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[1] Microbes have been identified as a major contaminant of water resources. Escherichia
coli is a commonly used indicator organism. It is well recognized that the fate of £. coli in
surface water systems is governed by multiple physical, chemical, and biological factors.
The aim of this work is to provide insight into the physical, chemical, and biological factors
along with their interactions that are critical in the estimation of £. coli loads in surface
streams. There are various models to predict E. coli loads in streams, but they tend to be
system- or site-specific or overly complex without enhancing our understanding of these
factors. Hence, based on available data, a Bayesian neural network (BNN) is presented for
estimating E. coli loads based on physical, chemical, and biological factors in streams. The
BNN has the dual advantage of overcoming the absence of quality data (with regard to
consistency in data) and determination of mechanistic model parameters by employing a
probabilistic framework. This study evaluates whether the BNN model can be an effective
alternative tool to mechanistic models for £. coli load estimation in streams. For this
purpose, a comparison with a traditional model (load estimator (LOADEST), U.S.
Geological Survey) is conducted. The models are compared for estimated E. coli loads
based on available water quality data in Plum Creek, Texas. All the model efficiency
measures suggest that overall E. coli load estimations by the BNN model are better than the
E. coli load estimations by the LOADEST model on all the three occasions (threefold cross
validation). Thirteen factors were used for estimating E. coli loads with the exhaustive
feature selection technique, which indicated that 6 of 13 factors are important for estimating
E. coli loads. Physical factors included temperature and dissolved oxygen; chemical factors
include phosphate and ammonia; and biological factors include suspended solids and
chlorophyll. The results highlight that the LOADEST model estimates E. coli loads better in

the smaller ranges, whereas the BNN model estimates E. coli loads better in the higher
ranges. Hence, the BNN model can be used to design targeted monitoring programs and
implement regulatory standards through total maximum daily load programs.
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1. Introduction

[2] Microbes have been identified as a major contami-
nant (13.2% contamination caused by pathogenic microbes
of total impaired water body segments) of water resources
in the United States [U.S. Environmental Protection
Agency, 2006]. Common bacterial waterborne pathogens
include Salmonella sp., Shigella sp., few strains of
Escherichia coli, Pseudomonas aeruginosa, Aeromonas
hydrophila, Mycobacteria, Helicobacter pylori, and various
others [Fincher et al., 2009]. The most widely used
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indicator organisms are the enteric coliform bacteria, which
are Gram-negative bacilli that belong to the family Entero-
bacteriaceae (e.g., Klebsiella spp., Enterobacter spp.,
Citrobacter spp., and E. coli) [Hipsey et al., 2008 ; Dorner
et al., 2006; Mead and Griffin, 1998]. The indicator organ-
isms are mostly harmless as compared to the pathogen(s) of
concern. However, the indicator organisms are monitored
due to the relative ease and lesser cost involved in their
measurements. It is well established that the fate of £. coli
in surface water systems is governed by multiple physical
(e.g., temperature [Flint, 1987]), chemical (e.g., pH [Sjog-
ren and Gibson, 1981], nutrients [Lessard and Sieburth,
1983], sulfate [Robakis et al., 1983], and nitrate [Noguchi
et al., 1997]), and biological (chlorophyll [Nevers and
Whitman, 2005]) factors. The relationship among these
factors and E. coli loads gets complicated by flow rate
[Whitman et al., 2004; McKergow and Davies-Colley,
2009]. Vidon et al. [2008] have reported that E. coli loads
are significantly higher at high flow than at low flow,
whereas McKergow and Davies-Colley [2009] have
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variables (water quality parameters) and the E. coli loads. The radial basis layer is the hidden layer, which
uses the transfer function /' (TPS); and the output layer is a linear layer, which uses the transfer function f
(linear function). The transfer function f establishes a relationship between inputs and outputs; in case of
estimation of E. coli loads, TPSs work better than other transfer functions (Gaussian or #* functions).

observed that E. coli peak loads always preceded discharge
and turbidity peaks (which had similar timings). Therefore,
E. coli evidently has a nonlinear relationship with the flow
rate and the turbidity.

[3] Itis important to develop an understanding of the rel-
ative importance of these physical, chemical, and biologi-
cal factors in estimating the survival of E. coli in water
bodies. However, a direct measurement of E. coli fate is
not, in general, easy to implement. Therefore, the degree of
impairment of a stream is assessed in terms of total maxi-
mum daily load (TMDL). Load duration curves are often
used to estimate the reduction of contaminant loads in a
watershed, especially in TMDL programs [Babbar-Sebens
and Karthikeyan, 2009]. The load duration curves are
measured using the instantaneous “load.” The instantane-

s “load” passing through a stream cross section is the
product of the flow rate and the constituent concentration.

[4] Various models have been developed that use com-
plex mechanistic and empirical relationships to predict the
loads of E. coli in surface water systems, e.g., Soil and
Water Assessment Tool [Arnold and Fohrer, 2005;
Pachepsky et al., 2006], Hydrological Simulation Program
— Fortran [Benham et al., 2006], and a watershed model
developed by Tian et al. [2002]. However, overly complex
mechanistic relationships and requirement of detailed
descriptions of stream geometry and capacity, detailed in-
formation about sources within the watershed, sedimenta-
tion and resuspension characteristics, and bacteria die-off
rates limit the utility of these models. Input parameter
approximation and simplification in describing transport
processes result in significant uncertainties in E. coli loads
in streams. Other models have been developed that use sta-
tistical modeling framework to predict the loads of E. coli
in surface water systems. For instance, Nevers and Whit-
man [2005] used regression modeling to determine E. coli
using the wave height, lake chlorophyll, and turbidity for
individual beaches of southern Lake Michigan. Further-
more, Money et al. [2009] estimated E. coli concentrations
using turbidity, where E. coli data were not available, to
assess fecal contamination along the Raritan River in New

Jersey. Different models are relevant for different surface
water environments, such as freshwater lakes and reservoirs
[Auer and Niehaus, 1993 ; Walker and Stedinger, 1999 ; Jin
et al., 2003 ; Hipsey et al., 2008], streams and rivers [Wil-
kinson et al., 1995; Medema and Schijven, 2001], and
estuaries and coastal lagoons [Steets and Holden, 2003;
McCorquodale et al., 2004]. It is also difficult for users to
confidently implement these models since models tend to
be system- or site specific.

[5] In comparison to these mechanistic and statistical
models, a Bayesian neural network (BNN) provides a
Bayesian modeling framework for estimating E. coli loads
by utilizing routinely monitored flow rate and water quality
data. The input data will comprise of water quality data
(physical, chemical, and biological factors) that will pro-
vide a functional framework for the BNN. In case of sparse
data sets, the Bayesian framework helps in representing
input parameters as random variables emphasizing the sta-
tistical strength of the available data. Also, the uncertainty
in input data sets is reflected through the probabilistic pre-
diction of E. coli loads. The graphical structure of the BNN
represents a cause-and-effect relationship between system
variables (water quality data) and E. coli loads, as shown in
Figure 1. One can use various basis functions in the formu-
lation of the BNN such as multilayer perceptron or radial
basis functions (RBFs). BNN models with RBFs have been
used in this study as they have an ability to deal with sparse
data sets and parameter overfitting [Cilek and Yilmazer,
2003].

[6] The specific objective of this study is to identify the
key water quality factors for estimating the E. coli loads in
streams. Based on identified water quality factors, E. coli
loads will be estimated in streams along with characteriza-
tion of possible uncertainties.

2. Study Area Description and Data Availability

[7] This study is conducted at a station (station ID:
12645; latitude 29°40'02” and longitude 97°39'14”) in
Plum Creek (Figure 2), which is monitored by the Texas
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Figure 2. Map showing the Guadalupe River basin in
east central Texas and the station ID 12645 in Plum Creek
(map modified from http://www.gbra.org/CRP).

Commission on Environmental Quality (TCEQ). The Plum
Creek watershed is a part of the Guadalupe River basin and
is located in east central Texas. It surrounds a drainage area
of 1028 km? in the counties of Hays, Caldwell, and Travis.
According to the 2008 Texas Water Quality Inventory and
303(d) List of Impaired Water Bodies, Plum Creek is
impaired for bacteria throughout the entire segment (http://
www.gbra.org/CRP). Plum Creek is a shallow, intermittent
fifth-order stream. It is 83 km long and joins the San Mar-
cos River that in turn connects with the Guadalupe River.
The watershed has several rapidly growing towns such as
Lockhart, Kyle, and Luling. The watershed has a diversi-
fied land use from urban to agriculture and oil field activ-
ities. The watershed encompasses 38% rangeland, 17%
pasture, 11% cultivated cropland, 18% forest, 8% devel-
oped land, 6% near riparian forest, and 2% open water and
barren land. The landscape is characterized as rolling hills
of pasture and cropland surrounded by scrub oak forest.
Plum Creek lies in a semihumid subtropical climate zone
and is heavily influenced by its proximity to the Gulf of
Mexico (http://www.gbra.org/CRP).

[8] Two U.S. Geological Survey (USGS) gage stations
are located on Plum Creek to monitor stream flows: one
north of Lockhart (station 08172400) and one near Luling
(station 08173000). Near Lockhart, periods of no flow have
occurred almost every year on record. Southern reaches of
Plum Creek, particularly south of Lockhart, are fed by a
number of small springs and are usually perennial. Based
on routine water quality sampling, the TCEQ initially listed
portions of Plum Creek for bacteria impairment for contact
recreation use in 2002. The possible sources of E. coli con-
tamination in the creek are cows, livestock, wildlife, waste-

water treatment plants, septic systems, and pet sources
[Teague et al., 2009]. By 2004, bacterial contamination
level in Plum Creek was elevated, and it was included in
the list of impaired waters of Texas prohibiting wading and
swimming. The E. coli criteria for designated use of a
stream specified in water quality standards (e.g., recrea-
tional uses, irrigation, and navigation) require a geometric
mean concentration of E. coli less than 126 cfu/100 mL of
water with no sample exceeding 235 cfu/100 mL of water.
E. coli and water quality data at the monitoring sites were
available from October 1996 to December 2008 (http://
www.gbra.org/CRP). Water quality data were collected
monthly by the TCEQ. The available water quality data
include 13 factors, wherein physical factors include turbid-
ity (NTU), temperature (°C), conductivity (umhos/cm), and
dissolved oxygen (DO, mg/L); chemical factors include
pH, phosphate (mg/L), nitrate-N (mg/L), chloride (mg/L),
sulfate (mg/L), total hardness (mg/L), and ammonia (mg/
L); and biological factors include suspended solids (SSs,
mg/L) and chlorophyll (mg/m3).

3. Methodology

[o] In order to identify the key water quality factors re-
sponsible for E. coli loads in streams, BNN models are run
in conjunction with the exhaustive feature selection tech-
nique. We use the 13 physical, chemical, and biological
factors described earlier. The exhaustive feature selection
technique provides the best set of water quality factors for
estimating E. coli loads. A principal component analysis
(PCA) is also conducted to get insight into the relative im-
portance of the factors identified by the exhaustive feature
selection. These selected factors are subsequently utilized
in estimating E. coli loads by the BNN model in Plum
Creek. The BNN model results are also compared with the
load estimator (LOADEST) [Runkel et al., 2004] model.
For a better decision making, uncertainty analysis is also
conducted. In the subsequent sections, we provide a
description of BNN and LOADEST models, exhaustive
feature selection, PCA, and uncertainty analysis.

3.1.

[10] The application of the Bayesian learning paradigm
to neural networks results in a flexible and powerful nonlin-
ear modeling framework that can be used for regression,
density estimation, prediction and classification supporting
adaptive decision making, and accounting for uncertainties
[Andrieu et al., 2001, Reckhow, 1999]. The regression of a
target variable Y on an input set of covariates X given the

data D = {(x1,»1), (x2,%2), ... }:

Bayesian Neural Networks

yi=Mx; + &, (1)

where M is the model and &; is independent and identically
distributed error ~N (0, o).

[11] The E. coli loads for each point (i) in time are esti-
mated as follows:

(E. coli Loads ), = BNN (DO, pH, ...), + &, (2)

[12] The central process of the Bayesian framework is
the calculation of a probability distribution on the unknown
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parameter (weight) vector w. Prior knowledge that we
might have, say for small weights, is updated using the
data. These posterior distributions are used in model pre-
dictions, with point forecasts given as expectations
[Holmes and Mallick, 1998]:

E|Y|x,D] = /m(x,w)p(w|D)dw7 (3)

where E[Y|x, D] represents the posterior probability of the

parameters of the model m(x, w) given the training data D.
[13] BNN generates a probability distribution of the

layer weights, which is dependent on the given input data:

P(Y|w,X)P(w)

P(vID) = =g,

4)

where P(Y|X) = [ P(Y|w,X)P(w)dw is the marginal dis-

tribution of Y, P(w) is the prior distribution of weights, and
P(Y|w, X) is the likelihood function [Gelman et al., 1995].
Artificial neural network combined with Monte Carlo Mar-
kov chain generates multiple samples from a continuous
target density [Bates and Campbell, 2001]. A flat prior can
be assumed here, as we do not have any concrete prior
knowledge of weights [Sims and Zha, 1998].
[14] Predictive distribution of Y, is given by

P(Yyar[xns1, ¥, X) = / P(Yyar[xs1, Y, w)P(w]Y, X)dw, (5)

where n 4 1 denotes the next realization.

[15] We considered RBF architecture in BNN, which has
an ability of closely approximating any nonlinear multidi-
mensional mapping [Ciocoiu, 2002]. A brief summary of
RBF is provided later for completeness.

[16] RBF networks are one of the most commonly used
types of feed forward networks. The feed forward neural net-
work is most widely used to solve engineering problems. It is
a simple nonlinear model that maps the input vector onto the
output vector [Lanouette et al., 1999].The architecture of a
RBF network consists of three layers: an input layer, a hid-
den layer, and an output layer. The transformation from input
space to hidden unit space is nonlinear, whereas transforma-
tion from hidden unit space to output space is linear [Ciocoiu,
2002]. During the training stage, a known set of input and
output data pairs are delivered to the RBF network to select
the centers and compute the output layer weights. The mod-
els have radial functions, where each basis is parameterized
by a knot or position vector located in the d-dimensional
covariate space x. The hidden layer provides a set of func-
tions that constitute an arbitrary basis for the input patterns.
The hidden units are known as radial centers and represented
by the vectors (Cy, Cs, ..., Cj,). Conventionally, there are as
many basis functions (%) as data points to be approximated
with the position vectors set to the data values. The model
output m(x) is given by a linear combination of the basis
functions response and a low-order polynomial term:

m(x) = Z W[QOi(||x - :u’iH) + Zamqm(x)7 (6)
i=1 m=0

where ||.|| denotes a distance metric, usually Euclidean or
Mabhalanobis, and g,,(x) represents a polynomial of degree
m. The coefficients w and a are calculated by least squares
. N L
where the constraint Zl_:l Wigm(x;) = 0 is imposed to
ensure the uniqueness of the solution [Holmes and Mallick,
1998]. Different radial functions (e.g., Gaussian, quadratic,
thin plate spline (TPS), inverse quadratic functions) are

used for different problems. We used the TPS for estimat-
ing E. coli loads. The TPS is given as

0(2) = Z’log(2), )

where

Z = ([l = mll). (8)

[17] RBF networks enlarge the dimensionality of the
input data in order to increase the probability that originally
nonlinearly separable classes become linearly separable
(Cover’s theorem) [Ciocoiu, 2002]. For modeling a system
with limited experimental data, RBF has an advantage over
the other techniques. One of the problems that may occur
during neural network training is overfitting. A frequently
used method for improving network generalization is to use
an adequate-sized network, which is just large enough to
provide an adequate fit [Cilek and Yilmazer, 2003]. Overfit-
ting happens when the model has too many degrees of free-
dom, which is the result of including too many hidden
neurons. The neurons in the hidden layer contain transfer
functions whose outputs are inversely proportional to the
distance from the center of the neuron. With small data sets
used in this study, we ensured model accuracy by running
multiple simulations by randomizing data sets. We split all
the valid data into three randomly distributed groups. Three
random sets are selected using “randperm” function in
MATLAB. Initially, random split 1 is set aside for testing,
while the models are parameterized on the basis of random
splits 2 and 3. The fitted models are then used to test/pre-
dict E. coli loads by using input data from the random split
1. Next, random split 2 is set aside for testing, while ran-
dom splits 1 and 3 are used for training. This pattern is also
repeated for the random split 3. We use the same random
splits (1-3) for estimating E. coli loads by using the
LOADEST model.

3.2. Load Estimator

[18] LOADEST is a regression-based model for estimat-
ing constituent loads in streams and rivers [Runkel et al.,
2004]. Given a time series of streamflow and constituent
concentration (E. coli), LOADEST facilitates users in
developing a regression model for the estimation of constit-
uent loads [Cohn, 2005]. Explanatory variables within the
regression model include multiple functions of flow, time,
and additional data variables. The developed regression
model is then used to estimate loads over a user-specified
time interval. Mean loads, standard errors, and 95% confi-
dence intervals are also estimated on a monthly and/or sea-
sonal basis. There are three statistical methods used for
calibration and validation (estimation) of LOADEST,
including adjusted maximum likelihood estimation
(AMLE), maximum likelihood estimation (MLE), and least

2899



DWIVEDI ET AL.: ESTIMATING E. COLI LOAD IN STREAMS BY BNN

absolute deviation (LAD). AMLE and MLE are appropriate
when the calibration model errors (residuals) are normally
distributed, whereas LAD is appropriate when model errors
(residuals) are not normally distributed. In our case, cali-
bration model errors are normally distributed, so we used
AMLE for estimating E. coli loads. The detailed mathemat-
ical formulation of LOADEST is provided elsewhere
[Cohn, 2005]. In general, total mass loading over an arbi-
trary time period, 7, is given by

L, = /0 ' oCdt (9)

L=A " (00) = A" (L),

where C is the concentration [M/L®], L is the total load
[M], Q is the instantaneous stream flow [L*/T], ¢ is the
time [7], and NP is the number of discrete points in
time. The hats on O, L., and L denote the instantane-
ous values of the respective variables. E. coli loads
estimated by the LOADEST model are compared with
the E. coli loads estimated by the BNN model using
the key water quality factors. The key water quality
factors are identified using the exhaustive feature selec-
tion technique.

(10)

3.3. Exhaustive Feature Selection

[19] The BNN models are run multiple times with all
possible combinations of the 13 water quality factors
(13C1 +8C,+ ...+ 13C13) for estimating E. coli loads.
The exhaustive feature selection is a technique of select-
ing a subset of relevant features for building robust mod-
els. The brute-force feature selection algorithm is
applied to exhaustively evaluate all possible combina-
tions of the input features, and then the best subset is
chosen. The exhaustive search’s computational cost is
prohibitively high, with a considerable danger of overfit-
ting [Moore and Lee, 1994; Skalak, 1994]. Hence, for
avoiding the overfitting, K-fold (threefold) cross valida-
tion is used in selecting the best subset. The aim of the
feature selection is to choose a subset of the set of
input features (physical, chemical, and biological fac-
tors) so that the subset can predict the output Y (E.
coli loads) with accuracy akin to the performance of
the whole input set X, and with a reduction of the
computational cost. For conducting the exhaustive
feature selection, the following steps are outlined: (1)
Shuffle the data set and split into a training set of
two third of the data and a test set of the remaining
one third of the data. (2) Choose all possible combi-
nations of various input variables. (3) Select each
subset, and run the BNN model with leave-one-out
cross validation. (4) Store the Nash-Sutcliffe effi-
ciency (NSE) coefficients (see section 3.4) of each
run. (5) Select the feature set which has minimum
root-mean-square error of NSE threefold validation.

3.4. Model Performance

[20] We computed the NSE and normalized mean
squared error (NMSE) as measures of the model
performance.

[21] The NSE coefficient is given as

ST0-0)

NSE=1— (11)
ZfT:| (Q6 - Qg)Z
[22] The NMSE is given as
N 2
NMSE 2, (0 -0) (12)

var (0))

where O, is observed E. coli loads, Q! is simulated E. coli
loads at time ¢, Qg is mean observed E. coli loads, and
var (Q)) denotes the variance of all the observed E. coli
loads. NSE can range from —oo to 1. An efficiency of 1
(NSE =1) corresponds to a perfect match of simulated
values to the observed data. An efficiency of 0 (NSE =0)
demonstrates that the model predictions are as accurate as
the mean of the observed data. In essence, closer the effi-
ciency of the model is to 1, the more accurate is the model.
The NMSE of 0 indicates that the model predictions are
perfect. The lower the NMSE, the better is the model
performance.

[23] The exhaustive feature selection technique in con-
junction with the BNN model rendered the best set of
factors. In order to assess the relative importance of these
factors, PCA is done.

3.5. Principal Component Analysis

[24] PCA is a multivariate statistical technique. The
transformed features have a descriptive power that is more
ordered than the original features. PCA has been applied in
describing various aspects of streamflow regimes [Olden
and Poff, 2003], understanding the spatial and temporal
changes in water quality [Bengraine and Marhaba, 2003],
and determination of dominant biogeochemical processes
in a contaminated aquifer [Baez-Cazull et al., 2008]. In this
study, PCA is used to identify major factors among water
quality data that can explain most of the variation of E. coli
loads.

[2s] PCA is an orthogonal linear transformation of
the data (e.g., water quality data) to a new coordinate
system such that the greatest variance by any projection
of the data comes to lie on the first quadrant. The
principal axis method is used to extract the compo-
nents, followed by a varimax (orthogonal) rotation with
Kaiser normalization. A detailed description, of how
the principal components (PCs) are calculated, is pro-
vided elsewhere [Jolliffe, 2002].

3.6. Uncertainty Analysis

[26] Monte Carlo based statistical techniques, resam-
pling with replacement (“bootstrapping”) [Robert and
Casella, 1999], are implemented to estimate the statisti-
cal uncertainty in predictions by the BNN and LOAD-
EST models. To explore the uncertainty in the BNN
predictions, 10,000 realizations of E. coli loads are
investigated. Bayesian networks are probabilistic models
that combine prior distributions of uncertainty with data
to yield an updated (posterior) set of distributions [Hel-
ton and Oberkampf, 2004]. Therefore, inputs are inte-
grated over the weight space of the posterior
probability distribution for finding the outputs (i.e., E.
coli loads) of the networks.
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[27] The probability distribution of each output as a ran-
dom variable is plotted utilizing the kernel density (Parzen
window) estimation, which is a nonparametric method [Sil-
verman, 1986]. If x1, x5, ..., xy are samples drawn from
the density function of a random variable, then the kernel
density approximation of its probability density function is
given as

- 1 N X — X;
Fu) =530 k(5. (13)
where K is some kernel and /4 is a smoothing parameter
called the bandwidth. Here a Gaussian kernel is chosen
with mean zero and unit variance:

(14)

4. Results and Discussion

[28] The results presented here provide insight into the
different physical, chemical, and biological factors that are
critical in the estimation of E. coli loads in surface streams.
The exhaustive feature selection in conjunction with the
BNN model (Figure 1) identified the best combination of
input variables for estimating E. coli loads. Out of the 13
water quality factors, exhaustive feature selection identified
6 key variables: SS, phosphate, temperature, DO, ammo-
nia, and chlorophyll. In the following section, we will focus
on these key variables and their relative importance. Subse-
quently, we utilize these six key variables using the BNN
model for estimating E. coli loads in Plum Creek.

4.1. Identification of the Key Factors Responsible for
the E. coli Loads in Plum Creek

[29] The exhaustive feature selection identified six
factors in estimating E. coli loads in Plum Creek,
namely, SS, phosphate, temperature, DO, ammonia, and
chlorophyll. To investigate the relative importance of
the key factors for E. coli loads in streams, a PCA
was performed as shown in Figures 3 and 4. The PCA
explored the relationship among water quality factors
such as SS, phosphate, temperature, DO, ammonia, and
chlorophyll. The first two components explain 60.0% of
the variance; component 1 and component 2 account
for 35.6% and 24.4% of the variance, respectively (Fig-
ure 4). The first PC captures the variance of DO and
temperature. The second PC captures the variance of
SS, phosphate, ammonia, and chlorophyll. The PCA
biplot (Figure 4) illustrates a visual interpretation of the
factor loadings that result from a bicluster system of
variables projected onto the first and second PC axes.
The biplot tells about the relative positions of the fac-
tors, and the angles between the factors give approxi-
mate estimates of the correlation among factors; small
angles between projected axes imply a high correlation.
The direction of axes gives the sign of correlation
among factors displayed on the biplot [Jolliffe, 2002].

[30] Turning now to the interpretation of the PCs in the
present work, the six factors can be divided into three
groups. Group 1 includes temperature and DO (physical
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Figure 3. Pareto diagram of PCs shows the percentage
explained by each component. The first three components
explain 70% of variation in the data set.

factors); group 2 includes phosphate and ammonia (chemi-
cal factors); and group 3 includes the SS and the chloro-
phyll (biological factors). The central idea of this
classification is based on the fact that groups of variables
often move together, and more than one factor measures
the same driving force. The first PC clearly measured phys-
ical factors, as DO and temperature have the maximum
loadings (Figure 4b); moreover, they also have a high neg-
ative correlation with each other (almost 180° separated in
biplot; Figure 4a). Therefore, DO and temperature were
classified as group 1. The second PC accounted for the
chemical and biological factors (Figure 4c). Since phos-
phate and ammonia are the dominant factors on the second
PC, they also have a high positive correlation with each
other (almost overlapping in biplot; Figure 4a). For this
reason, they were classified as group 2. Similarly, the third
PC also accounted for biological factors, as SS and chloro-
phyll have a medium positive correlation with each other
(a small angle between them in biplot Figure 4a). Hence,
they were grouped together.

[31] The biological tolerance of E. coli to different
physical, chemical, and biological factors has been well
studied, albeit mostly in the laboratory. It has been
observed that E. coli are sensitive to changes in tem-
perature [Maeda et al., 1976; Berg, 2004]. The rate of
die-off depends on temperature [Flint, 1987]. Moreover,
E. coli are anaerobic bacteria, and thus, E. coli also
responds to oxygen gradient. The majority of E. coli
cannot live in oxygen rich environment [Berg, 2004].
This clearly explains the selection of DO and tempera-
ture as important physical factors in estimating E. coli
loads in our study and their negative correlation. Tem-
perature affects positively, whereas DO affects negatively
in estimating E. coli loads by the BNN model. In the
biplot, approximately 180° separation of temperature and
DO corroborates this behavior of E. coli (Figure 4a).

[32] Phosphate and ammonia are also found to be impor-
tant factors in the estimation of E. coli loads by the BNN
model. This is because phosphate and ammonia act as
nutrients or substrates, and the presence of nutrients
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Figure 4. (a) Biplot of PCA is plotted by projecting the first PC against the second PC. Factor loadings

on the (b) first and (c) second PCs reflect the relative importance of each factor.

increases E. coli concentrations in streams [Van der Steen
et al., 2000]. These nutrients have significant positive cor-
relation and therefore signify the importance of chemical
factors on E. coli loads.

[33] In our study, SS and chlorophyll are also important
factors in the estimation of E. coli loads by the BNN
model. In literature, there is evidence to suggest that high
concentrations of chlorophyll and suspended sediments
are associated with high E. coli concentrations [Nevers
and Whitman, 2005]. However, Money et al. [2009] exam-
ined the relationship between turbidity and E. coli and
found a significant correlation between both the parame-
ters. Turbidity indicates high volumes of suspended sedi-
ments. SS and chlorophyll correspond to the biological
factors, as they are sources of organic carbon [de Jonge,
1980]. These biological factors were measured by the sec-
ond PC.

[34] It should be noted that the sign of any PC is com-
pletely arbitrary. If every coefficient in a PC has its sign
reversed, the variance is unchanged and so is the ortho-
gonality [Jolliffe, 2002]. Therefore, the biplot and load-
ings only show the relative importance of the factors, they
do not demonstrate if a factor is positively or negatively
affecting the E. coli loads. However, the biplot exhibits
how each factor can affect the E. coli loads. For example,
it is evident from Figure 4a that all the factors on the left
side of the plot (phosphate, ammonia, temperature, SS,
and chlorophyll) are positively associated with E. coli
loads, whereas the only factor on the right-hand side of
the plot is DO, and it is negatively associated with E. coli
loads. This graphic examination further substantiates our
findings.

4.2. Estimation of E. coli Loads

[35] In this section, we discuss the discrepancy between
simulated and observed E. coli loads using the BNN model
(using the six key variables) and compare its performance
to the LOADEST model. Figures 5 and 6 show measured
and simulated E. coli loads in Plum creek using the LOAD-
EST and BNN models, respectively, for three random
splits. Table 1 shows the measures of the models’ perform-
ance. A threefold cross validation results show that both
modeling approaches (BNN and LOADEST) reproduce
observed E. coli loads reasonably well, with all NSE values
greater than or equal to 0.39 and all NMSE values smaller
than or equal to 0.59 (Table 1). However, the BNN is able
to estimate E. coli loads better in all the three random splits
(Table 1). The uncertainty bands (Figures 5 and 6) show
that the BNN is also able to capture higher E. coli loads
more accurately than the LOADEST model. This is
expected because the BNN model provides more flexible
choices for the functional dependence in estimating E. coli
loads based on physical, chemical, and biological factors
(e.g., SS, phosphate, temperature, DO, ammonia, and chlo-
rophyll), whereas the LOADEST model uses only the E.
coli and flow data.

[36] Figure 7 shows the cumulative distribution functions
of the observed, BNN simulated (all the three random
splits), and LOADEST simulated (all the three random
splits) E. coli loads in Plum Creek. Region A signifies the
smaller E. coli loads (smaller than 0.5 x 10" cfu/d), which
are better estimated by the LOADEST model. The BNN
model is underestimating the E. coli loads in this region.
Region C encompasses the higher E. coli loads (greater
than 1.5 x 10'" cfu/d), which are better estimated by the
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Figure 5. Measured and simulated loads of E. coli by the LOADEST model in Plum Creek are pre-
sented here for the three random splits. These random splits were used for threefold cross validation of

the BNN model.

BNN model. For best management practices, it is essential ~ this range. Region B (0.5 x 10'! to 1.5 x 10" cfu/d) con-
to be able to estimate higher E. coli loads, and the BNN stitutes the region with medium loads between regions A
model is able to estimate values with greater accuracy in and C, and where both the LOADEST and BNN models
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Figure 6. Measured and simulated loads of E. coli by the BNN model in Plum Creek are presented
here. The simulations were tested by threefold cross validation.
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Table 1. NSE and NMSE of Estimated E. coli Loads by BNN
and LOADEST Models and Observed E. coli Loads in Plum
Creek

Random Splits Models NSE NMSE
Random split 1 BNN 0.48 0.51
LOADEST 0.39 0.59
Random split 2 BNN 0.69 0.30
LOADEST 0.55 0.44
Random split 3 BNN 0.75 0.23
LOADEST 0.52 0.46

are overestimating the E. coli loads. However, the BNN
model is closer to the observed values than the LOADEST
model in this region.

4.3. Sensitivity Analysis

[37] In this study, the objective of the sensitivity analysis
is to demonstrate the relative response (E. coli loads) of the
BNN model for each physical (temperature and DO),
chemical (phosphate and ammonia), and biological (SS and
chlorophyll) factor. One-factor-at-a-time (OFAT) approach
has been deemed appropriate for evaluating the sensitivity
of different explanatory variables in the neural network
models [e.g., Xie et al., 2007; Delen et al., 2006]. The
OFAT approach involves perturbing each factor individu-
ally within a reasonable interval (=20%) and keeping the
rest of the factors constant at their baseline values. The
effect of perturbation of a single factor is quantified by re-
cording the corresponding variation in the BNN output
using NMSE and percentage change in the E. coli loads.
NMSE values are calculated by using residuals between E.
coli loads estimated by original variables and E. coli loads
estimated by perturbing each factor. A higher NMSE value
implies a higher sensitivity to the factor under considera-
tion. Correspondingly, a higher percentage change in the E.

—LOADEST —BNN —Observed E. coli Loads

T ——

i g Region C

Region B 7
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Density
o
(8]

s s L L L
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Figure 7. Cumulative density functions of the observed
E. coli loads, estimated E. coli loads by the BNN, and esti-
mated E. coli loads by the LOADEST are presented here.
There are three regions in this figure. The region A signifies
that the LOADEST model is able to estimate E. coli loads
better. In regions B and C, the BNN model predicts better
than the LOADEST model.

Table 2. NMSE and Percentage Change of Estimated E. coli
Loads Due to Perturbation of Each Factor (£20%) One-At-A-
Time and Estimated E. coli Loads While Keeping Other Factors
Constant at Their Baseline Values by the BNN Model

% Change
Random Random Random in E. coli
Factors Variation  Split 1 Split 2 Split3  Loads (Range)
Temperature Lower 0.22 0.31 0.32 —5to5
Upper 0.27 0.34 0.27
DO Lower 0.43 0.45 0.56 —25t025
Upper 0.35 0.37 0.32
Phosphate Lower 0.18 0.10 0.21 —2to 12
Upper 0.21 0.23 0.22
Ammonia Lower 0.15 0.21 0.22 —2to 12
Upper 0.14 0.11 0.12
SS Lower 0.39 0.37 0.43 —20to 20
Upper 0.51 0.43 0.47
Chlorophyll ~ Lower 0.23 0.14 0.17 —2t05
Upper 0.22 0.24 0.18

coli loads means a higher sensitivity to that factor. Table 2
lists the relative sensitivity of each factor for all the three
random splits. This ranking suggests that each factor shows
comparable sensitivity; however, DO and SS show higher
sensitivity as compared to other factors (temperature, phos-
phate, ammonia, and chlorophyll) in estimating E. coli
loads.

4.4. Uncertainty Analysis

[38] Uncertainty analysis is conducted to further com-
pare the performance of BNN and LOADEST models in
estimating E. coli loads in Plum Creek. The uncertainty
bands (£o with 95% confidence) computed using bootstrap
samples show that there is more uncertainty for larger loads
than smaller loads (Figures 5 and 6). There is evidence that
uncertainties of discrete E. coli samples are greater than
30%, while the uncertainties in storm water flow measure-
ments are greater than 97% [McCarthy et al., 2008]. There-
fore, E. coli loads will have more uncertainty due to storm
events. As high E. coli loads are often associated with
storm events, the upper limit of the uncertainty band is also
wider for higher loads. These uncertainties in the inputs
propagate into larger uncertainties in the output.

[39] Figure 8 shows six E. coli loads estimated by the
BNN model (low and high E. coli loads for each random
split), and the probability distribution functions (PDFs) of
10,000 realizations for each E. coli loads were plotted. As
stated previously, BNNs use a range of weight sets instead
of a single set. Each weight gives a realization of E. coli
loads. The final predicted E. coli loads were generated
from the average of 10,000 such realizations. The center of
mass of a PDF shows the mean of the prediction and spread
around the mean shows the uncertainty. It is clear from Fig-
ure § that E. coli loads, estimated by the BNN model, were
closer to the centers of the PDFs with high density values
(four of them are >0.4). It should be noted that the BNN
model estimates lower E. coli loads with a small bias
(observed E. coli loads falling close to the center of mass
of the PDFs) and higher E. coli loads with a large bias
(observed E. coli loads falling on the tails of the PDFs);
however, the performance of the BNN model is better than
the LOADEST model for estimating higher E. coli loads.
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Figure 8. Probability distributions of (left) low and
(right) high E. coli loads of each random split by the BNN
model. PDFs show that higher loads are associated with
multimodality. The blue shaded area (Pr.) represents the
probability of observed E. coli loads with in +=10% uncer-
tainty bands.

The large variance in the PDFs is due to various uncertain-
ties, which stem mainly from (1) the uncertainties in input
data (e.g., flow rate and water quality data) and (2) uncer-
tainties in data used for calibration (e.g., E. coli loads).
Input data (flow rate and water quality data) and E. coli
loads have large inherent uncertainties, and these uncertain-
ties cannot be removed from the model predictions in the
existing data. However, the advent of newer technologies
and careful data collection may help in minimizing these
uncertainties in the future. The other source of uncertainties
is from model parameters (weights and biases). These
uncertainties are related to the fact that a small bias in the
estimation, using a neural network with a training set of
fixed size, can only be achieved with a large variance
[Geman et al., 1992; Haykin, 1996]. This dilemma can be
avoided if the training set is made very large, but the total
amount of data is limited in our case. However, a possibil-
ity of making training sets larger can be plausible in the
future.

5. Conclusions

[40] This study provides a BNN model for E. coli predic-
tion in streams. A significant contribution of this paper is in
identifying six key variables from a selection of physical,
chemical, and biological factors that influence E. coli loads
in surface streams. An exhaustive feature selection tech-
nique used in conjunction with BNN and the PCA indicated
the importance and correlation among these six variables.
Physical factors included temperature and DO; chemical
factors included phosphate and ammonia; and biological
factors included SS and chlorophyll. The sensitivity analy-

sis was conducted on these factors which demonstrated all
the six factors to be sensitive and DO and SS to be the most
sensitive with respect to estimating E. coli loads.

[41] The BNN model was then run using these six fac-
tors, and a comparison with a traditional model (LOAD-
EST) developed by the USGS was also conducted. The
inherent differences between the models are the calibration
procedures using statistical (LOADEST) versus probabilis-
tic (BNN) framework. The models were compared for the
estimation of E. coli loads based on available water quality
data using NSE and NMSE in threefold cross validation.
All the efficiency measures suggest that estimation of E.
coli loads by the BNN model was better than the LOAD-
EST model on all the occasions during threefold cross vali-
dation. The results also highlight that the LOADEST model
estimates E. coli loads better in the smaller ranges, whereas
the BNN model estimates E. coli loads better in the higher
ranges, as well. Hence, the BNN model can be useful to de-
cision maker and environmental managers to design tar-
geted monitoring programs and establishing regulatory
control such as TMDL programs. An uncertainty analysis
is also used to compare the predictive powers of the two
models. These results suggest that more uncertainty is asso-
ciated with larger E. coli loads, and signify that the major
source of uncertainty comes from storm events associated
with E. coli loads.
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