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[1] The covariability of soil moisture with soil, vegetation, topography, and precipitation is
linked by physical relationships. The influence of each of these interdependent physical
controls on soil moisture spatial distribution depends on the nature of heterogeneity present
in the domain and evolves with time and scale. This paper investigates the effect of three
physical controls, i.e., topography (slope), vegetation (type), and soil (texture), on soil
moisture spatial distribution in the Little Washita and Walnut Creek watersheds in
Oklahoma and Iowa, respectively, at two support scales. Point-support-scale data collected
from four soil moisture campaigns (SMEX02, SMEX03, SMEX05, and CLASIC07) and
airborne-scale data from three soil moisture campaigns (SGP97, SGP99, and SMEX02)
were used in this analysis. The effect of different physical controls on the spatial mean and
variability of soil moisture was assessed using Kruskal-Wallis and Shannon entropy
respectively. It was found that at both (point and airborne) support scales, nonuniform
precipitation (forcing) across the domain can mask the effect of the dominant physical
controls on the soil moisture distribution. In order to isolate land-surface controls from the
impact of forcing, the effect of precipitation variability was removed. After removing the
effect of precipitation variability, it was found that for most soil moisture conditions, soil
texture as opposed to vegetation and topography is the dominant physical control at both the
point and airborne scales in Iowa and Oklahoma. During a very wet year (2007), however,
the effect of topography on the soil moisture spatial variability overrides the effect of soil
texture at the point support scale. These findings are valuable for developing any physically
based scaling algorithms to upscale or downscale soil moisture between the point and
watershed scales in the studied watersheds in humid and subhumid regions of the Great
Plains of USA. These results may also be used in designing effective soil moisture field
campaigns.

Citation: Gaur, N., and B. P. Mohanty (2013), Evolution of physical controls for soil moisture in humid and subhumid watersheds,
Water Resour. Res., 49, doi:10.1002/wrcr.20069.

1. Introduction

[2] Soil moisture is a dynamic state variable. This
dynamic behavior may manifest itself in long-term changes
in mean soil moisture of an area on a yearly basis which
are of interest to climate modelers or very short daily time
scales wherein a change in soil moisture may cause convec-
tive storms [Taylor et al., 2012]. Thus, in order to address
the effects of soil moisture variability in hydrological and
meteorological processes, it is very important to identify
and understand the spatial and temporal variability of soil
moisture and quantify it.

[3] The temporal and spatial patterns of soil moisture are
dependent on a set of physical controls. These physical
controls have been identified primarily as precipitation,
soil, vegetation, and topography [Famiglietti et al., 1999;
Entin et al., 2000; Mohanty and Skaggs, 2001; Albertson
and Montaldo, 2003; Teuling and Troch, 2005; Joshi and
Mohanty, 2010]. The physical controls interact to create
certain spatial and temporal patterns of soil moisture. Due
to the interdependent nature of these physical controls, it is
often impossible to isolate their individual effects on the
soil moisture distribution. Numerous studies have been
undertaken to understand the controls that these factors
assert over soil moisture spatial distribution [Famiglietti et
al., 1999; Mohanty et al., 2000a, 2000b; Joshi and
Mohanty, 2010] and their temporal persistence [Mohanty
and Skaggs, 2001; Jacobs et al., 2004; Joshi et al., 2011].
The use of geostatistical analysis has been a popular choice
for investigating the dominance of physical controls. Using
geostatistical techniques in Tarrawarra catchment in Aus-
tralia, Western and Grayson [1998] showed that the degree
of wetness of top 30 cm of soil moisture affects the spatial
distribution of the soil moisture. In a mixed vegetation
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pixel with relatively homogeneous topography and soil
type, Mohanty et al. [2000a] showed that variable land
cover, land management, and microheterogeneity affect the
soil moisture distribution. Yet in another study pixel with
uniform vegetation, Mohanty et al. [2000b] showed the
influence of topography in spatiotemporal arrangement of
surface soil moisture. Using airborne remote sensing data,
Cosh and Brutsaert [1999] showed that soil type strongly
affects the soil moisture variability. Ryu and Famiglietti
[2006] observed that within regional scale the soil texture
and vegetation control the smaller-scale correlation,
whereas the larger-scale correlations are controlled by
precipitation.

[4] The other popular technique that has been used to
study the dominant controls for soil moisture is the empiri-
cal orthogonal functions (EOFs) [Preisendorfer and Mob-
ley, 1988; Kim and Barros, 2002; Jawson and Niemann,
2007; Joshi and Mohanty, 2010]. Kim and Barros [2002]
used the EOF technique to explore the relationship between
physical controls and the soil moisture spatial structure
over a 40 km � 250 km region across the Southern Great
Plains. They observed that topography dominated the spa-
tial distribution of soil moisture during and after a rainfall
event. Soil hydraulic properties controlled the spatial vari-
ability above the field capacity, while vegetation controlled
the soil moisture distribution during drydown. In another
study for the same region, Jawson and Niemann [2007]
showed that soil texture, topography, and land use describe
the spatial soil moisture patterns with the soil texture influ-
encing the spatial and temporal distributions by the maxi-
mum amount. In an agricultural watershed in Iowa, Joshi
and Mohanty [2010] showed that topography, rainfall, and
soil texture have mixed effects on the soil moisture distri-
bution at the watershed and regional scales, whereas vege-
tation parameters, namely, vegetation water content, have
very limited influence at both scales.

1.1. Heterogeneity, Scale, and Soil Moisture
Measurements

[5] All past studies suggest that the presence of spatial
heterogeneity in any kind of physical control induces a varia-
tion in the observed soil moisture spatial distribution even
under the same precipitation input. Also, studies showed
that, under different wetness conditions, various physical
controls interact differently [Joshi and Mohanty, 2010]. The
effect and dominance of physical controls may also vary
with different hydroclimates since vegetation type, topo-
graphic features, and soil morphology intricately depend on
the hydroclimate of a region. Thus, along with investigating
the spatial distribution of soil moisture across a domain, it is
also equally essential to explore the nature of heterogeneity
of its different physical controls. The importance of effec-
tively representing land-surface heterogeneity for a broader
understanding of the effect of scale on the soil moisture has
also been emphasized by Western et al. [2002]. A brief
description of how heterogeneity and soil moisture distribu-
tion are related to the scaling triplet [Blöschl and Sivapalan,
1995], i.e., support, extent, and spacing, is described below.
1.1.1. Support Scale
1.1.1.1. Point Scale

[6] At the point scale, soil moisture is measured using
gravimetric method, time domain reflectometry (TDR), etc.

These measurement techniques have the support size of a
few square centimeters. At the centimeter scale, the meas-
urements made are very sensitive to the pore sizes in the
soil. Soil moisture measurements taken a few centimeters
apart may differ greatly if a macropore in the soil is
encountered as opposed to the soil matrix. Thus, the hetero-
geneity which may affect the soil moisture distribution that
is obtained from the point observation scale is the soil
structure. Soil structure is often a difficult quantity to quan-
tify. However, since the formation of soil structure is itself
controlled by the soil texture, and the nature of roots and
organic life-forms (earthworms, etc.) present in the soil sys-
tem, it can be quantified to some extent using these other
measurable ancillary parameters.
1.1.1.2. Airborne Scale

[7] The usual airborne scale in the past field experiments
(e.g., Southern Great Plain Hydrology Experiment (SGP)
1997 and Soil Moisture Experiment (SMEX) in 2002 and
2003) has been of the order of 800 m � 800 m. Airborne
remote sensing of soil moisture attributes one soil moisture
value to a large heterogeneous pixel (800 m � 800 m). At
this large support scale, the heterogeneity in terms of soil
pore sizes may no longer influence the measurements since
the effect gets averaged out. However, each pixel has an
intrinsic characteristic heterogeneity comprised of soil,
vegetation, and topography, which is different from its
adjoining pixel and is interacting to create a soil moisture
distribution within the pixel. Thus, in order to understand
the underlying dynamics of the soil moisture distribution at
the remote sensing footprint scale, it is important to charac-
terize the heterogeneity observed at this support scale. Pix-
els may differ in vegetation type, relief, and soil texture
that may be characterized using topographic indices (e.g.,
slope and aspect), soil properties (e.g., soil texture and bulk
density), and vegetation attributes (e.g., vegetation type,
leaf area index (LAI), and normalized difference vegetation
index (NDVI)).
1.1.2. Extent Scale

[8] When delineating a physical control as dominant, it
is also important to mention the extent scale of the meas-
urements. The rainfall, which according to past studies has
the major influence on soil moisture, observed over a larger
extent may be more variable. The rainfall heterogeneity
observed at a watershed scale may be different from the
heterogeneity observed at the regional and continental
scales. Past studies have demonstrated that the influence of
different physical attributes changes at different wetness
conditions [Joshi and Mohanty, 2010]. Thus, increasing the
extent scale in a scaling study can change the wetness con-
ditions observed in the domain. This can influence the
apparent dominant physical controls of soil moisture for
the domains of different sizes. On the other hand, if the
extent scale is limited, there is a loss of large-scale features
[Western et al., 2002].
1.1.3. Spacing Scale

[9] The spacing at which observations are taken deter-
mines the heterogeneity captured. If the spacing is too
large, it may not capture the soil moisture dynamics for a
given extent at a particular observation scale. Thus, in order
to describe the soil moisture dynamics of an area
adequately, the spacing of observations should be such that
it describes the heterogeneity of the entire extent. Western
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et al. [2002] also pointed out a loss of detail in the small-
scale features if a higher spacing is used. Measurement
spacing along with the support scale may thus be consid-
ered to be a control of the level of detail of the soil mois-
ture dynamics that can be resolved at a particular scale.
1.1.4. A New Dimension for the Scaling Triplet-Time

[10] Besides the spatial scales which control the repre-
sentation of heterogeneity in an area, the time scale also
holds utmost importance in assessing the dominance of
physical controls of soil moisture. Heterogeneity on the
land surface itself is dynamic and is governed by time. An
agricultural watershed may be more dynamic than a natural
terrain. It is highly likely that during different times in a
plant’s growth cycle or throughout the course of the year
the hierarchy of dominance that physical controls exert
over soil moisture spatial distribution may change with the
changing heterogeneity. Thus, it is very important to spec-
ify and work with the time scale when discussing the spa-
tial physical controls of soil moisture. The time scale may
itself be split into support (time over which a given reading
is averaged), spacing (time between two readings), and
extent (time span of the experiment).

[11] In addition to the understanding of how scale may
impact the heterogeneity and soil moisture distribution, it is
equally essential to understand the physical processes that
influence the soil moisture distribution at various scales. A
brief discussion is given below:

[12] a. Effect of Soil : Soil texture is based on a range of
composition of sand, silt, and clay. These quantities to-
gether are indicative (to some extent) of the soil structure
and its hydraulic properties. Soil texture determines the
pore sizes in the soil or alternatively the water holding
capacity of the soil. The hydraulic properties of soil deter-
mine the downward hydraulic conductivity of a soil, the
matric potentials that the soil may create to impede the
flow of water through the soil, and also the plant available
water content.

[13] b. Effect of Vegetation : Vegetation may impact the
downward as well as upward vertical flow of water. Vege-
tation may reduce the impact of a precipitation event by
interception. Different vegetation types lead to different
amounts of interception, throughfall, and stemflow, thus
affecting the input of water to the ground surface. Also,
vegetation affects the upward flow of water through the
process of transpiration. Different rooting structures will
lead to different amounts of water uptake. The effect of
vegetation on the soil moisture spatial distribution can be
considered to be most dynamic.

[14] c. Effect of Topography : Topography usually affects
the spatial redistribution of water under saturated condi-
tions. Water tends to move from a higher potential to lower
potential and thus flows along a path determined by the slope
of the area. Topography also determines the aspect of an
area, and based on the varying amount of sunlight available
the evapotranspiration occurring on different aspects may
vary. Thus, the water loss on different portions of topogra-
phy might be different.

[15] The primary objective of this study is to assess the
effect of spatially heterogeneous physical controls on soil
moisture spatial distribution under different wetness condi-
tions for two watersheds with different hydroclimates. The
evolution of dominance of the soil moisture physical controls

at the point and airborne scales for (1) the Walnut Creek
(WC) agricultural watershed in Iowa and (2) the Little
Washita (LW) watershed in Oklahoma has been investigated
using Kruskal-Wallis analysis and the concept of entropy to
individually assess the effect of physical controls on the
mean and variance of soil moisture across a watershed.

2. Study Area and Data Description

2.1. Study Area

2.1.1. WC Watershed, Iowa
[16] The WC watershed is located in Boone and Story

counties in Iowa. The region is characterized by humid cli-
mate with an average annual precipitation of 818 mm. The
majority rainfall in this region occurs from April through
September which is also the growing season in this agricul-
tural watershed. The topography of the watershed is fairly
flat. Owing to the comparatively young geologic develop-
ment, the watershed is poorly drained and consists of low
depressional areas or ‘‘potholes’’ which are hydrologically
unconnected [Hatfield et al., 1999]. The main crops grown
in the watershed are corn and soybean. The estimated evap-
otranspiration through the growing season varies approxi-
mately between 1 and 9 mm/d and 3 and 8 mm/d for corn
and soybean, respectively [Geli, 2012].
2.1.2. LW Watershed, Oklahoma

[17] The LW watershed spreads over parts of Caddo, Ca-
nadian, and Grady counties in Oklahoma. The climate is
subhumid with an average annual precipitation of 795 mm.
It receives bulk of its rainfall in May, June, September, and
October. The average potential evapotranspiration over
these months is about 6.3 mm/d [Mohseni et al., 1998].
This watershed has a significantly rolling topography with
an average elevation of 400 m and a maximum relief of
183 m. Surface runoff in the watershed is generally toward
the east. The water-bearing aquifers underlying the water-
shed contribute to the LW river, and seepage has been
observed along the portions of the channel in the central
region [Liew and Garbrecht, 2003].

2.2. Data

[18] The soil moisture data set for the watersheds was
obtained from the National Snow and Ice Data Center
located at http://nsidc.org/data/amsr_validation/soil_moisture/
index.html. The point-support-scale soil moisture measure-
ments for the top 5 cm depth were taken using an imped-
ance-based probe, namely, TDR (ML2 probes with HH2 data
loggers of Delta-T Inc.; http://www.delta-t.co.uk), and were
calibrated gravimetrically for the specific sites. Point-scale
data for the LW watershed, Oklahoma (Figure 1), were
obtained from the SMEX03 and Cloud and Land-Surface
Interaction Campaign in 2007 (CLASIC07). Point-scale data
for the WC watershed, Iowa, were obtained from the soil
moisture sampling conducted during 2002 (SMEX02) and
2005 (SMEX05). Point-support-scale soil moisture measure-
ments (100 m apart) were taken at 14 points in each of the
fields chosen to monitor the hydrology of the watershed. At
each of the 14 points in the WC agricultural watershed, three
readings were taken: one on the furrow, one on the slope of
the furrow, and the third one on the crop row. In the LW
watershed for the pasture cover, three replicated samples
were taken within a 1 m diameter sampling area at the 14
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sampling locations. In addition to the ground-based point
sampling, soil moisture was retrieved from the airborne Elec-
tronically Scanned Thinned Array Radiometer (ESTAR)
[Jackson et al., 1999] during the SGP97 and SGP99 and Po-
larimetric Scanning Radiometer (PSR) [Bindlish et al., 2006]
during 2002. A brief description of the various soil moisture
campaigns is given in Tables 1 and 2.

[19] Vegetation attributes for Iowa (Figure 2) were
obtained during the field experiments, and digital elevation
model (National Elevation Dataset, 30 m resolution) was
used to create the slopes for the watersheds. The slope map
at the 800 m resolution was constructed after aggregating
the elevation data at 30 m to 800 m. The soil texture infor-
mation has been obtained from Soil Survey Geographic
Database (SSURGO) at 30 m resolution. Soil maps of the
WC and LW watersheds in Iowa and Oklahoma are shown
in Figures 3 and 4, respectively. The soil moisture variabili-
ty observed over the two watersheds (at the airborne scale)
is shown in Figures 5a and 5b.

3. Methodology

3.1. Kruskal-Wallis

[20] The first step in assessing the dominance of a
particular physical control is to check whether its inherent

heterogeneity leads to an effective separation of the mean
soil moisture within a classification. This was done using
the Kruskal-Wallis test on the mean soil moisture. This test
is the nonparametric equivalent of the analysis of variance
test and is used to distinguish between the difference in the
means of two or more distributions. The null hypothesis for
this test was HN: there is no difference in the median soil
moisture grouped by ‘‘a,’’ where ‘‘a’’ represents the catego-
ries in a particular classification. This test was conducted to
compare the separability between the mean soil moisture
values of different categories within a classification.

3.2. Shannon Entropy

[21] The next step was to assess the variability in the data
which was done using Shannon entropy. Shannon [1948] en-
tropy has been a popular technique for investigating spatial
variability in the field of hydrology [Mishra et al., 2009;
Mogheir et al., 2004; Phillips, 2001]. However, to the best of
the authors’ knowledge, this is the first study to use the en-
tropy technique to understand the dominance of the physical
controls on the soil moisture spatiotemporal variability. The
strength of this technique lies in its effective simplicity to
incorporate the effect of the dependent or independent physi-
cal controls (categorical or numerical) on the soil moisture
spatial distribution. It can be used on the data sets of a short
or long length. However, in order to use this technique, it is
essential to isolate the parameters (physical controls) whose
effect we want to assess on the soil moisture spatial
distribution.

[22] Shannon [1948, 2001] entropy (I) is a statistical
quantity representing a measure of the information that
may be extracted from a system or analogously the uncer-
tainty that the system comprises. Entropy for a system with
a state random variable V is formulated as

V : n 2 N

IV p1; p2; . . . ::pnð Þ ¼ �+
n

i¼1

pi log2 pi
(1)

where

+
n

i¼1

pi ¼ 1 (2)

p1, p2, . . . , pn are the probabilities of occurrence of the real-
izations of V, and IV, the entropy of the system, is represen-
tative of the uncertainty of the random variable or the
unresolved information in the random variable. However,
instead of a unique value of uncertainty, all systems possess
a range of uncertainty, which depends on the probability

Figure 1. Slope and point-scale soil moisture data col-
lected in Oklahoma.

Table 1. Overview of the Various Soil Moisture Campaignsa

Campaign Locationb Duration Support Scale Measuring Instrument

SGP97 OK 18 June to 18 July 1997 Airborne (800 m � 800 m) ESTAR
SGP99 OK 8 July to 20 July 1999 Airborne (555 m � 450 m) ESTAR
SMEX02 IA 25 June to 12 July 2002 Point and airborne (800 m � 800 m) TDR and PSR
SMEX03 OK 2 July to 17 July 2003 Point TDR
SMEX05 IA 13 June to 4 July 2005 Point TDR
CLASIC 07 OK 11 June to 6 July 2007 Point TDR

aData were not collected continuously for the duration mentioned. Sampling was not conducted on days with rain or when agricultural activity posed a
threat to the data collectors. For SMEX03, data collected up to 6 July 2003 have been used because of insufficient data points on the other days.

bOK, Oklahoma; IA, Iowa.
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values associated with the set N chosen to represent the ran-
dom variable. This range of uncertainty is quantified by a
range of entropy values of the system. By addition of infor-
mation to this system in terms of either constraints, like
specifying the moments of the random variable, the range
of uncertainty and correspondingly the range of entropy of
the system reduce. In other words, with each addition of in-
dependent information to a system, the system goes from
being stochastic (with a range of uncertainty) to being deter-
ministic (i.e., possessing a unique probability distribution).
The entropy of a completely determinate system is zero.

[23] Entropy is an extensive quantity and unlike energy
does not follow the conservation laws. In order to express

Table 2. Details of Number of Data Points Used for the Analysis

Campaign Classification

Minimum/Maximum
Number of Points

per Day Used
in the Analysis

Number of
Bins Used

Support: point
SMEX03 Total 139–204

Based on soil type
Loam 10–13 3

Silt loam 90–133 6
Sandy loam 39–63 4

Based on topographic position
Hilltop 55–91 3
Slope 30–40 5
Valley 54–78 4

CLASIC07 Total 101–112
Based on soil type

Loam 14–17 3
Silt loam 44–54 5

Sandy loam 34–43 5
Based on topographic position

Hilltop 19–20 3
Slope 49–56 4
Valley 31–36 5

SMEX02 Total 244–278
Based on soil type

Loam 41–48 5
Clay loam 195–230 9

Based on vegetation
Corn 148–184 10

Soybean 83–94 7

SMEX05 Total 286–321
Based on soil type

Loam 155–176 10
Clay loam 125–145 8

Based on vegetation
Corn 170–190 9

Soybean 111–132 8

Support: airborne
SGP97 Total 601

Based on soil type
Loam 68 5

Silt loam 313 11
Sandy loam 220 9

Based on topographic position
Hilltop 119 6
Slope 371 10
Valley 111 6

SGP99 Total 473–532
Based on soil type

Loam 76–80 5
Silt loam 214–268 10

Sandy loam 183–184 8
Based on topographic position

Hilltop 94–107 6
Slope 298–334 10
Valley 81–91 6

SMEX02 Total 64
Based on soil type

Loam 7 2
Clay loam 57 5

Based on vegetation
Corn 31 3

Soybean 33 4

Figure 3. SSURGO-based classified soil map of the WC
watershed, Iowa.

Figure 2. Land use land cover in the WC watershed,
Iowa.
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the combined uncertainty of two or more independent ran-
dom variables, their respective entropy values may be
added. However, if the random variables are dependent on
each other, this dependence must be accounted for as ‘‘tran-
sinformation,’’ T(A,B), i.e., the amount of information com-
mon to both the sets of random variables. The joint
information or entropy, I(A,B), of this system of the random
variables is calculated as shown in equation (3). For two in-
dependent random variables, ‘‘T(A,B)’’ is zero. This con-
cept of transinformation can be extended to more than two
variables as well.

I A;Bð Þ ¼ I Að Þ þ I Bð Þ � T A;Bð Þ: (3)

3.2.1. Entropy as a Tool to Assess Physical Controls of
Soil Moisture

[24] As discussed above, entropy of a system of random
variables will decrease with the addition of information.
The information which explains more uncertainty in the
data will have a lower value of entropy of the random vari-
able [P�aszto et al., 2009]. This property of entropy forms
the basis of this study.

[25] In this study, the random variables under considera-
tion are the point and airborne measurements of soil mois-
ture. The addition of information to the random variable is
done in the form of classification of the soil moisture data.
These soil moisture values are classified under different
categories based on the physical controls present at the
location of the measurement. These categories are ‘‘soil
type’’ and ‘‘vegetation type’’ for the agricultural watershed
in Iowa and ‘‘soil type’’ and ‘‘topographical location’’ for
the natural terrain in Oklahoma. The classification type
which leads to a lower entropy explains the maximum
uncertainty in the random variable. The factor on which the
lowest entropy classification is based can be considered to
be the most dominant physical control in terms of control-
ling the soil moisture variability.

[26] Despite the availability of various attributes to rep-
resent the various physical controls (e.g., hydraulic conduc-
tivity, percent sand, percent silt, and percent clay for soil ;
NDVI, LAI, and vegetation type for vegetation; and slope,
aspect, and elevation for topography), broad classification
categories, namely, soil type, vegetation type, and topo-
graphic location, were chosen. This was done in order to
incorporate easily available categorical information and
retain the individual identities of each physical control
along with each classification being representative of the
properties of the physical control. For example, ‘‘soil type’’
gives a fair idea about the range of hydraulic conductivity,
infiltration, and evaporation behavior of a soil. Similarly,
‘‘vegetation type’’ is representative of the root zone and

Figure 4. SSURGO-based classified soil map of the LW
watershed, Oklahoma.

Figure 5. Airborne soil moisture maps for (a) the WC watershed, Iowa, and (b) the LW watershed
(1997 and 1999), Oklahoma.
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root water uptake, plant percentage cover on land, LAI,
etc., for land use and land cover (LULC). There may be
other factors like plant health which may not be represented
in an adequate way under this classification scheme, but it
was assumed that plant health at this extent scale may be
excluded as a heterogeneous factor. ‘‘Topographical loca-
tion’’ was determined based on the location of a sampling
point on the slope. This classification scheme adequately
represents most of the attributes of topography like eleva-
tion and slope. It does not however represent aspect which
may be an important attribute for soil moisture variation.
But considering the moderate relief of the area under con-
sideration, aspect will not influence the soil moisture distri-
bution significantly. The different classification categories
used in this study are provided in Tables 3 and 4. The
choice of these parameters for describing the heterogeneity
was made based primarily on their suitability for represent-
ing the key landscape features and also on the ease of
obtaining such categorical data.
3.2.2. Marginal Entropy Calculation for Soil Moisture

[27] We arranged the soil moisture values smd
k , where d

represents the days (1, 2, . . . , d), and k represents the num-
ber of soil moisture values (1, 2, . . . , n0) daywise to calcu-
late entropy values for each day separately. Using the Scott
[1979] algorithm of optimal binning, the frequency histo-
grams for each day were calculated. According to this algo-
rithm, the bin width (h) in the daily frequency histograms is
defined as

h ¼ 3:49sn
�1=3
0 ; t ¼ 1; 2; . . . ; d; (4)

where h is the bin width, and s is the standard deviation of
the daily soil moisture.

[28] The average value of ‘‘h’’ across the duration of the
campaign was chosen as the representative bin width for a
particular campaign.

[29] A probability pi is assigned to each bin and calcu-
lated as

pi ¼
ni

n0
; t ¼ 1; 2; . . . ; d; (5)

where ni is the number of observations in the ith bin.
[30] Then, we substituted pi in equation (1) to find out

the daily marginal entropies.
3.2.3. Joint Entropy Calculation for Each
Classification

[31] Soil moisture values were classified under different
categories as mentioned in Table 3 and 4. A joint probabil-
ity mass function (pmf) was constructed for the soil
moisture values in different categories. The steps for con-
structing a joint pmf with two variables are given below. A
joint pmf for three variables can be constructed along the

same lines. It is important to note here that this method
may become computationally intensive with the increasing
number of categories in a classification scheme.

[32] The soil moisture values in one category (smj) under
a classification were paired up with the soil moisture values
in another category (smm) within the same classification to
form unordered pairs on a daily basis (e.g., loam and sandy
loam categories under soil classification).

sm j; sm m

� �
; j ¼ 1; 2; :::; J ;m ¼ 1; 2; :::;M :

[33] A contingency table representing the relative fre-
quencies fi was used to calculate the probabilities p(smj,
smm) as given in equation (6). The bin sizes for the two cat-
egories under the classification were decided based on
equation (4).

fi ¼ p sm j; sm m

� �
¼ njm

n0
; j ¼ 1; 2; :::; J ;m ¼ 1; 2; :::;M ; (6)

where njm is the number of observations in the jth (from
category 1) and mth (from category 2) bins.

[34] Substituting p(smj, smm) in equation (1) the joint
entropies were obtained. This joint entropy of the data set
corresponds to I(A,B) in equation (3).
3.2.4. Bootstrapping

[35] In order to achieve statistically significant daily
results, bootstrapping was employed to get multiple sam-
ples for each category in a classification. Bootstrapping
enables the use of the sample data at hand as a population
from which random samples may be drawn. Random sam-
pling with replacement was done within each category. An
equal number of data points were employed in each boot-
strapping routine with 40 samples being created for each
category. These results were used to compute the joint pmf
and to identify the uncertainty range of the entropy values
(represented by error bars).
3.2.5. Effect of Precipitation

[36] As mentioned above, if the extent scale is large
enough and precipitation varies across the extent, the effect
of precipitation may mask the actual effect of different
physical land-surface controls on soil moisture. In order to
remove the effect of precipitation, the entire computation
was repeated for the soil moisture anomalies. In order to
compute the soil moisture anomalies at the point support
scale, the mean soil moisture values of every field in the
entire study domain were computed. These means were
subtracted from the soil moisture readings collected in each
respective field. At the airborne scale, the soil moisture val-
ues were linearly detrended to obtain the anomalies. Linear

Table 3. Classification Categories for the WC Watershed, Iowaa

Classification Type Categories

Soil type Loam, clay loam
Vegetation type Corn, soybean

aIn a vegetation type classification scheme, if a particular soil moisture
measurement in Iowa was taken in a location with corn as a vegetation
type, it was placed under the classification, ‘‘corn.’’ In soil-type-based clas-
sification scheme for the same data set, if the same soil moisture value was
in loam soil, it was placed under the soil type ‘‘loam.’’

Table 4. Classification Categories for the LW Watershed,
Oklahomaa

Classification type Categories

Soil type Loam, silt loam, sandy loam
Topography position Hilltop, valley, slope
Slope: 0%–1.5%, flow accumulation: 0 Hilltop
Slope: 0%–1.5%, flow accumulation: >0 Valley
Slope: 1.5%–14%, flow accumulation: >0 Slope

aIn soil-type-based classification scheme, if a particular soil moisture
measurement in Iowa was taken in a location with loam as a soil type, it
was placed under the soil type ‘‘loam.’’
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detrending was done by linearly regressing a straight line
through the soil moisture values plotted against its spatial
location and then subtracting the regressed value from the
actual soil moisture value. The entire coding for the analy-
sis was done using MATLAB.

4. Results and Discussion

[37] This section is divided into two subsections. The
first part discusses the Kruskal-Wallis results, and the sec-
ond part discusses the entropy results. Each subsection is
further divided into two parts: (1) the point scale and (2)
the airborne scale. The two analyses comprehensively
describe the effect of different physical controls of soil
moisture on its spatiotemporal distribution. Kruskal-Wallis
compares the mean soil moisture of different distributions,
whereas the entropy-based analysis compares the variabili-
ty observed in the distributions.

4.1. Comparison of Means: Kruskal-Wallis Based
Analysis

4.1.1. Point Scale
[38] Year 2005 (SMEX05) was relatively wetter than

2002 (SMEX02) in Iowa. In Oklahoma, 2007 (CLASIC07)
was very wet, whereas 2003 (SMEX03 campaign) was
very dry. In addition, SGP97 in Oklahoma was an average
year, whereas SGP99 again was very dry.

[39] Table 5 contains the p values of Kruskal-Wallis.
From the p values calculated for 2002 (Iowa), we see that
soil texture for the most part partitioned the mean soil

moisture at a significance level of 0.05, whereas vegetation
type was not as effective on the wetter days (day of year
(DOY) 187 onward). Soil texture was consistently capable
of separating the mean soil moisture from DOY 176 to 186.
These days corresponded to low soil moisture values.
On DOY 188, the mean soil moisture for the watershed
increased from 0.15 to 0.21 (vol/vol) because of a precipi-
tation event, and neither soil texture nor vegetation type
induced an effective partition of the mean soil moisture. A
failure for either of the two classifications inducing a mean
difference in the soil moisture indicates an interaction of
the soil and the vegetation or an extraneous factor besides
the two, which is dominating under these conditions. How-
ever, during a similar increase from 0.15 to 0.28 (vol/vol)
on DOY 192, the soil texture (but not vegetation) was capa-
ble of discerning a difference in the mean soil moisture.
This can be attributed to the difference in the antecedent
soil moisture conditions that prevailed in the watershed.
Before the precipitation event on DOY 188 the antecedent
soil moisture conditions were very low, whereas after the
precipitation event on DOY 192 the antecedent moisture
conditions were relatively higher. This indicates that when
the crop is water stressed on account of limited soil mois-
ture availability, the interaction between the vegetation and
the soil increases, and jointly they control the soil moisture
spatial distribution. Physically, this may refer to two com-
petitive forces acting within the soil : (1) the matric poten-
tial of soil that tries to hold the water in the soil pores and
(2) the suction potential of plant roots that tries to withdraw
water from the soil pores. However, when the antecedent
moisture conditions are high, the suction forces of the plant
roots do not compete for the near-surface soil moisture
since the deeper root zone is not water stressed. The density
of the roots is higher in the slightly deeper root zone, and
thus, observing the principle of minimum energy require-
ment, plants would preferentially take water from the
deeper zone. Thus, we observe that after the second precip-
itation event the soil texture, which determines the water
holding capacity of the soil pores, effectively partitions the
mean surface soil moisture which could be due to more
infiltration to the lower layers.

[40] In 2005, which was a relatively wetter year, we
found that vegetation was slightly more capable of discern-
ing a difference in the near-surface soil moisture. Corn and
soybean have very different canopy structures. Corn has a
very dense canopy and leads to greater interception as
opposed to soybean that offers little to no interception. This
holds true for the later half of the campaign when the cano-
pies are fully developed. Also, it could be attributed to the
difference in the infiltration properties of the soil under
these (corn versus soybean) canopies, as the rooting struc-
ture and the organic content play an important role in the
development of the infiltration properties of the soil
[Mohanty et al., 1994; DasGupta et al., 2006]. On DOY
172, after a precipitation event, vegetation (p < 0.05) parti-
tioned the mean soil moisture more than the soil texture
(p ¼ 0.3992). This is somewhat different from 2002. How-
ever, it is important to keep in mind that SMEX02 (DOY
176–193) and SMEX05 (DOY 164–185) captured different
portions of the growth cycle of corn and soybean. DOY
172 in 2005 fell in the growing cycle of corn and soybean,
and thus, the water requirements were considerably more

Table 5. The p Values for Kruskal-Wallis test, WC Watershed,
Iowa (Point Scale)a

DOY

Mean
Volumetric Soil

Moisture (%) Soil Vegetation

2002
176 0.10 <0.0001b 0.0273b

177 0.10 0.0091b 0.0002b

178 0.09 0.0291b 0.0081b

182 0.07 0.0481b 0.0001b

186 0.14 0.0068b 0.0006b

187 0.15 0.0921 0.2650
188 0.21 0.0874 0.2986
189 0.18 0.0008b 0.8908
190 0.15 0.0086b 0.0807
192 0.28 0.0013b 0.2168
193 0.26 <0.0001b 0.9502

2005
166 0.24 0.0011b <0.0001b

167 0.21 0.0112b <0.0001b

168 0.20 0.0082b <0.0001b

169 0.18 0.3068 <0.0001b

170 0.17 0.0346b 0.1354
171 0.16 0.3759 0.0101b

172 0.20 0.3992 0.0296b

176 0.17 0.6679 0.2436
177 0.32 0.0002b <0.0001b

178 0.27 0.0198b <0.0001b

181 0.32 <0.0001b <0.0001b

182 0.26 0.0351b <0.0001b

183 0.23 0.0007b <0.0001b

184 0.20 0.5525 <0.0001b

aThe rows in italics represent that a rainfall event preceded the DOY.
bA significant difference in means with a significance level of 0.05.
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than in 2002, when we see more dominance of soil texture.
This implies that in an agricultural watershed the effect of
vegetation on the soil moisture dynamics is highly depend-
ent on the crop growth stage. Another interesting observa-
tion is that if we compare the effect of soil texture and
vegetation on the soil moisture means during the same
stages of the crop growth cycle, we observe very different
effects. In 2005, except for a brief exception of DOY 170
and 176, vegetation continued to exert an effect on the par-
titioning of the soil moisture means in contrast to what was
observed in 2002. This can again be explained by referring
to the antecedent soil moisture conditions. The year 2002
was a comparatively drier year with a larger range of soil
moisture. The root zone vegetation dynamics (phenology)
were probably very different in 2002 as compared with
2005. Thus, in addition to the crop growth stage, the ante-
cedent wetness conditions in the study domain exert a large
influence on the effect of different physical controls on the
soil moisture spatial distribution. On DOY 176, neither
vegetation nor soil texture displays a partitioning of the soil
moisture mean. Hysteresis in the soil moisture variability,
previously been reported at the field scale by Teuling et al.
[2007] and Ivanov et al. [2010], may possibly be another
contributor to this behavior.

[41] Table 6 contains the p values for the LW watershed,
Oklahoma. Interestingly for Oklahoma, at the point scale, soil
texture remained dominant throughout in the wet as well as
dry years. There could be two possible explanations for this
behavior. The first could be the soil texture is dominating and
is the only factor responsible for deciding the separation of the
mean soil moisture. The other possible explanation could be
that such a small support scale is insufficient to represent a to-
pographical position. But irrespective, this finding may prove
to be highly useful for conducting future field campaigns.
4.1.2. Airborne Scale

[42] During SMEX02 campaign in Iowa, at the 800 m �
800 m scale, the p values of the vegetation-based Kruskal-

Wallis test were on some occasions much lower than the
p values of the soil-texture-based Kruskal-Wallis test
(Table 7). On DOY 182, the soil moisture values rose up to
0.20 (vol/vol) and then consistently remain above it. Dur-
ing this period, vegetation showed lower p values on all
days with the exception of DOY 190 and 191. The p value
indicates the level of confidence that we have in the results
that the two means are equal to each other or come from
the same distribution. However, neither soil texture nor
vegetation type partitions the mean soil moisture quite
effectively with the exception of DOY 193 where vegeta-
tion emerges as the dominant factor. This could imply that
soil-vegetation interaction effects are more important when
observing the soil moisture at a coarser scale than their
individual effects. A heterogeneity factor comprising both
the soil and the vegetation together may be needed to effec-
tively represent soil moisture heterogeneity in the WC agri-
cultural watershed region. The analysis could also be
indicative of a type II statistical error since the number of
data points was relatively low.

[43] Contrary to the results from the agricultural watershed
in Iowa, soil texture in the LW watershed, Oklahoma, parti-
tioned the mean soil moisture effectively at the airborne scale
(Table 8). Topography also displayed an effective partitioning
of the mean soil moisture on most days. The interesting point
to note here is that during SGP97, on DOY 178, there was a
small precipitation event wherein the soil moisture value rose
from 0.132 to 0.151 (vol/vol). Despite the precipitation event,
topography failed to partition the mean soil moisture, even
though soil continued to do so. On the other hand, on DOY
192, when the soil moisture value rose from 0.080 to 0.227
(vol/vol), topography was able to show an effective partition-
ing in the mean soil moisture. This was true even for DOY
197 wherein both the topography and the soil type showed an
effective partitioning of the mean soil moisture. This result
also shows that there exist certain precipitation amount
thresholds wherein the influence of topography on the soil
moisture means begins. During SGP99, which was a consid-
erably drier year, soil texture partitioned the soil moisture
mean more effectively than topography. Even though the air-
borne-scale and point-scale data were taken in separate years,
soil texture dominance at both scales is noteworthy.

[44] This analysis also showed another important feature.
WC watershed is an agricultural watershed with considerable

Table 6. The p Values for Kruskal-Wallis test, LW Watershed,
Oklahoma (Point Scale)a

DOY
Mean Volumetric
Soil Moisture (%) Soil Topography

2003
183 0.129 <0.0001b 0.0608
184 0.117 <0.0001b 0.4389
185 0.108 <0.0001b 0.3529
186 0.096 <0.0001b 0.1101
187 0.103 <0.0001b 0.2992

2007
160 0.271 <0.0001b 0.0810
161 0.247 <0.0001b 0.3963
162 0.283 <0.0001b 0.1725
163 0.259 <0.0001b 0.1166
164 0.242 <0.0001b 0.3791
168 0.326 <0.0001b 0.3673
169 0.304 <0.0001b 0.2835
170 0.291 <0.0001b 0.2835
174 0.297 <0.0001b 0.1953

aThe rows in italics represent that a rainfall event preceded the DOY.
bA significant difference in means with a significance level of 0.05.

Since there were three classifications, a Bonferroni correction was applied
bringing the actual level of significance testing to 0.016 (0.05/3) for each
individual comparison.

Table 7. The p Values for Kruskal-Wallis test, WC Watershed,
Iowa (Airborne Footprint)a

DOY
Mean Volumetric
Soil Moisture (%) Soil Vegetation

2002
176 0.18 0.8213 0.8772
178 0.16 0.6437 0.9625
180 0.18 0.8213 0.8561
182 0.20 0.7388 0.3041
185 0.23 0.7880 0.4319
189 0.21 0.4451 0.2507
190 0.23 0.6749 0.8351
191 0.27 0.5687 0.8984
192 0.35 0.6749 0.1525
193 0.28 0.3720 0.0053b

aThe rows in italics represent that a rainfall event preceded the DOY.
bA significant difference in means with a significance level of 0.05.
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vegetation heterogeneity usually absent in a natural water-
shed like LW. The p values in the LW watershed for the
Kruskal-Wallis tests based on the soil and the topography
followed similar patterns for the most part across time as
opposed to those in the WC watershed, where the soil and
the vegetation dominated at different times. This may imply
a stronger correlation between the soil type and the topogra-
phy (slope) in comparison with the correlation between the
vegetation type and the soil texture, which is more dynamic
in nature. This could also suggest that for a similar spatial
extent the absence of the (dynamic) vegetation-based hetero-
geneity leads to more predictable soil moisture dynamics as
observed by Albertson and Montaldo [2003].

4.2. Evolution of Physical Control Dominance:
Entropy-Based Analysis

[45] Entropy analysis using the raw soil moisture data
from various field campaigns explains the control that the
geophysical parameters exert over the soil moisture vari-
ability across a watershed. Watershed is a relatively large
spatial extent, and different parts of the watershed may
receive different amounts of rainfall. Since dominance of
physical controls changes under different wetness condi-
tions (as discussed in the previous section), it is possible
that dominant physical controls across the watershed may
not be the same. In order to remove the effect of variable
precipitation from the analysis, the entropy computation
was done on the soil moisture anomalies (computed as
explained in section 3.2.5).

[46] The marginal entropy values using the daily soil
moisture anomalies were plotted against the daily mean
soil moisture in Figure 6. Marginal entropies refer to the
entropies computed for all the soil moisture values grouped

together (without any classification). For the point-scale en-
tropy values in the WC agricultural watershed in Iowa, we
observed that entropy (or variability) is maximum when the
soil moisture was in the intermediate range (i.e., neither too
high nor too low). In the LW natural watershed, Oklahoma,
the entropy values were slightly higher during the dry year
2003 (SMEX03) as compared with the wet year 2007
(CLASIC07). At the airborne scale in the WC watershed,
in line with the past research findings [Rodriguez-Iturbe
et al., 1995; Western and Bloschl, 1999], we observed that
the entropy (and consequently the variability) was lower
than at the point support scale. However, in the LW water-
shed, even though the airborne data from SGP97 showed
slightly lower entropy than that observed at the point sup-
port scale, data from SGP99 showed otherwise.

[47] The joint entropy values calculated based on the soil
moisture anomalies and the different classifications are pro-
vided in Figures 7a and 7b (point scale) and 7c and 7d

Table 8. The p Values for Kruskal-Wallis test, LW Watershed,
Oklahoma (Airborne Footprint)a

DOY
Mean Volumetric
Soil Moisture (%) Soil Topography

1997
169 0.188 <0.0001b 0.0157b

170 0.173 <0.0001b 0.0639
171 0.147 <0.0001b 0.5906
176 0.138 <0.0001b 0.0868
177 0.132 <0.0001b 0.3856
178 0.151 <0.0001b 0.501
180 0.143 <0.0001b 0.0012b

181 0.106 <0.0001b 0.0002b

182 0.104 <0.0001b 0.0007b

183 0.080 <0.0001b 0.0054b

192 0.227 <0.0001b <0.0001b

193 0.202 <0.0001b <0.0001b

194 0.160 <0.0001b <0.0001b

195 0.141 <0.0001b <0.0001b

197 0.170 0.9108 <0.0001b

1999
189 0.097 <0.0001b 0.036b

195 0.118 <0.0001b 0.6542
196 0.097 <0.0001b 0.0067b

200 0.075 <0.0001b 0.1364
201 0.076 <0.0001b 0.2705

aThe rows in italics represent that a rainfall event preceded the DOY.
bA significant difference in means with a significance level of 0.05.

Since there were three classifications, a Bonferroni correction was applied
bringing the actual level of significance testing to 0.016 (0.05/3) for each
individual comparison.

Figure 6. Mean volumetric soil moisture versus entropy:
(a) the WC watershed, Iowa, and (b) the LW watershed,
Oklahoma.
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(airborne scale). Joint entropies refer to the entropy values
computed based on a particular classification scheme.
These values represent the mean entropy values based on
the bootstrapping result. In Iowa, a comparison of the mean
soil moisture for the watershed between the 2 years reveals
that 2005 was a wetter year as compared with 2002 (Figure
8). Correspondingly, we observed that even though the
marginal entropy values were similar for the years 2002
and 2005 (Figure 6a), the joint entropy values based on the
soil and vegetation classifications were higher for 2005
(Figure 7a). The same however cannot be said for the LW
watershed, Oklahoma, where the dry (SMEX03) and wet
(CLASIC07) years show a similar range of joint entropies

based on the soil-based and topography-based classifica-
tions (Figure 7b). This analysis also shows that the inclu-
sion of a vegetation-based heterogeneity leads to an
increase in the variability of the soil moisture during wet
conditions, which is also consistent with the findings of
Albertson and Montaldo [2003].

[48] At the airborne scale, as compared with the point
support scale, we see a lowering of the joint entropy values
in Iowa (Figures 7c and 7d). This implies that at the air-
borne scale the soil texture and vegetation types (as a heter-
ogeneity index) perform better than at the point scale. For
Oklahoma, even though the marginal entropy values for the
airborne scale followed a similar range (Figure 6b) when

Figure 7. Joint entropy values based on different physical controls for (a and c) the WC watershed,
Iowa, and (b and d) the LW watershed, Oklahoma.
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compared with the point-scale values, the joint entropy val-
ues show a marked increase (Figures 7b and 7d). This
means that the soil-based and topography-based classifica-
tions do not represent the soil moisture variability well at
this scale.

[49] The differences between the joint entropy values
based on the different classification schemes were com-
puted, and the difference between the two (DEntropy) was
evaluated (Figures 9 and 10). For Oklahoma, (DEntropy)
represents the difference between the soil-based and topog-
raphy-based entropies. For Iowa, (DEntropy) represents the
difference between the soil-based and vegetation-based
entropies. We would also like to point out that the transin-
formation between the entropies based on the different
classifications has been excluded from the analysis. How-
ever, this does not take away the credibility of the analysis
since we worked with the entropy difference and not the
absolute entropy values to ascertain the dominant physical
control.
4.2.1. Point Scale

[50] In Iowa, using the raw soil moisture data at the
point support scale (Figure 10a), we observe that during
the relatively wet SMEX05 year, vegetation appeared to
dominate the soil moisture spatial distribution. However,
during SMEX02 the controls shifted between soil and veg-
etation at the precipitation events (as marked by an
increase in the soil moisture, Figure 8). This was also
consistent with the mixed results obtained using the Krus-
kal-Wallis analysis where 2002 showed mixed effects.
However, this could be a result of the different amounts of
rainfall that occurred over different parts of the watershed.

After removing the effect of rainfall (Figure 9), we
observed that across both the years the soil texture was
explaining more of the variability in the data. Though the
difference between the soil-based and vegetation-based
entropies evolved with time, soil texture gave us more in-
formation about the spatiotemporal distribution at the point
support scale.

[51] The soil moisture conditions in Oklahoma repre-
sented two extremes of the wetness spectrum. The year
2003 was very dry, whereas 2007 was very wet. Using the
raw soil moisture data, we observe that soil was the domi-
nant physical control in 2003 as opposed to the dynamic
evolution of the dominant physical controls evident in
2007. However, after removing the effect of precipitation
from the analysis, we discovered that soil still dominated
the spatiotemporal distribution of soil moisture in 2003,
whereas only topography-based dominance was evident in
2007. This analysis reinforces the diagnosis that variable
rainfall across the watershed can lead to misleading results.
For the dry year 2003, excluding the effect of rainfall did
not have any effect on the analysis. The dominant physical
control was soil texture. However, in the wet year 2007, de-
spite the fact that topography was unable to effectively par-
tition the mean soil moisture (Kruskal-Wallis), it still
explained more variability (entropy) in soil moisture spatial
distribution than soil. A clear dominance of one factor is
difficult to outline in this case.
4.2.2. Airborne Scale

[52] In Iowa (2002), soil texture is dominant. Even
though the magnitude of DEntropy changed after removing
the effect of precipitation, the analysis did not change

Figure 8. Time series of mean soil moisture: (a) point support scale and (b) airborne footprint scale.
SMEX02 and SMEX05 (Iowa) and SGP97, SGP99, SMEX03, and CLASIC07 (Oklahoma).
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much. The same was observed in Oklahoma in 1997 and
1999. Soil texture was the dominant physical control, and
the analysis result did not change much after removing the
effect of precipitation. These results were consistent with
Cosh and Brutsaert [1999] who showed that soil plays the
most dominant role in controlling the spatial variability of
soil moisture. However, it cannot be said that soil texture
would be the most dominant factor of the spatiotemporal
distribution of soil moisture in Iowa since it did not parti-
tion the mean soil moisture effectively. In Oklahoma on the
other hand, soil texture can be called the most dominant
physical control of soil moisture. It should also be noted
that retrieval algorithms utilize vegetation (land cover, sin-
gle scattering albedo, and vegetation water content) and
soil information (soil texture) when estimating soil mois-
ture [Bindlish et al., 2006]. The effect of slope is not con-
sidered in the radiometer-based soil moisture retrievals.
This result may be an artifact of the structure of the re-
trieval algorithm itself.

[53] From the above entropy-based analysis, we saw a
change in the interaction between the physical controls
before and after removing the effect of precipitation for the
point support scale but not so much for the airborne scale.
It can be deduced that the effect of variability of precipita-
tion across the extent is more pronounced when the support
scale is smaller.

5. Conclusions

[54] In this study we investigated the evolution of domi-
nance of different physical controls on the spatial distribu-
tion of the soil moisture across time for the WC watershed,
Iowa, and the LW watershed, Oklahoma. The two water-
sheds were located in different hydroclimates and had a dis-
tinctly different inherent heterogeneity. The WC watershed
in Iowa is an agricultural watershed in a humid climate with
heterogeneity in the form of vegetation and soil type. The
LW watershed in Oklahoma is a more natural watershed in
a subhumid environment with heterogeneity existing in the
form of topography and soil type. The analysis was con-
ducted at two levels. The Kruskal-Wallis-based analysis
formed the primary step and assessed the applicability of the
physical controls in causing a separation in the mean soil
moisture due to the heterogeneity observed in the particular
physical control. We found that in the WC watershed the
broad classifications of the vegetation type and the soil type
served to explain the differences in the soil moisture well.
Soil texture performed slightly better in 2002, whereas vege-
tation performed better in 2005. However, at the airborne
scale, neither soil nor vegetation served as good representa-
tives of heterogeneity. In the LW watershed, on the other
hand, soil and topography (slope) performed relatively well
at both the point and airborne scales. Soil texture partitioned
the mean soil moisture to a greater extent at both the scales.

Figure 9. SMEX02 and SMEX05 (Iowa) and SGP97, SGP99, SMEX03, and CLASIC07 (Oklahoma).
Time series of entropy difference (raw soil moisture) : (a) point support scale and (b) airborne footprint
scale.
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[55] The second level of analysis comprised assessing
the partitioning of the variability of soil moisture by the
physical controls which was done by computing the en-
tropy values. At the point scale, we found that in Iowa the
soil texture partitioned the soil moisture variability across
both the years. However, in the LW watershed, the 2 years
showed different results. In the dry year, soil texture
showed better partitioning of the soil moisture, whereas in
the wet year the topography showed better partitioning. At
the airborne scale, soil texture showed an effective parti-
tioning of the soil moisture variability for both the water-
sheds. However, this may be an artifact of the structure of
the soil moisture retrieval algorithm itself.

[56] We also found that given the same extent scale the
variable precipitation is more liable of effecting the appa-
rent interactions of the physical controls with the data
observed at a smaller support scale. An important take
home message from the study is that during a field cam-
paign while collecting ground-based data, it is very impor-
tant to collect representative samples from different
vegetation and soil types in the agricultural watersheds
since they jointly control the soil moisture spatial distribu-
tion. In the absence of the vegetation-based heterogeneity in
the watershed the soil-texture-based heterogeneity seems to
yield more control on the soil moisture spatial distribution
as opposed to topography. However, since the nature of het-
erogeneity controls the spatial distribution of soil moisture,

this result must be restricted to watersheds with similar
heterogeneity.
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