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UPSCALING SOIL HYDRAULIC PARAMETERS IN THE  
PICACHO MOUNTAIN REGION USING BAYESIAN NEURAL NETWORKS 

R. B. Jana,  B. P. Mohanty,  Z. Sheng 

ABSTRACT. A multiscale Bayesian neural network (BNN) based algorithm was applied to obtain soil hydraulic parame-
ters at multiple scales in the Rio Grande basin (near Picacho Mountain, approximately 11 km northwest of Las Cruces, 
New Mexico). Point-scale measurements were upscaled to 30 m and 1 km resolutions. These scaled parameters were used 
in a physically based hydrologic model as inputs to obtain soil moisture states across the study area. The test sites were 
chosen to provide variety in terrain, land use characteristics, vegetation, soil types, and soil distribution patterns. In order 
to validate the effectiveness of the upscaled soil water retention parameters, and thus the soil hydraulic parameters, hy-
drologic simulations were conducted using the HYDRUS-3D hydrologic simulation software. Outputs from the hydrologic 
simulations using the scaled parameters were compared with those using data from SSURGO and STATSGO soil maps. 
The BNN-based upscaling algorithm for soil retention parameters from point-scale measurements to 30 m and 1 km, reso-
lutions performed reasonably well (Pearson’s R > 0.6) at both scales. High correlations (>0.6) between the simulated soil 
moisture values based on the upscaled and the soil map-derived soil hydraulic parameters show that the methodology is 
applicable to semi-arid regions to obtain effective soil hydraulic parameter values at coarse scales from fine-scale meas-
urements of soil texture, structure, and retention data. 
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he Rio Grande is one of the major rivers on the 
North American continent. Unfortunately, in re-
cent years, this river has been drying up, and the 
Rio Grande and Rio Bravo system has been clas-

sified as one of the world’s top ten rivers at risk (Wong et 
al., 2007). There has been a steady decrease in the flow in 
the Rio Grande basin due to prolonged drought and surface 
water depletion by groundwater pumping. It has now 
reached a stage where serious water conservation opera-
tions have to be put in place to use the limited water re-
sources more efficiently. In order to sustain the population 
dependent on the Rio Grande, a number of initiatives have 
been taken up by various organizations to secure future wa-
ter supplies. Characterizing the river basin area is a critical 
effort to aid in the multiscale, multi-resolution hydro-
climatic modeling of the river basin. Models to simulate 
and predict surface and subsurface flow components re-
quire soil hydrologic properties as input parameters. Hence, 
techniques to estimate these properties at various spatial 
resolutions must be developed. This would go a long way 
toward understanding the hydrologic and climatic feedback 

processes that occur at the fine, medium, and coarse scales 
and in turn help in reviving the river by minimizing losses 
through adoption of appropriate management practices, in-
cluding capturing storm water to recharge the underlying 
aquifer using retention ponds. 

Extensive use of pedotransfer functions (PTFs) has been 
made in the last two decades to derive certain complex soil 
hydraulic parameters, which would be difficult and expen-
sive to measure directly, from other available or easily 
measurable soil properties (e.g., Cosby et al., 1984; Rawls 
et al., 1991; van Genuchten and Leij, 1992; Schaap and 
Bouten, 1996; Schaap et al., 1998; Schaap and Leij, 1998a, 
1998b; Pachepsky et al., 1999; Wösten et al., 2001; Sharma 
et al., 2006, Jana et al., 2007, 2008; Jana and Mohanty, 
2011). The traditional methods of using soil texture (sand, 
silt, and clay percentages) and bulk density as inputs have 
recently been augmented by the use of supplementary data, 
such as topography and vegetation parameters, which have 
been shown to enhance the predictive estimates of soil hy-
draulic parameters by PTFs to some extent (Pachepsky et 
al., 2001, Leij et al., 2004; Sharma et al., 2006; Jana et al., 
2008). Increasing the number of model input parameters al-
so means increasing the complexity of the model by intro-
ducing the inherent uncertainties associated with the input 
data and, consequently, the PTF estimates. 

Artificial neural networks (ANNs) have been a mainstay 
for parameter estimation by PTFs in hydrology (e.g., 
Schaap and Bouten, 1996; Schaap et al., 1998; Schaap and 
Leij, 1998a; Sharma et al., 2006; Jana et al., 2007, 2008; 
Jana and Mohanty, 2011). However, a major drawback of 
conventional ANNs is the lack of uncertainty estimates. 
Conventionally, the weights of an ANN are obtained during 
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training by iteratively adjusting the values until a single 
“optimal” set is obtained. Naturally occurring processes, 
and their defining parameters, are almost always stochastic 
(Kingston et al., 2005) and can seldom be described by a 
single deterministic set of parameters. However, the ANN 
methodology is not based on any physical processes under-
lying the hydrology. Rather, the training of the weights in 
ANNs is a statistical process that is totally dependent on the 
input values. Hence, the accuracy of the ANN predictions 
can be questioned. Schaap et al. (1998a) provided a poste-
riori estimates of the prediction uncertainties by generating 
multiple realizations of the ANN output. The resultant out-
puts were then bootstrapped and analyzed to provide confi-
dence levels. A better approach to explicitly provide uncer-
tainty estimates for predicted soil hydraulic properties is by 
using Bayesian neural networks (Jana et al., 2008; Jana and 
Mohanty, 2011). 

Bayesian neural networks (BNNs) are designed to over-
come the deficiency in conventionally trained ANNs by ob-
taining a range of weights. A distribution of values is pre-
dicted, explicitly accounting for the uncertainty in the pre-
dictions. Markov chain Monte Carlo (MCMC) simulation 
techniques, which form a part of the BNN training, also re-
duce the possibility of the training becoming stuck in local 
minima and overtraining of the network. BNNs incorporate 
the best features of conventional ANNs, such as their abil-
ity to form functional relationships between the inputs and 
the targets, while addressing some of the drawbacks, such 
as the ability to provide stochastic limits. Thus, BNNs may 
be considered the next generation of neural network mod-
els. 

While the use of BNNs in the field of water resources 
modeling is still new, relatively little has been done toward 
using them for PTF development in the vadose zone. The 
utility of BNNs has mostly been in surface hydrology ap-
plications, where they have been used for forecasting river 
salinity (Kingston et al., 2005), rainfall-runoff (Khan and 
Coulibaly, 2006), and oxygen demand in estuaries and 
coastal regions (Borsuk et al., 2001). Zhang et al. (2009, 
2011) studied the influence of uncertainties in the BNN 
model structure, inputs, and model parameters on the pre-
dictive capability for streamflow simulations. Most previ-
ous PTF studies have derived and adopted soil hydraulic 
parameters at the same spatial scale as the input and target 
data. Jana et al. (2007, 2008) demonstrated the usability of 
ANN- and BNN-based PTFs to estimate soil water contents 
at a scale different from that of the training data. The objec-
tive of this study is to develop and test a BNN-based PTF 
methodology to derive soil water retention values (at satu-
ration, θ0bar, and field capacity, θ0.3bar) at different scales us-
ing ground-based and remotely sensed data, including soil 
texture, bulk density, elevation, and leaf area index (LAI), 
in the Rio Grande basin. Remotely sensed data such as 
brightness temperatures have been used to derive soil state 
variables such as soil moisture (Chang and Islam, 2000; 
Das and Mohanty, 2006). 

In this study, we applied the BNN methodology to ob-
tain soil water retention parameters and saturated hydraulic 
conductivity at multiple scales in the Rio Grande basin. 
Point-scale measurements were upscaled to 30 m and 1 km 

resolutions. These scaled parameters were provided to a 
physically based hydrologic model as inputs to obtain soil 
moisture states across a large area. 

STUDY AREAS AND DATA COLLECTION 
The Bayesian training methodology was applied to data 

obtained from the region of Picacho Mountain near Las 
Cruces, New Mexico. This region is part of the Rio Grande 
valley in southern New Mexico. The region has a semi-arid 
climate, and the natural vegetation is scrub. Pecans and 
chilies are also grown under localized irrigation closer to 
the river channel. The test sites were chosen to provide va-
riety in terrain, land use characteristics, vegetation, soil 
types, and soil distribution patterns. At the same time, suf-
ficient data at the fine scale were available to validate the 
BNN predictions. A brief description of the test locations is 
given below. 

APACHE CANYON 
Apache Canyon (fig. 1) is located northwest of Las Cru-

ces, at the foot of Picacho Mountain, in the northeastern 
quadrant. The canyon is about 3 km long and 1 km wide on 
average. The soil is a sandy loam with a significant amount 
of gravel. The only vegetation in this canyon is scrub 
plants. Using in situ and laboratory methods, we developed 
a database of fine-scale soil properties using 14 disturbed 
soil samples and associated soil cores. The data set includ-
ed saturated hydraulic conductivity, soil water retention 
function, and textural information for each sampling loca-
tion. Soil cores of 8.70 cm diameter and 5.60 cm depth 
were collected at the surface layer. The highest sampling 
location was at an elevation of 1238.4 m, and the lowest 
was at an elevation of 1181.12 m, thus providing a topo-
graphic relief of 57.28 m across the canyon. Quarrying is 
carried out in certain portions of the canyon. 

BOX CANYON 
Box Canyon is adjacent to Apache Canyon to the south 

(fig. 1). This is a smaller canyon of about 2 km in length 
and average width of about 0.6 km. The soil is finer loamy 
sand, as compared to Apache Canyon. Again, the sole vege-
tation is scrub. Soil samples and cores were collected from 
nine locations within this canyon. The highest sampling 
point in this canyon was at 1211 m, and the lowest at 
1179.24 m, accounting for a relief of 31.76 m. 

LOWER PICACHO REGION 
The region to the east of the Apache and Box canyons 

(fig. 1) up to the Rio Grande is designated the Lower Pica-
cho region. This region has a gently sloping topography, 
covered with loamy sand, loam, and clay loam soil types. 
Farmland and homesteads cover this area, with pecan and 
chilies being the dominant crops. Soil cores and samples 
were obtained from seven locations within this region. The 
Lower Picacho region has the Rio Grande passing through 
it, as well as an arroyo and irrigation networks (canals, lat-
erals, and drains). The highest located sampling point in 
this region was at an elevation of 1183.98 m, and the lowest 
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was at 1164.52 m. As can be expected from the farmed 
land, the topographic relief was small at only 19.46 m, gen-
erally sloping toward the Rio Grande. 

Modeling data for the test locations were obtained from 
a variety of sources. The soil texture, bulk density, satu-
rated hydraulic conductivity and water content details at the 
point scale were obtained by laboratory experiments con-
ducted on core samples from the field. Soil property data at 
the 30 m resolution were obtained from the USDA-NRCS 
Soil Survey Geographic (SSURGO) database (http:// 
soildatamart.nrcs.usda.gov). SSURGO is the most detailed 

soil map produced by the NRCS containing geo-referenced 
spatial and attribute data for soils. Since these surveys cov-
er a large extent, the soil property data are based on the soil 
type rather than the spatial location. The SSURGO data-
base is created by field methods, using observations along 
soil delineation boundaries and traverses, and determining 
map unit composition by field transects. Aerial photographs 
are interpreted and used as the field map base. Multiple 
readings are taken for each property within each map unit. 
The number of readings taken differs between map units 
based on factors such as the size of the soil polygon, the 

 
Figure 1. Rio Grande basin study area, New Mexico. 
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variation in topography, and the change in vegetation, 
among others. At the 1 km resolution, data were obtained 
from the Conterminous U.S. Multilayer Soil Characteristics 
Dataset for Regional Climate and Hydrology Modeling 
(CONUS-SOIL), a database of soil characteristics for the 
conterminous U.S. based on the USDA-NRCS State Soil 
Geographic Database (STATSGO) (Miller and White, 
1998).  

The SSURGO and STATSGO geo-databases are availa-
ble in shapefile format. Conversion of shapefile to raster is 
a straightforward procedure in ArcGIS and hence is not de-
scribed in detail here. Rasters were created from the 
SSURGO and STATSGO shapefiles for each input variable 
(sand, silt, and clay percentages, and bulk density) at the 30 
m and 1 km cell sizes, respectively. The mean values of all 
included soil components within the cell were used. While 
the averaging of the soil components in the cells generates 
some uncertainty, the procedure is generally accepted as a 
means of aggregating the soil components to coarser reso-
lutions. Further, the SSURGO and STATSGO documenta-
tion also refer to 30 m and 1 km, respectively, as the base 
resolutions for the data. Hence, it is felt that this procedure, 
and the resultant uncertainty, is acceptable. 

Elevation data at the 30 m resolution were obtained from 
the National Elevation Dataset. Elevation data at the 1 km 
resolution were obtained from the GTOPO30 global digital 
elevation model provided by the U. S. Geological Survey 
(USGS) Earth Resources Observation and Science (EROS; 
http://eros.usgs.gov/products/elevation/gtopo30.html). The 
data are available at a resolution of 30 arcseconds, which 
corresponds to approximately 1 km grids. At the point 
scale, data from a hand-held GPS with sub-meter accuracy 
were used to record the coordinates and elevation infor-
mation. 

MULTISCALE BNN ANALYSIS 
Conventionally trained ANNs, as used in most previous 

PTF applications, form a relationship between the inputs 
and the targets during the training. Given y as the training 
target and x the input data, the relationship between x and y 
can be described as: 

 Ew|xfy += )(  (1) 

where f(x|w) is the functional approximation of the rela-
tionship between the input and the target as described by 
the ANN, w is the vector of weights and biases for the lay-
ers of ANN neurons, and E is the error term. Here, w is a 
single deterministic set of weights that provide outputs that 
best match the targets (i.e., least mean square error between 
outputs and targets). However, many such combinations of 
input and layer weights could exist that provide best-match 
outputs. 

Unlike conventional ANNs, BNNs generate a probabil-
ity distribution of the weights, which is dependent on the 
given input data. From Bayes’ theorem: 
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where X is the input vector (x1, x2,..., xn); P(y⏐X) = 

 dwwPXwyP )(),|( ; P(w) is the prior distribution of 

weights; and P(y|w, X) is the likelihood function (Gelman 
et al., 2004). As described by Kingston et al. (2005), the 
predictive distribution of yn+1 is given by: 

 

1 1

1 1

( | , , )

( | , ) ( | , )

n n

n n

P y x y X

P y x w P w y X dw

+ +

+ +=   (3) 

where the subscript n+1 for x connotes new data that have 
not been used in the training of the BNN. This integral can 
be solved by numerical integration using Markov chain 
Monte Carlo (MCMC) methods (Neal, 1992). 

MCMC methods are used to generate multiple samples 
from a continuous target density (Bates and Campbell, 
2001). The posterior weight distribution is generally com-
plex and difficult to sample. Hence, a simpler symmetrical 
distribution is used to generate the weight vectors. This is 
called the “proposal” distribution and is considered to be 
locally Gaussian. This proposal distribution depends only 
on the weights from the previous iteration in a random-
walk Markov chain implementation. Arbitrary values are 
chosen for the weight vector w to start with. A series of 
values w* are then proposed by the Markov chain, which 
are accepted with a probability given by: 
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where wprev is the previous value of the weight vector. If w* 
is accepted, the previous value wprev is replaced by the pro-
posed value w* and the procedure is iterated over again. An 
acceptance rate between 30% and 70% is generally consid-
ered optimal (Bates and Campbell, 2001). Generating a 
large number of iterations ensures that the Markov chain is 
forced to converge to a stationary distribution. At that 
point, the weight vectors may be considered to have been 
generated from the posterior distribution itself. Detailed de-
scriptions and discussions of the Metropolis algorithm for 
the MCMC method used in this study, the convergence cri-
terion (Gelman-Rubin R-value), and the computation of the 
convergence efficiency of the MCMC algorithm are given 
by Gelman et al. (2004) and Kingston et al. (2005). We 
generated 50,000 Markov chain iteration samples and dis-
carded the first 15,000 samples as burn-in. This was done 
to allow the network suitable time to “understand” the rela-
tionship between the inputs and the outputs and attain sta-
bility. Thus, 35,000 possible weight combinations, of which 
each satisfies the neural network’s training requirements, 
were generated. Zhang et al. (2009) suggested that using 
multiple model structures for the BNN may improve the 
uncertainty estimation for the outputs. However, such a 
variable model structure has not been implemented in our 
study since the interactions between the different sources of 
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uncertainty for the soil parameters and the BNN model are 
not really well understood at this stage (Zhang et al., 2011). 
A fixed-structure model (fig. 2) was implemented instead. 

In this study, we adopted the BNN for upscaling the soil 
water content. Training data were obtained from the labora-
tory analyses of field samples at a point scale. The input da-
ta (soil texture and structure) for the prediction stage of the 
BNN analysis were obtained from the coarser resolution 
SSURGO (30 m) and STATSGO (1 km) databases, as men-
tioned earlier. Since neither the SSURGO nor the STATSGO 
databases report values for the van Genuchten parameters α 
and n, these were estimated from the ROSETTA database 
(Schaap et al., 2001) within HYDRUS-3D for all scales 
(point, 30 m, and 1 km). For this, the ROSETTA pedo-
transfer model was used given the soil texture and structure 
data (sand, silt, and clay percentages and bulk density) 
from SSURGO/STATSGO, and the BNN-predicted soil wa-
ter contents at 0.33 and 15 bar as the inputs. A schematic di-
agram of the neural network layers, with inputs and outputs, 
is given in figure 2. BNNs with one input layer, one hidden 
layer with five neurons, and one output layer were used, with 
the tangent hyperbolic transfer function for all cases. The in-
put layer had five neurons representing percent sand, percent 
silt, percent clay, bulk density, and elevation. 

HYDROLOGIC SIMULATION 
In order to validate the effectiveness of the upscaled soil 

water retention parameters, and thus the soil hydraulic pa-
rameters, hydrologic simulations were conducted using the 
HYDRUS-3D hydrologic simulation software (Šimůnek et 
al., 2006). In this model, the Richards equation for water 
flow in unsaturated domains is solved numerically. HY-
DRUS-3D allows the user to analyze water flow through 
saturated or unsaturated regions with irregular boundaries 
and composed of non-uniform soils. HYDRUS-3D allows 
for three-dimensional flow representations in the unsaturat-
ed zone. The governing flow equation, a modified form of 
the Richards equation, is given by: 

 

A A
ij iz

i j

h
K K K S

t x x

                                               

  ∂θ ∂ ∂
 = + −  ∂ ∂ ∂     (5) 

where θ is the volumetric water content, h is the pressure 
head, S is a sink term, xi are the spatial coordinates (i = 1, 
2), t is time, Kij

A are components of a dimensionless anisot-

ropy tensor KA, and K is the unsaturated hydraulic conduc-
tivity, given by: 

 K(h, x, y, z) = Ks(x, y, z)Kr(h, x, y, z) (6) 

where Kr and Ks are the relative and saturated hydraulic 
conductivities, respectively. 

The entire domain was created in HYDRUS-3D with fi-
nite element node spacing of 30 m using GIS software. A 
total of 19,314 pixels at 30 m resolution were obtained for 
the domain. Elevation data at 30 m resolution was extracted 
for each grid block using the GIS software. The data were 
then input to the HYDRUS-3D platform for creating the 
geometry of the domain. A minimum soil depth of 1 m was 
maintained across all pixels. 

Four different sets of simulation were carried out. In the 
first set, soil water retention parameters were upscaled from 
the point scale to the 30 m resolution based on the SSUR-
GO soil textural data. These were then fed to ROSETTA to 
obtain the van Genuchten fitting parameters. The soil hy-
draulic parameters thus obtained were used to simulate the 
water flow in the domain. In the second set, the soil water 
retention data from the SSURGO database were directly 
fed to ROSETTA and the resulting soil hydraulic parame-
ters designated in HYDRUS-3D. This gave us a point of 
comparison for the hydrologic responses between the two 
sets of soil parameters at the 30 m resolution. Similarly, at 
the 1 km resolution, two sets of simulations were carried 
out using the STATSGO data. 

As mentioned earlier, only the Lower Picacho region 
had any significant vegetative cover. In order to simulate 
this, an area equivalent to the Lower Picacho region (~2 
km2) was assigned to have a root water uptake. The Feddes 
model (Feddes et al., 1974) for root water uptake was ap-
plied for a deciduous trees scenario since the majority of 
the vegetation in the region consisted of pecan trees. In this 
scenario, roots extract water from the soil below a pressure 
head (depth) of 0.1 m, and extraction at maximum possible 
rate occurs below 0.25 m. 

The top surface of the domain was assigned a time-
dependent atmospheric boundary condition, and the sides 
of the domain had a seepage face. The lower boundary, at a 
depth of 1 m from the surface, had a free drainage condi-
tion assigned. Studies by the USGS (Nickerson, 1995, 
2006) show that the Rio Grande is a losing stream in this 
stretch, with groundwater levels in the region being deep. 
The studies show that the groundwater level near the river 
fluctuates between about 1.5 and 3 m below the land sur-
face, depending on the season. At the higher elevations, the 
groundwater levels are as deep as 10 m below land surface. 
In our study, we are more interested in the near-surface soil 
moisture; as such, the water table was considered to be be-
yond the depth of the model domain. Under such conditions 
of the water table being much below the domain boundary, 
the HYDRUS-3D manual (Šimůnek et al., 2006) recom-
mends the use of the “free drainage” condition for the bot-
tom boundary. 

Due to lack of reliable rainfall data at the site, a compa-
rable precipitation pattern was applied to the domain (fig. 
3) based on rainfall data from the nearby Las Cruces city 
weather station. The total period of simulation was 365 

 
Figure 2. Neural network inputs and outputs. 
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days, and the first three months (90 days) were considered 
as model spin-up time to allow the domain characteristics 
to stabilize. The last nine months (275 days) of results were 
used for analysis. 

RESULTS AND DISCUSSION 
Soil water retention parameters from the point scale 

were upscaled to 30 m and 1 km resolutions using the mul-
tiscale BNN methodology. The BNNs were trained with da-
ta from the point scale and asked to predict soil retention 
parameters and saturated hydraulic conductivity at the 
coarser resolutions. The saturation water content (θs), re-
sidual water content (θr), and saturated hydraulic conduc-
tivity (Ks) measured from the point-scale samples are plot-
ted in figure 4. The corresponding values from the SSUR-
GO and STATSGO databases for the soil map units sur-
rounding the sampling location are also plotted. As can be 
seen, the three datasets differ quite significantly from each 
other. The scaling outputs from the BNN at the 30 m reso-
lution are plotted along with their corresponding SSURGO 
values (fig. 5). The error bars, obtained from the MCMC 
simulations, represent the uncertainty in the neural network 
predictions. BNNs, as mentioned earlier, generate a distri-
bution of training weights instead of a single set. The final 
predicted soil water content value is an average of all such 
possible values from the 35,000 Monte Carlo simulations. 
The uncertainty band (error bars) shows the limits to which 
the predictions could have varied based on the combination 
of weights used. Thirty sets of point-scale inputs and out-
puts are available for training the BNN on each parameter. 
The SSURGO values are taken from the 30 m pixel sur-
rounding the point-scale sampling location. As can be seen 
from the comparative statistics, the upscaled retention pa-
rameters match the SSURGO data very well. 

For the saturation water content, the mean prediction 
from the BNN ensemble matched the SSURGO-derived 
values very well for the Lower Picacho region (fig. 5, last 
seven data points) and Apache Canyon (fig. 4, data points 
10 to 23) regions. The data points corresponding to Box 
Canyon (fig. 5, first nine data points) showed the most de-
viation between the BNN-predicted and SSURGO values. 
This discrepancy may be explained by the difference in the 
soil textural information. The USDA textural triangles for 

the point-scale laboratory-measured data and the corre-
sponding SSURGO data are shown in figure 6. The texture 
analysis of the field samples showed that the samples from 
Box Canyon were mostly clustered in the loamy sand clas-
sification, with a solitary point in the sandy loam. However, 
the SSURGO data have the corresponding soils evenly dis-
tributed among sandy loam, loam, and clay loam. Although 
the entire range of data from the point scale is used to train 
the BNN, there are hardly any training points in the clay 
loam and loam textures. Twarakavi et al. (2010) demon-
strated the similarities between a textural classification 
based on the percentages of sand, silt, and clay and a classi-
fication based on the hydraulic properties of the soil. They 
showed that for sand- and loam-dominant soils, the textural 

Figure 3. Precipitation pattern for the study domain (DOY = day of 
year). 

 

Figure 4. Measured, SSURGO, and STATSGO values for soil water
retention and saturated hydraulic conductivity (θs = saturation water 
content, θr = residual water content, Ks = saturated hydraulic conduc-
tivity, SSURGO = 30 m resolution soil map, and STATSGO = 1 km 
resolution soil map). 
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and hydraulic classifications are similar. This means that 
the hydraulic properties of the soil are uniquely described 
by the texture. Hence, having only a few training points in 
the clay loam and loam textures makes it difficult for the 
BNN to reach a closer prediction. 

For the residual water content (fig. 5), uncertainty in the 
predictions is larger, as can be expected from the greater var-
iability of the soil water content at the drier end of the reten-
tion curve. However, this means that most SSURGO values 
are captured within the uncertainty zone of the predictions. 
The predicted values also show greater variability as com-
pared to the SSURGO data. This may again be explained by 
the greater spread of the textural values at the point scale. A 
similar trend of better predictions for the drier water content 
was also observed by Jana and Mohanty (2011). 

The Ks predictions from the multiscale BNN have a 
close match (R2 > 0.95) with the SSURGO values. Howev-
er, it must also be noted that while the error bars appear 
small, the percentage of uncertainty is greater for Ks as 
compared to the other two parameters. The hydraulic con-
ductivity also depends on factors such as the pore connec-
tivity and presence of macropores in the domain. This 

makes the estimation of Ks from only the texture, bulk den-
sity, and elevation data inaccurate. However, obtaining the 
pore connectivity and macropore densities of the field soils 
is not a trivial task, and these properties are generally not 
measured. 

Figure 7 shows the corresponding predicted and 

Figure 5. Upscaled and SSURGO values for soil water retention and 
saturated hydraulic conductivity (θs = saturation water content, θr = 
residual water content, Ks = saturated hydraulic conductivity, and
SSURGO = 30 m resolution soil map). 

Figure 6. Soil textural triangles for the laboratory-measured samples 
and corresponding SSURGO and STATSGO soil map units. 
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STATSGO data for the soil parameters at 1 km resolution. 
The STATSGO data show three very distinct clusters for 
the retention and conductivity, and this is borne out by the 
textural classification. The 1 km resolution STATSGO pix-
els depict just three well defined clusters in the clay, loam, 
and sandy loam classifications (fig. 6). As can be expected 
with such few textures, the comparative statistics at the 
1 km resolution are very good (R2 > 0.99). However, more 
than the correlation, the RMSE must be observed in this 
case. It is seen that the error magnitude is comparable to 
that at the 30 m resolution. 

The entire study domain (Apache Canyon, Box Canyon, 
and Lower Picacho region) was simulated in HYDRUS-3D 
to obtain the surface soil moisture states under different in-
puts of the soil hydraulic parameters, as explained earlier. 
Of the 275 days used for the analysis, days on which the 
average soil moisture over all 19,314 pixels when simulat-
ed with the SSURGO parameters was above 0.3 v/v were 
designated wet days. Similarly, days with an average soil 
moisture value below 0.2 v/v were designated dry days, and 
days having values in between were termed intermediate 
days. It was found that out of the 276 analysis days, 41 
were wet days, 63 were intermediate days, and 172 were 
dry days. Histograms depicting the distribution of surface 
soil moisture across the domain for the wet, intermediate, 

and dry days are shown in figure 8. The comparative statis-
tics for the soil moisture distributions are given in table 1. 
As can be seen, the soil moisture values across the domain 
for the three phases have high (>0.6) values of Pearson’s 
correlation. In addition, as expected, the correlation for the 
wet phase was higher in comparison with the intermediate 
and dry phases, while the dry phase had the lowest correla-
tion values. This is expected because the variability of soil 
moisture at the dryer end of the characteristic curve is high-
er as compared to the wetter end. Hence, as the domain 
dries out, more variability is observed, and thus a lower 
correlation exists between the upscaled and SSURGO pa-
rameter dependent soil moistures. It was seen that, on aver- 
rage, the upscaled soil hydraulic parameters resulted in un-
derprediction of the values in the wet and dry phases but 
oveprediction in the intermediate phase. 

Figure 9 shows histograms for the soil moisture distribu-
tions at the 1 km resolution. It is immediately apparent that 
the range of variability in the soil moisture values is much 

 
Figure 7. Upscaled and STATSGO values for soil water retention and 
saturated hydraulic conductivity (θs = saturation water content, θr = 
residual water content, Ks = saturated hydraulic conductivity, and
STATSGO = 1 km resolution soil map). 

Figure 8. Soil moisture histograms for wet, intermediate, and dry days 
at 30 m resolution from upscaled and SSURGO soil hydraulic param-
eters. 
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lower as compared to the 30 m resolution. This is because 
there are very few different soils at the 1 km resolution. 
What variability is seen in the soil moisture is due more to 
the topography, vegetation, and irrigation differences than 
to the soil. Table 2 contains the comparative statistics for 
the wet, intermediate, and dry phase soil moistures at the 
1 km scale. Due to the reduced variability in soil moisture, 
the Pearson’s correlation values between the upscaled and 
STATSGO parameter dependent soil moistures are signifi-
cantly higher. As also deduced from figure 7, as scale in-
creases, variability decreases, and correlation increases. 
The RMSE values at the 1 km resolution are also lower 
than those at the 30 m resolution.  

It may appear counter-intuitive that the BNN-based up-
scaling algorithm performs better at the 1 km resolution 
than at the 30 m resolution. To better understand this result, 
we need to consider the inputs to the BNN at the simulation 
stage. At the 30 m resolution, each of the 19,314 domain 
pixels has a different value for the percent sand, percent 
silt, percent clay, bulk density, and elevation inputs. How-
ever, at the 1 km resolution, the number is brought down to 
just six pixels, with some soils being similar. This means all 
of the 30 m spaced nodes of the finite element domain 
mesh in the 1 km area have the same inputs. Hence, the ap-
parently better upscaling performance at the 1 km resolu-
tion is observed. 

While earlier implementations of the multiscale BNN 
methodology (Jana et al., 2008; Jana and Mohanty, 2011) 
concentrated on the retention parameters, in this study, we 
used the algorithm to estimate the effective saturated hy-
draulic conductivity at multiple scales. Earlier studies (Mo-
hanty et al., 1994; Das et al., 2008) showed that it is diffi-
cult to scale the saturated hydraulic conductivity due to its 
high variability, which is caused by a number of factors in 
the field. However, our multiscale BNN approach has 
proven to be robust enough to provide very good estimates 
(Pearson’s R > 0.97; RMSE < 0.001) at both coarse scales. 
This suggests that the BNN structure has been able to “un-
derstand” the non-linear relationship between the inputs 
and the saturated hydraulic conductivity. 

The estimates of the soil hydraulic parameters were fed 
to a hydrologic model (HYDRUS-3D) to assess what im-

Figure 9. Soil moisture histograms for wet, intermediate, and dry days 
at 1 km resolution from upscaled and STATSGO soil hydraulic pa-
rameters. 

Table 1. Comparative statistics of wet, intermediate, and dry phase soil moistures from upscaled and SSURGO soil parameters at 30 m 
resolution. All correlations are significant at the 0.01 level. 

Statistic 

Wet Phase 
(41 days) 

 

Intermediate Phase 
(63 days) 

 

Dry Phase 
(172 days) 

 

Total 
(276 days) 

Upscaled STATSGO Upscaled STATSGO Upscaled STATSGO Upscaled STATSGO 
Average soil moisture 0.27 0.33  0.26 0.24  0.18 0.19  0.21 0.22 

Standard deviation 0.08 0.09  0.05 0.03  0.05 0.04  0.06 0.05 
Pearson’s correlation 0.874  0.723  0.675  0.715 

RMSE 0.078  0.038  0.040  0.045 

Table 2. Comparative statistics of wet, intermediate, and dry phase soil moistures from upscaled and STATSGO soil parameters at 1 km 
resolution. All correlations are significant at the 0.01 level. 

Statistic 

Wet Phase 
(41 days) 

 

Intermediate Phase 
(63 days) 

 

Dry Phase 
(172 days) 

 

Total 
(276 days) 

Upscaled STATSGO Upscaled STATSGO Upscaled STATSGO Upscaled STATSGO 
Average soil moisture 0.36 0.35  0.28 0.27  0.13 0.14  0.20 0.20 

Standard deviation 0.04 0.03  0.02 0.02  0.06 0.06  0.04 0.04 
Pearson’s correlation 0.911  0.821  0.871  0.866 

RMSE 0.018  0.014  0.032  0.026 
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pacts their variability has on the prediction of the soil mois-
ture states of the test domain. The absence of real precipita-
tion, soil moisture, and streamflow data make the current 
exercise open to questions of validation. However, we be-
lieve that the question of precision, at least with respect to 
soil moisture, has been answered. Data such as the dis-
charge from the arroyo or the streamflow data at the Rio 
Grande, which runs on the eastern edge of the domain, 
could strengthen claims to the suitability of the BNN-based 
scaling algorithm in this region. While the local irrigation 
district is currently installing gauging stations to monitor 
such information, no reliable data is currently available. 

From the above results, it may be inferred that the BNN-
based upscaling algorithm performs reasonably well for 
soil retention parameters at both scales from point-scale 
measurements to 30 m and 1 km. High correlations (>0.6) 
between the simulated soil moisture values based on the 
upscaled and the soil map-derived soil hydraulic parame-
ters show that the methodology is applicable to this region. 
The current study region in the Rio Grande basin of New 
Mexico is in contrast to the two study sites used by Jana 
and Mohanty (2011) in that it is a mostly arid region with a 
patch of irrigated land. This suggests that, while the BNN 
methodology is inherently site-specific, it may be applied 
in different hydro-climatic regions with comparable effi-
ciency. This methodology for upscaling soil retention pa-
rameters, due to its demonstrated performance in different 
test sites, shows promise to be a generic scaling algorithm. 

While the SSURGO and STATSGO databases have been 
used in this study to validate the upscaling algorithm, the 
multiscale BNN methodology can be applied with any da-
taset for which the input variables are available to generate 
the water retention parameters and the saturated hydraulic 
conductivity at the target scale. SSURGO and STATSGO 
data are available for much of the continental U.S., but 
such comprehensive data may not be available for other 
parts of the world. In such cases, any available aggregate 
soil dataset, such as the UNSODA database (Nemes et al., 
2001), may also be used to obtain satisfactory outputs. 

It may be observed that the bias correction was not ap-
plied in this upscaling study as in Jana and Mohanty 
(2011). It was not considered necessary, since upscaling is 
an interpolative exercise for the BNN. Neural networks 
perform better at interpolation than at extrapolation. This 
inherent property of BNNs means that they are naturally 
better at upscaling exercises than downscaling, where an 
additional bias correction step would be necessary to ac-
count for the scale disjoint. 

CONCLUSIONS 
Using point-scale soil property data from ground-based 

measurements, we have shown that a Bayesian neural net-
work (BNN) can be applied across spatial scales to approx-
imate coarse-scale soil hydraulic properties. The study was 
conducted for a semi-arid region of New Mexico from 
which the point data was collected. The upscaled parame-
ters were fed to a physically based hydrologic model of the 
region to simulate surface soil moisture states. The results 

were compared with those obtained using parameters from 
published soil maps. The results show good match (Pear-
son’s R > 0.6; RMSE < 0.001) between the soil moistures 
for the domain obtained using two different parameter sets 
at 30 m and 1 km resolutions. Previous implementations of 
the BNN methodology were mainly as a tool for downscal-
ing of the soil water retention parameters. This study estab-
lishes the utility of the BNN method as a multiscale algo-
rithm suitable for upscaling soil water retention parameters, 
as well as the highly uncertain saturated hydraulic conduc-
tivity. This study also highlights the applicability of the 
multiscale BNN algorithm in regions where there are dras-
tic changes in vegetation, topography, and soil properties 
within the domain. As such, the BNN-based upscaling 
methodology may be applied at different regions to obtain 
effective soil hydraulic parameter values at coarse scales 
from fine-scale measurements of soil texture, structure, and 
retention data. 
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