
power spectra (Figure 10a) reveal two dominant scales of
variation with annual and biannual periodic components
for both signals. Both the annual and biannual components
are statistically significant at 75% confidence level in the
continuous wavelet spectra (indicated by red contours in
Figure 10a) and show dominance at the 95% confidence
level in the global wavelet spectra (indicated by dashed
lines in Figure 10b). Notice that the smaller scales contain
negligible power (indicated by white contours in Figure
10a) for both time series. The red contours depicting the
annual component (�12 months) are discontinuous and
replaced by a 2 month component for sulfate and a 5 month
component for bromide that reappears in the last phase of

the time series. The biannual component (�20 months)
also shows time localization and is replaced by a 1–2
month component for bromide and a 2 month component
for sulfate.

[37] To further evaluate the processes affecting temporal
variability at the slough well, a multilevel decomposition is
conducted on the bromide time series. This trend analysis
(Figure 11(i)) at the semiannual scale (8 months) portrays
significant matching with rainfall data (indicated by lines)
in the second year of analysis (April 1999 to May 2000) as
well as with a rainfall peak in May 1998. In the first year of
analysis (August 1998 to January 1999) as well as in Au-
gust 1999, there are discrete patterns of decreasing and
increasing water table elevation (indicated by arrows) that
match with the normalized ‘‘approximation’’ of bromide. A
moderate correlation is obtained between the approximate
coefficients of bromide and rainfall (correlation coef-
ficient¼ 0.49) as well as with water elevation data (correla-
tion coefficient¼ 0.42) at the 90% confidence level. The
mismatch between the smoothed ‘‘approximation’’ and
hydrologic data can be explained by groundwater-surface
water interactions between the wetland and the slough well
(Figure 11(ii)). Notice the peak in the normalized bromide
signal around February and September 1999 (Figure 11(i))
that matches with the increase in wetland water levels (rep-
resented by ovals in Figure 11(ii)). The detailed compo-
nents d1-d3 (Figure 11(iii)) also identify a frequency around
March–July 1999 that is visible in the last phase of the time
series as well and corresponds to an increase in wetland
water level during the spring season [Scholl et al., 2005].
The d4 component reveals another frequency that is local-
ized around October–November 1998 and October 1999.
This biannual component is reflective of the end of the
growing season. The withdrawal of water from the water
table by vegetation affects hydrologic dynamics at the site
and consequently alters transport of conservative indica-
tors. Previous investigations also corroborate this interpre-
tation [Scholl et al., 2006; Tuttle et al., 2009; Cozzarelli
et al., 2011].

[38] In summary, the wavelet spectra for bromide and
sulfate at the slough well reveal two frequencies that are
more or less localized in time. The annual periodic compo-
nent in the signal corresponds to slough interactions and
showcases a 5 month component (March–July), while the
biannual component is a function of vegetation dynamics at
the slough well and showcases a 1–2 month component
(October–November).

4.4. Exceptions to the Dominant Frequency Rule

[39] There are two exceptions to the dominant scales of
variation obtained for the geochemical variables at the con-
trol (scale 8), landfill (scale 8), and slough wells (scales 8
and 16). First, nitrate data are inherently multiscalar, and
this is demonstrated in Figure 12. The wavelet power spec-
tra of nitrate time series (Figure 12a) reveal high power
wavelet coefficients (indicated by red contours) across
scales 4–16 for the control well and across scales 2–16 for
the landfill well. The global wavelet spectra (Figure 12b)
also suggest power to be distributed across multiple scales
at the 95% confidence interval (indicated by dashed lines).
This clearly indicates that different processes with different
frequency ranges are contributing to the total wavelet

Figure 12. Time frequency analysis of nitrate at the (i)
control and (ii) landfill wells displaying continuous power
spectrum and global wavelet spectrum. The cross-hatched
regions in the wavelet power spectrum signify the cone of
influence, the contour levels are chosen so that 75%, 50%,
25%, and 5% of the wavelet power is above each level,
respectively, and the color bar signifies the strength of
power in the wavelet spectrum. In the global wavelet spec-
trum, the dashed line is the 5% significance level using a
white-noise background spectrum.
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Figure 13. Time frequency analysis of DOC at the (i) control, (ii) landfill, and (iii) slough wells dis-
playing time series data, continuous power spectrum, and global wavelet spectrum. In the time series
graphs, the thickness of the cylinder signifies the concentration value, and the colors represent the well
screens. In the wavelet power spectrum, the cross-hatched regions signify the cone of influence, the con-
tour levels are chosen so that 75%, 50%, 25%, and 5% of the wavelet power is above each level, respec-
tively, and the color bar signifies the strength of power in the wavelet spectrum. In the global wavelet
spectrum, the dashed line is the 5% significance level using a white-noise background spectrum.

Figure 14. Conceptual diagram showing the governing controls of redox geochemistry at increasing
time scales.
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spectra. Notice that the regions of significant power are
limited to November 1998 to March 1999 for both wells.
The dominant variability in nitrate concentrations during
these winter months could be a result of several concomi-
tant processes such as external climate forcing (e.g., snow
storms), plant decay, and bacterial decomposition of stored
nitrogen, which occurred during a similar time frame of
November–March for both wells.

[40] Second, dissolved organic carbon (DOC) concentra-
tions follow the dominant scales of variation for both the
control and slough wells but not for the landfill well. The
wavelet power spectrum (Figure 13b) and global wavelet
spectrum (Figure 13c) for the landfill (IC 36) well suggest
that although the annual periodic component carries signifi-
cant power (50% confidence interval), the dominant fre-
quency may well lie outside the time scale of analysis. This
is expected as the temporal variability in DOC concentra-
tions are not limited to hydrologic events. Changes in the
carbon content as a result of organic degradation can itself
contribute to the temporal variability in the data [Cozzarelli
et al., 2011].

5. Conclusions and Discussion

[41] Biogeochemical processes and redox reactions are
often characterized by high temporal variability. Analyses
of biogeochemical data sets using correlation, principal
component analysis, or other statistical techniques are not
always able to identify the processes driving this temporal
variability. Therefore, the focus of this study is to extract
the complex linkages among biogeochemical processes and
identify the temporal scales at which they exert dominant
control using wavelet analysis.

[42] The wavelet analysis (CWT) reveals that the chemi-
cal data set of the Norman landfill site has single-scale
characteristics (annual periodic component) for different
geochemical variables at the landfill (IC 36) and control
(IC South) wells despite the large differences in their geo-
chemical characteristics and conceptual redox frameworks.
Wavelet decomposition analysis further suggests that varia-
tions in concentrations of reactive and conservative solutes
are strongly coupled to hydrologic variability at the domi-
nant scale of variation. Moderate associations obtained
using correlation analysis is suggestive of the fact that rela-
tionship between hydrologic data and geochemical concen-
tration response is not linear but affected by coupled
processes. Apart from hydrologic fluctuations (water table
variations and precipitation events), temporal variability in
sulfate concentrations can also be associated with different
sources (FeS cycling and aquifer composition) and sinks
(uptake by vegetation) depending on the well location and
proximity to the leachate plume. At the slough well (IC
54), the continuous wavelet transform suggests an addi-
tional scale of variation (biannual periodic component) for
diverse geochemical variables such as DOC, sulfate, and
bromide. Both local slough interactions and vegetation dy-
namics are shown to be important factors affecting the tem-
poral distribution of chemical constituents at this well. A
limitation of this analysis is that these associations with
hydrologic data are based on correlation analysis while
geochemical and ecological (vegetation) linkages are based
on reasoning and knowledge about the site. Wavelet

decomposition analysis provides further information on
exceptions to these dominant scale(s) of variation. First, ni-
trate displays a multiscale behavior, which suggests that ni-
trate concentrations are influenced by several concomitant
processes (such as plant decay, microbiological decomposi-
tion, and effect of climate). Second, the dominant variabili-
ty in dissolved organic carbon concentrations is larger than
2 years at the landfill well. This behavior is not unexpected
as several studies have documented the persistence of or-
ganic carbon at the Norman landfill site [Cozzarelli et al.,
2000, 2011; Eganhouse et al., 2001]. Thus, wavelet analy-
sis is able to reveal the complex variability of the biogeo-
chemical data set at the Norman landfill site and extract
specific frequencies that can be linked to the individual
eco-hydrogeologic framework of the well location.

[43] Based on our analysis of the biogeochemical data
set of 2 years, we hypothesize that the information in con-
servative and redox signals at annual time scales is guided
by hydrologic events, while chemical concentrations at
biannual time scales is governed by site-specific interac-
tions (such as seasonality of vegetation and surface-
groundwater dynamics). This can be corroborated by previ-
ous investigations that have demonstrated the effect of
hydrogeological heterogeneities and seasonal influences on
short-term variations in landfill leachate chemistry [Heron
et al., 1998; Kjeldsen et al., 1998; Scholl et al., 2006;
Mangimbulude et al., 2009]. At even larger time scales,
these concentrations can be explained by linked biogeo-
chemical processes such as increased xenophobicity of the
carbon content (Figure 14). A 10 year study at the Vejen
landfill linked the fate of certain xenobiotic compounds
(benzene, herbicide Mecoprop) to the anaerobic conditions,
and the recalcitrance of nonvolatile organic carbon to the
depletion of iron reduction capacity within the aquifer
[Baun et al., 2003]. Similarly, 12 year data from the Dyer
Boulevard Landfill suggested temporal trends in iron and
manganese to be related to the reducing microbial environ-
ment of the site [Statom et al., 2004]. Long-term studies at
the Norman Landfill site also reported attenuation of am-
monium by aquifer sediments and methane by oxidation in
the center and upper boundary of the plume [Cozzarelli
et al., 2011]. In their review, Christensen et al. [2001]
clearly indicated that several processes affecting landfill
leachate, such as dilution, redox zonation, and microbial
activity, are a function of both the local biogeochemistry
and leachate composition. Figure 14 thus summarizes the
temporal characteristics of redox-sensitive chemicals (bar-
ring extreme climatological events, natural disasters, and
human intervention activities) at similar contaminated allu-
vial aquifers. This figure serves as a recommendation to
evaluate linked biogeochemical factors in effectively
accounting for long-term leachate trends and establishing
regulatory controls.

[44] Acknowledgment. This project was supported by the National
Science Foundation (grant EAR 0635961).
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