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[1] Soil hydraulic parameters were upscaled from a 30 m resolution to a 1 km resolution
using four different aggregation schemes across the Little Washita watershed in Oklahoma.
A topography-based aggregation scheme, a simple homogenization method, a Markov chain
Monte Carlo (MCMC)-based stochastic technique, and a Bayesian neural network (BNN)
approach to the upscaling problem were analyzed in this study. The equivalence of the
upscaled parameters was tested by simulating water flow for the watershed pixels in
HYDRUS-3-D, and comparing the resultant soil moisture states with data from the
electronically scanned thin array radiometer (ESTAR) airborne sensor during the SGP97
hydrology experiment. The watershed was divided into pixels of 1 km resolution and the
effective soil hydraulic parameters obtained for each pixel. The domains were then
simulated using the physics-based HYDRUS-3-D platform. Simulated soil moisture states
were compared across scales, and the coarse scale values compared against the ESTAR soil
moisture data products during the SGP97 hydrology experiment period. Results show
considerable correlations between simulated and observed soil moisture states across time,
topographic variations, location, elevation, and land cover for techniques that incorporate
topographic information in their routines. Results show that the inclusion of topography
in the hydraulic parameter scaling algorithm accounts for much of the variability. The
topography-based scaling algorithm, followed by the BNN technique, were able to capture
much of the variation in soil hydraulic parameters required to generate equivalent soil
moisture states in a coarsened domain. The homogenization and MCMC methods, which
did not account for topographic variations, performed poorly in providing effective soil
hydraulic parameters at the coarse scale.
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1. Introduction
[2] Upscaling of soil hydraulic parameters is an issue of

extreme importance in soil and water research. Water dy-
namics through the vadose zone is a major controlling fac-
tor in the hydrologic response of a watershed, and in the
partitioning of incident precipitation into surface and
subsurface components of the water balance in the basin.
The vadose zone also acts as a filter against potential sur-
face contaminants entering the groundwater. Modeling of
related phenomena such as global circulation for climate
prediction, river restoration, streamflow estimation, and
fate and transport of contaminants, all require soil hydraulic
parameter data from the vadose zone in some form or other.
Some models directly utilize the soil hydraulic parameters
such as the saturated hydraulic conductivity, the saturation
water content, or the van Genuchten shape parameters as
input data. Other models need the soil moisture state infor-
mation, which can be simulated using the soil hydraulic

parameters and the environmental conditions of the domain
under study. All the above mentioned models have an in-
herent scale at which they are applied. For example, the cli-
mate prediction models work at very coarse, continental, or
global scales. Streamflow models work at regional or
watershed scales, while contaminant transport models work
at fine, local scales. Soil moisture state may be measured at
local scales using in situ sensors, or at coarse scales using
satellite-based remote sensors. Soil hydraulic parameters,
on the other hand, are generally measured at the local
scales only. Measuring these parameters at all scales
required by the above models is impractical both in eco-
nomic, as well as in logistic sense. As a result, the need for
efficient and accurate upscaling of fine scale soil hydraulic
parameter data to coarser model scales is acutely felt by
researchers.

[3] A significant amount of variability exists in the vadose
zone, both in terms of soil properties, as well as the geologi-
cal and environmental factors. As coarser scales are consid-
ered, these variations increase [Mohanty and Mousli, 2000;
Vereecken et al., 2007]. At the finer local or field scales
(meter scale), most variability is found in the soil texture
and structure properties. At the hillslope (kilometer) scale,
the variation in topography is added to the complexity. At
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yet larger watershed or regional (few hundred kilometers)
scales, changes in vegetation are also significant. Upscaling
is the process of replacing such a heterogeneous domain
with effective homogeneous properties which generate the
same responses such as soil moisture states, and surface and
subsurface fluxes. Understanding how the hydraulic param-
eters are affected at different scales by the spatial variability
of influencing factors such as soil structure and texture, veg-
etation, and topography is an inherent requirement of effi-
cient scaling schemes. While it is known that connections
exist between these factors and the hydraulic parameters
[Wu and Li, 2006], the exact mathematical and/or physical
nature of these connections is generally unknown. Over the
past few decades, efforts to either understand these connec-
tions and solve these unknowns, or to find a way around
them so as to obtain effective parameters at multiple scales
have intensified.

[4] The Miller similitude theory [Miller and Miller,
1956; Shouse and Mohanty, 1998] took the first step to-
ward this goal by reducing the dimensions of soil particles
and pores in terms of a characteristic length scale. A
detailed review of the history of upscaling methods devel-
oped over the years may be found in the work by Vereecken
et al. [2007]. Most algorithms were developed to upscale
soil hydraulic parameter data from local scales to slightly
coarser field scales. As such, these methods are concerned
with the variability in the soil texture and structure alone,
and tend to ignore the effects of other factors such as topog-
raphy or vegetation, on the parameter value. Since the
coarser domain in these cases is of the order of a few hun-
dred meters, this assumption of homogeneous terrain and
vegetation may be reasonable. However, when applying
these same scaling schemes at much larger extents, for
example to satellite footprint scales of kilometers, this
assumption is no longer valid. In an earlier study [Jana and
Mohanty, 2012a] we developed an algorithm to explicitly
account for changes in topography within a heterogeneous
soil domain while upscaling soil hydraulic parameters
to obtain effective values. The topography-based scaling
algorithm was tested [Jana and Mohanty, 2012b] with
field data across different topographic, vegetative, and
pedological conditions in the Little Washita watershed,
Oklahoma. Here we present a comparative study of the to-
pography-based scaling scheme along with three other
recent algorithms for soil hydraulic parameter upscaling. A
simple homogenization technique, a Markov chain Monte
Carlo approach, and a nonphysically based Bayesian neural
networks approach to derive upscaled soil hydraulic param-
eters were compared with the topography-based scaling
algorithm in this study.

2. Methods and Materials
2.1. Study Area

[5] The Little Washita (LW) River Watershed (Figure 1)
in Oklahoma was selected as the test site for this study.
Covering parts of Caddo, Comanche, and Grady counties
of Oklahoma, the Little Washita River Watershed has an
area of about 600 square kilometers, situated in the South-
ern Great Plains region of the United States. The Little
Washita River is a tributary of the Washita River, which
drains into the Red River on the Oklahoma-Texas border.

Hydrological and meteorological measurements of the
watershed have been conducted for decades, providing sci-
entists a long-term data source to study soil and water con-
servation, water quality, and basin hydrology [Elliott et al.,
1993]. Under continuous hydrological observation since
1936, the watershed has a network of sensors spread across
its extent to measure rainfall, temperature, relative humid-
ity, and soil radiation. In the 1990s, the United States
Department of Agriculture’s Agricultural Research Service
(USDA-ARS) set up a network of 42 environmental moni-
toring stations called the ARS Micronet across this water-
shed. The watershed has also been the focus of several field
experiments such as the Washita ’92, Washita ’94, South-
ern Great Plains 1997 (SGP97), Soil Moisture Experiments
2003 (SMEX03), and the Cloud and Land Surface Interac-
tion Campaign (CLASIC) 2007.

[6] The LW region has a moderately rolling topography.
The maximum elevation of the watershed is about 500 m
above mean sea level, with a maximum relief of about
180 m. Rangeland and pastures are the dominant land use,
with patches of winter wheat and other crops [Allen and
Naney, 1991]. Soil textures range from fine sand to silty loam,
with few exposed bedrock areas. The climate of the region is
classified as subhumid/moist, with a mean annual precipitation
of 760 mm and mean annual temperature of 16�C.

2.2. Data Sets

[7] Elevation data for the LW watershed at 30 m resolu-
tion was obtained from the National Elevation Data set
from the USDA-NRCS Geospatial Data Gateway [http://
datagateway.nrcs.usda.gov]. From the same source, the
National Land Cover Data set, and the Soil Survey spatial
and tabular data (SSURGO) were also obtained for the LW
region. Daily precipitation and stream discharge data were
obtained from the USDA-ARS Micronet database main-
tained by the Grazinglands Research Laboratory [http://
ars.mesonet.org/] for the months of April–July 1997. Pre-
cipitation data from the 42 meteorological observation sta-
tions across the watershed were used to create daily
precipitation maps by kriging. The corresponding precipita-
tion value for each pixel was assigned as the time depend-
ent boundary condition for the day.

[8] Soil moisture data products from the electronically
scanned thin array radiometer (ESTAR) for the LW region
are available from the NASA-GSFC’s Goddard Earth Sci-
ences Data and Information Services Center [http://daac.
gsfc.nasa.gov/]. The ESTAR data is collected using the
L-band passive microwave mapping instrument mounted
on an airplane. The sensor measures the microwave
brightness temperatures, which are then converted to pre-
dict soil moisture estimates. The data are processed to pro-
duce geo-referenced gridded products for each day of
observation at a pixel resolution of 800 m. A detailed
description of the ESTAR data and processing may be
found in the work by Jackson et al. [1999]. The ESTAR
soil moisture data product was used in this study to vali-
date the outputs from the simulation of the LW domain
using HYDRUS-3-D. ESTAR soil moisture data is avail-
able for 16 days in the period between mid-June and mid-
July 1997 (DOY 169 to 197). This is the period during
which the SGP97 hydrology experiment was conducted in
the LW region [Mohanty et al., 2002].
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2.3. Physical Domain Setup

[9] The HYDRUS-3-D hydrologic simulation software
[�Simu°nek et al., 2006] was used to simulate the soil
domains. The HYDRUS software package solves the modi-
fied Richards’ equation for water flow in saturated/unsatu-
rated domains using numerical techniques. The HYDRUS
software allows the user to analyze water flow through sat-
urated, partially saturated or unsaturated regions with irreg-
ular boundaries, and composed of nonuniform soils.
HYDRUS-3-D allows for three dimensional flow represen-
tations in the unsaturated zone. The governing flow equa-
tion, a modified form of the Richard’s equation, is given by

@�

@t
¼ @

@xi
K KA

ij

@h

@xj
þ KA

iz

� �� �
� S; (1)

where � is the volumetric water content, h is the pressure
head, S is a sink term, xi(i ¼ 1, 2) are the spatial coordi-
nates, t is time, KA

ij are components of a dimensionless ani-
sotropy tensor KA, and K is the unsaturated hydraulic
conductivity, given by

Kðh; x; y; zÞ ¼ Ksðx; y; zÞKrðh; x; y; zÞ; (2)

where Kr and Ks are the relative and saturated hydraulic
conductivities.

[10] The entire Little Washita watershed was divided into
a grid of 1000 m � 1000 m pixels (Figure 1). Twelve pixels
of 1 km� 1 km size were selected from across the watershed
for analysis, based on their location, topography, land cover,
and soil type so as to encompass the variety in the watershed,
as shown in Figure 1. Elevation data at 30 m resolution was
extracted for each selected pixel using a GIS software. The
data was then fed to the HYDRUS-3-D environment to create
the geometry of the domain. A minimum soil depth of 6 m
was maintained across all pixels. Corresponding soil proper-
ties data from the SSURGO database are extracted for each
pixel and, using the ROSETTA [Schaap et al., 2001] frame-
work within HYDRUS-3-D, the corresponding soil hydraulic
parameters for the van Genuchten-Mualem model with no
hysteresis were obtained. The Mualem-van Genuchten func-
tions [van Genuchten, 1980] are

Se ¼
�ðhÞ � �r

�s � �r
¼ 1

1þ j�hjn
� �m

; (3)

KðhÞ ¼ KsS
�
e ½1� ð1� S1=m

e Þm�2; (4)

Figure 1. Little Washita watershed study area, location of selected pixels, stream gauges, meteorologi-
cal stations, and some input layers for modeling.
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where water content � is a nonlinear function of pressure
head h, Se is the relative saturation (–), �r and �s are the re-
sidual and saturated water contents (cm3 cm�3), respec-
tively, � (cm�1), n (–), m (–), and � (–) are shape parameters
of the retention and the conductivity functions, Ks is the satu-
rated hydraulic conductivity (cm d�1), and m ¼ 1–1/n.

[11] These soil types were designated in the HYDRUS-
3-D domain. Similarly, for each pixel domain, the land cover
data is extracted and suitable root water uptake parameters
are assigned. The Feddes model for the root water uptake
was applied in our study, with a maximum rooting depth of
1 m, and no solute stress. Water tables were assigned to
the domain based on its location in the watershed following
the study by Kollet and Maxwell [2008]. Pixels close to the
streambed had water tables at 1 m, while those farthest from
the stream were assigned water tables at 4 m depths.

[12] Finite element meshes were generated for each pixel
with 20 horizontal layers and node spacing of 30 m. The
top surface was assigned an ‘‘atmospheric boundary’’ con-
dition, while the walls of soil plot were designated as seep-
age faces to enable lateral flow of water through the soil
domain. The lower boundary had a deep drainage condi-
tion. The mathematical formulations and features of the
boundary conditions are given by Jana and Mohanty
[2012a]. Initial condition of the soil profile was given by
soil water content just under saturation for the domain since
a significant precipitation even occurred immediately
before the commencement of the simulations.

[13] Initially, each node in the FEM was assigned one of
the soil types based on the fine scale SSURGO data. The
five soil hydraulic parameters—residual soil water content
(�r) ; saturation water content (�s) ; van Genuchten parame-
ters � and N ; and the saturated hydraulic conductivity Ks

were upscaled using each of the methods described below
to the coarse (1 km) resolution. Instead of coarsening the
FEM grid, we assigned the aggregated effective soil hy-
draulic parameters to each node within the upscaled pixel
footprint. This was done so that the computational integrity
of the FEM is consistent across all scales. It must be noted
that while the soil types or hydraulic parameter values are
assigned by the user to the nodes, the HYDRUS program
interpolates the values to the 3-D elements in the mesh.
The pixel domains with the upscaled soil hydraulic parame-
ters are then put through the same simulation and soil mois-
ture updating procedure as before.

[14] Each 1000 m � 1000 m pixel is simulated in
HYDRUS individually for a period of 1 day at a time.
Using the elevation information at 1 km, the flow direction
of surface water out of each pixel is determined using a
d-inf algorithm as described by Tarboton [1997]. Surface
runoff generated daily by each pixel is computed as the dif-
ference between the precipitation and the infiltration. This
excess water is then routed to the downstream pixel based
on the flow direction map, and the surface soil moisture of
the downstream pixel updated to reflect the increased water
content. Subsurface flux connections between individual
pixels were implemented using seepage faces. Seepage
face boundary conditions allow for the removal of water
from the saturated portions of the domain boundary. This
volume of water ejected from each cross sectional bound-
ary above the water table is added to the nodes of the adja-
cent pixel’s seepage face which are above the water table

and have not attained saturation, at each daily time step to
update the soil water contents in the subsurface layers.

[15] Once all pixels have been updated, they are then
simulated for the next day. This process is repeated for the
duration of simulation period which spanned for three
months—from mid-April 1997 to mid-July 1997. The first
two months were considered as the model spin-up time to
allow the domain characteristics to stabilize, and only out-
puts for the last 1 month were used in the analysis.

2.4. Topography-Based Aggregation

[16] The power average operator, as described by Yager
[2001] is used in this study to coarsen the soil hydraulic pa-
rameter values, as implemented by Jana and Mohanty
[2012a, 2012b]. Two types of aggregating methods are
combined in this technique. In mode-like methods, the em-
phasis is on finding the most probable value of a parameter
from a given set [Yager, 1996]. In mean type aggregation,
the goal is to find the average value of the given set. By
combining the features of both the aggregating methods,
the power average technique provides itself as an ideal tool
for use in scaling of soil hydraulic parameters. Generally,
soil pedons clustered around a location tend to have similar
properties, with the correlation dying out as the distance
between two points increases. This means that the aggre-
gating method must take into consideration the mutual sup-
port the pedons extend to each other when clustered.

[17] The power average operator is defined as

P�ðp1; p2; . . . ; pnÞ ¼
Pn

i¼1½1þ TðpiÞ�piPn
i¼1½1þ TðpiÞ�

; (5)

where

TðpiÞ ¼
Xn

j ¼ 1
j 6¼ i

Supðpi; pjÞ;
(6)

P� is the power average of the parameter values p1 . . . pn.
Supðpi; pjÞ is the support for pi from pj. This feature allows
data clustered around a particular value to combine nonli-
nearly while being aggregated. The support function is the
crux of the power average method. A general form of the
support equation is given by

Supðpi; pjÞ ¼ e��ðpi�pjÞz ; (7)

where � � 0. This function is continuous, symmetric and
lies in the unit interval, as required. The power law form of
the support function is similar to the form of the transmis-
sivity profile used in the TOPMODEL algorithm to com-
pute the topographic index [Iorgulescu and Musy, 1997].

[18] The model parameter � can be considered as a scale
parameter. Since other factors such as vegetation and envi-
ronmental variations are held constant in this case, � depends
on the elevation differential and the distance between obser-
vations. The value of � is given by the formula

� ¼ zjmax � zjmin

zi � zj

� �2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ22

q
S

: (8)
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Here x; y; and z are the Cartesian coordinates of the point,
while S is the scale (resolution) to which the hydraulic pa-
rameters are being aggregated. The first term on the right-
hand side is the normalized difference in elevation between
the two locations i and j. The second term provides the lin-
ear distance between measurement values, normalized by
the scale dimension. A distance which may be considered
as ‘‘far’’ at one scale may not be so at a coarser scale.
Hence, normalizing the actual distance by the scale dimen-
sion provides a more meaningful way of computing the
support function.

2.5. Homogenization

[19] Homogenization of soil hydraulic parameters is a
simple way of upscaling by spatially averaging the soil hy-
draulic parameters. Zhu and Mohanty [2002] examined the
impact of areal heterogeneity of soil hydraulic parameters
on the ensemble response of a pixel-size domain. Different
parameter averaging schemes were considered and their
outputs compared with effective parameters computed in
the basis of the ensemble flux dynamics. Arithmetic, geo-
metric, and harmonic averages of the van Genuchten pa-
rameters a and n were tested along with arithmetic mean
for Ks. Based on their study, they suggested that for averag-
ing spatial variability, arithmetic means could be used for
the Ks and n parameters, while the upscaled � parameter
would have a value between the harmonic and arithmetic
means, based on the correlation of � with Ks. In this com-
parative study we computed the arithmetic, geometric, and
harmonic averages for the soil hydraulic parameters in the
12 selected pixels in the LW watershed.

2.6. Markov Chain Monte Carlo-Based Upscaling

[20] A Markov chain Monte Carlo (MCMC) based
upscaling algorithm developed by Das et al. [2008] to eval-
uate satellite based soil moisture measurements was
adapted for this comparative study. The original work
focused on the soil moisture data product from the
advanced microwave scanning radiometer (AMSR-E)
located on NASA’s Aqua satellite. The approach of Das
et al. [2008] was to derive the upscaled effective soil hy-
draulic parameters from a time series of soil moisture data
at the AMSR-E footprint scale, and stochastic information
of the fine scale soil hydraulic parameter variability. The
upscaling algorithm was developed within a Bayesian
framework to produce probability distributions of the pa-
rameters. In place of the AMSR-E soil moisture product,
we used the ESTAR soil moisture obtained using airborne
sensors, as described above. This was done in order to com-
pare the performance of the algorithm at the hillslope scales
where the ESTAR measurements are representative, rather
than at the much coarser AMSR-E footprint scale.

[21] In a Bayesian framework, pre-existing knowledge
about the parameters of a model can be combined with actual
observations and model outputs. The resulting probability dis-
tribution of the parameter, also called the posterior distribu-
tion, provides an estimate of the uncertainty in the parameter
value based on the prior knowledge and the sampled data val-
ues. Model parameters are considered as random variables,
each with a particular probability density function (pdf)
[Gelman et al., 1995]. Soil hydraulic parameters of the domi-
nant soil type within a footprint based on Soil Survey

Geographic (SSURGO) database were assigned as priors. The
Mualem-van Genuchten functions (equations (3) and (4))
were used in this study. A normal distribution was assigned to
all the hydraulic parameters based on the SSURGO database.

[22] Das et al. [2008] introduce a scale parameter �,
with a noninformative, uniform prior, to account for the
scale disparity. � relates fine scale parameters to the effec-
tive coarse scale parameter in the form

ðPÞeffective ¼ P�; (9)

where P is any soil hydraulic parameter. A set of upscaled
parameters was obtained such that

zi ¼ ð��i
r ; �

�i
s ; �

�i; n�i;K�i
s Þi; (10)

where i is an MCMC realization and �i is the correspond-
ing scale parameter.

[23] By Bayes theorem, the condition posterior probabil-
ity is given by

PðZjDÞ ¼ PðZÞPðDjZÞ
PðDÞ : (11)

Here D is the set of measured soil moisture values and P(Z)
is the prior joint pdf for the upscaled parameters. P(D) is a
normalizing factor while P(DjZ) is the likelihood derived
from the coarse scale soil moisture measurements. A
detailed description the of algorithm to obtain the posterior
pdfs of each of the parameters using a Metropolis algorithm
can be found in the paper by Das et al. [2008] and are not
repeated here. As mentioned, suitable changes were made
to the algorithm to incorporate ESTAR measurements in
place of the AMSR-E soil moisture product, without com-
promising on the integrity of the algorithm.

2.7. Multiscale Bayesian Neural Networks

[24] The last upscaling model to be compared was devel-
oped by Jana et al. [2008] as a means of applying an artifi-
cial neural networks-based pedotransfer function across
scales, within a Bayesian framework. The technique con-
sists of training a Bayesian neural network (BNN) with soil
texture and structure data at one scale, and to simulate the
soil water retention at another. Jana et al. [2008] and Jana
and Mohanty [2011] applied the multiscale BNN to down-
scale soil properties from the SSURGO (30 m) resolution
to the point scale. Training inputs to the BNN consist of the
percentage of sand, silt, and clay, and the bulk density of
the soil, and elevation and vegetation data. The targets
were the soil water contents at 0, 0.33, and 15 bars.

[25] If y is the target and x the input data, then the rela-
tion between x and y can be described as

y ¼ fðxjwÞ þ E; (12)

where f(xjw) is the functional approximation (described by
the ANN) of the relationship between the input and the tar-
get, w is the vector of weights and biases for the layers
of ANN neurons, and E is the error term. Conventional
(standard/deterministic) ANN methodology attempts to
find a single set of weights w such that given the training
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inputs x the network reproduces the training targets y with
minimal error E. Bayesian ANNs, however, generate a
probability distribution of the layer weights which is de-
pendent on the given input data. Using MCMC techniques,
the BNN provides a distribution of the output parameter
instead of a single deterministic value.

[26] In this study, we adapted the BNN for upscaling the
soil water content. Training data were still obtained from
the SSURGO database and the 30 m resolution DEM. The
simulation data (soil texture and structure) were obtained
from the coarser resolution (1 km) STATSGO database
and the 1 km Dem, as mentioned in section 2.2. Since nei-
ther the SSURGO or the STATSGO databases report val-
ues for the van Genuchten parameters � and n, these were
estimated from the ROSETTA database within HYDRUS-
3-D for both scales. The soil texture and structure data from
STATSGO, and the simulated soil water contents at 0.33
and 15 bars form the inputs to ROSETTA at the coarse
scale. Neural networks with one input layer, one hidden
layer with five neurons, and one output layer were used,
with the tangent hyperbolic transfer function, for all cases.
This architecture was decided based on the studies by Jana
and Mohanty [2008].

3. Results and Discussion
[27] Five soil hydraulic parameters—�r, �s, �, n, and

Ks—were upscaled using the four different upscaling meth-
odologies from 30 m resolution to 1 km resolution for the
12 selected pixels of 1 km � 1 km size within the LW
watershed. Table 1 shows the average elevation (at 1 km
resolution), land cover, and average compound topographic
index values for the 12 selected pixels. Table 2 shows the
fine scale soil hydraulic properties of the materials in the
12 pixels. Except for pixel 4, all other pixels had at least
three different soil types distributed in the pixel. The effec-
tive soil hydraulic parameter values from each upscaling
scheme were compared with the values from the topogra-
phy-based upscaling. Average daily surface soil moisture
states were compared for these pixels for the 16 days on
which the ESTAR data product is available.

3.1. Comparison of Upscaled Soil Hydraulic
Parameters

[28] Aggregate values for the five soil hydraulic parame-
ters at the 1 km scale, as obtained from the four different

upscaling algorithms are reported in Table 3. Since the
MCMC and BNN methodologies provide a distribution for
each parameter, the maximum, minimum, and average val-
ues are reported for these methods. Upscaled values of the
five soil hydraulic parameters, as obtained from the homog-
enization methods for each pixel are plotted in Figure 2,
along with those obtained from the topography-based scal-
ing scheme. As can be seen from Table 3, and in Figure 2,
the arithmetic, geometric, and harmonic averages for each
parameter are very close to each other. Only in the values for
the van Genuchten � and Ks, slight deviations are observed.
Table 4 provides correlation information between the ho-
mogenized soil hydraulic parameters and those obtained
from the topography-based scaling scheme. It can be seen
that the best correlations were obtained for the soil water
contents �r and �s, while the van Genuchten n parameter was
the least correlated. It is seen in Figure 2 that in most cases
the n parameter is overpredicted by homogenization as com-
pared with the topography-based scaling output. The param-
eter n is dependent on the particle size distribution of the
soil, which in turn may be dictated by the topography of the

Table 1. Elevation, Land Cover and Topographic Index Details
of 12 Selected Pixels in Little Washita Watersheda

Average Elevation (m) Land Cover Average CTI

Pixel 1 446 Pasture 7.332
Pixel 2 355 Pasture 7.312
Pixel 3 369 Pasture 6.656
Pixel 4 408 Bare 6.846
Pixel 5 410 Bare 6.846
Pixel 6 345 Wheat 7.379
Pixel 7 341 Wheat 7.396
Pixel 8 407 Bare 7.128
Pixel 9 392 Pasture 6.709
Pixel 10 419 Wheat 7.274
Pixel 11 377 Pasture 7.085
Pixel 12 394 Pasture 7.247

aValues are reported at the 1 km resolution.

Table 2. Soil Hydraulic Parameter Data at Fine (30 m) Scale for
the 12 Selected Pixels

Material �r (m3 m�3) �s (m3 m�3) � (m�1) n (–) Ks (m d�1)

Pixel 1 1 0.04 0.38 1.3000 1.3420 0.6773
2 0.04 0.37 1.1400 1.3285 0.2202
3 0.04 0.36 0.8300 1.4252 0.2202
4 0.05 0.40 0.9700 1.3810 0.2202

Pixel 2 1 0.04 0.38 1.3000 1.3420 0.5587
2 0.04 0.37 0.8100 1.4307 0.2202
3 0.05 0.38 1.2200 1.3602 0.6773
4 0.04 0.36 0.8300 1.4252 0.2202
5 0.05 0.39 0.9000 1.3892 0.2202

Pixel 3 1 0.05 0.38 1.2200 1.3602 0.5300
2 0.04 0.36 0.8300 1.4252 0.2400
3 0.05 0.41 1.0100 1.3722 0.2158

Pixel 4 1 0.04 0.36 1.5600 1.3498 0.2822
2 0.05 0.39 1.2100 1.3597 0.0917

Pixel 5 1 0.04 0.37 0.8400 1.4362 0.2562
2 0.05 0.39 1.0200 1.3716 0.1133
3 0.05 0.40 0.9700 1.3810 0.2145
4 0.07 0.44 1.4800 1.3003 0.1256

Pixel 6 1 0.04 0.37 0.8100 1.4307 0.1655
2 0.05 0.38 1.2200 1.3602 0.1549
3 0.05 0.40 0.9400 1.3770 0.1982

Pixel 7 1 0.04 0.36 1.6300 1.3442 0.3298
2 0.05 0.39 0.8800 1.3739 0.0890
3 0.05 0.38 1.2200 1.3602 0.1549
4 0.05 0.39 0.9000 1.3892 0.1993

Pixel 8 1 0.03 0.36 2.0400 1.4414 1.6038
2 0.02 0.36 1.5600 1.3636 0.7068
3 0.03 0.38 2.0400 1.3662 0.9750
4 0.04 0.38 1.3000 1.3420 0.4257

Pixel 9 1 0.02 0.36 1.5600 1.3636 0.7068
2 0.04 0.38 1.3000 1.3420 0.4257
3 0.04 0.37 1.2900 1.3466 0.4270

Pixel 10 1 0.05 0.39 1.0200 1.3716 0.1133
2 0.07 0.44 1.4800 1.3003 0.1256
3 0.04 0.37 0.8400 1.4362 0.2562
4 0.05 0.40 0.9700 1.3810 0.2145

Pixel 11 1 0.05 0.39 2.3400 1.3306 0.3568
2 0.05 0.38 1.2200 1.3602 0.1549
3 0.04 0.36 0.8300 1.4252 0.2401

Pixel 12 1 0.02 0.36 1.5600 1.3636 0.7068
2 0.03 0.38 2.0400 1.3662 0.9750
3 0.04 0.36 1.5700 1.3424 0.3238
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Table 3. Soil Hydraulic Parameters at the Coarse (1 km) Scale for the 12 Selected Pixel in the Little Washita Region, As Obtained
From the Different Upscaling Algorithmsa

Upscaling Method �r (m3 m�3) �s (m3 m�3) � (m�1) n (–) Ks (m d�1)

Pixel 1
Topo-based 0.04 38 1.236 1.349 0.587

Homogenization Arithmetic 0.04 38 1.060 1.369 0.334
Geometric 0.04 38 1.045 1.369 0.292
Harmonic 0.04 38 1.030 1.368 0.265

MCMC Max 0.09 38 1.036 1.828
Min 0.03 12 0.451 1.352

Average 0.06 30 0.820 1.582 0.797
BNN Max 0.04 42 2.381 1.549 0.293

Min 0.03 31 1.739 1.131 0.214
Average 0.03 36 2.070 1.347 0.255

Pixel 2
Topo-based 0.04 38 1.149 1.368 0.483

Homogenization Arithmetic 0.04 38 1.012 1.389 0.379
Geometric 0.04 38 0.992 1.389 0.332
Harmonic 0.04 38 0.973 1.389 0.296

MCMC Max 0.13 40 1.044 2.425
Min 0.04 8 0.396 1.553

Average 0.09 28 0.710 2.115 0.473
BNN Max 0.06 44 1.334 1.562 0.176

Min 0.04 0.32 0.974 1.141 0.128
Average 0.05 0.39 1.160 1.359 0.153

Pixel 3
Topo-based 0.05 0.38 1.159 1.367 0.464

Homogenization Arithmetic 0.05 0.38 1.020 1.386 0.329
Geometric 0.05 0.38 1.008 1.386 0.302
Harmonic 0.05 0.38 0.995 1.385 0.281

MCMC Max 0.13 0.38 1.048 1.860
Min 0.03 0.11 0.560 1.389

Average 0.09 0.25 0.900 1.642 0.344
BNN Max 0.06 0.44 1.334 1.562 0.176

Min 0.04 0.32 0.974 1.141 0.128
Average 0.05 0.39 1.160 1.359 0.153

Pixel 4
Topo-based 0.04 0.38 1.306 1.357 0.144

Homogenization Arithmetic 0.04 0.37 1.385 1.355 0.187
Geometric 0.04 0.37 1.374 1.355 0.161
Harmonic 0.04 0.37 1.363 1.355 0.138

MCMC Max 0.12 0.41 1.034 1.816
Min 0.03 0.10 0.461 1.266

Average 0.07 0.23 0.836 1.551 0.434
BNN Max 0.03 0.41 2.519 1.555 0.346

Min 0.03 0.30 1.840 1.136 0.253
Average 0.03 0.35 2.190 1.352 0.301

Pixel 5
Topo-based 0.06 0.42 1.247 1.339 0.166

Homogenization Arithmetic 0.05 0.40 1.078 1.372 0.177
Geometric 0.05 0.40 1.053 1.371 0.167
Harmonic 0.05 0.40 1.032 1.371 0.158

MCMC Max 0.12 0.38 1.037 1.801
Min 0.04 0.11 0.416 1.381

Average 0.09 0.27 0.730 1.558 0.036
BNN Max 0.07 0.48 1.472 1.511 0.241

Min 0.05 0.35 1.075 1.104 0.176
Average 0.06 0.42 1.280 1.314 0.210

Pixel 6
Topo-based 0.04 0.38 0.939 1.404 0.167

Homogenization Arithmetic 0.05 0.38 0.976 1.389 0.172
Geometric 0.04 0.38 0.962 1.389 0.171
Harmonic 0.05 0.38 0.990 1.389 0.173

MCMC Max 0.12 0.36 1.031 2.333
Min 0.03 0.09 0.373 1.566

Average 0.09 0.27 0.814 2.123 0.627
BNN Max 0.04 0.42 1.449 1.594 0.177

Min 0.03 0.31 1.058 1.164 0.129
Average 0.04 0.37 1.260 1.386 0.154

Table 3.
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Table 3. (continued)

Upscaling Method �r (m3 m�3) �s (m3 m�3) � (m�1) n (–) Ks (m d�1)

Pixel 7
Topo-based 0.05 0.37 1.321 1.357 0.232

Homogenization Arithmetic 0.05 0.38 1.158 1.367 0.193
Geometric 0.05 0.38 1.120 1.367 0.174
Harmonic 0.05 0.38 1.087 1.367 0.155

MCMC Max 0.12 0.37 1.057 2.218
Min 0.04 0.11 0.507 1.629

Average 0.09 0.23 0.846 1.947 0.062
BNN Max 0.04 0.42 1.449 1.594 0.177

Min 0.03 0.31 1.058 1.164 0.129
Average 0.04 0.37 1.260 1.386 0.154

Pixel 8
Topo-based 0.02 0.36 1.560 1.364 0.707

Homogenization Arithmetic 0.03 0.37 1.735 1.378 0.928
Geometric 0.03 0.37 1.704 1.378 0.828
Harmonic 0.03 0.37 1.673 1.377 0.739

MCMC Max 0.11 0.37 1.036 1.781
Min 0.03 0.06 0.353 1.256

Average 0.06 0.23 0.688 1.517 0.547
BNN Max 0.04 0.42 5.003 1.590 0.760

Min 0.03 0.30 3.654 1.161 0.555
Average 0.03 0.36 4.350 1.382 0.661

Pixel 9
Topo-based 0.03 0.37 1.408 1.352 0.544

Homogenization Arithmetic 0.03 0.37 1.383 1.351 0.520
Geometric 0.03 0.37 1.378 1.351 0.505
Harmonic 0.03 0.37 1.373 1.351 0.491

MCMC Max 0.12 0.39 1.041 1.765
Min 0.03 0.07 0.411 1.306

Average 0.08 0.28 0.875 1.541 0.494
BNN Max 0.04 0.42 5.003 1.590 0.760

Min 0.03 0.30 3.654 1.161 0.555
Average 0.03 0.36 4.350 1.382 0.661

Pixel 10
Topo-based 0.05 0.40 0.993 1.383 0.213

Homogenization Arithmetic 0.05 0.40 1.078 1.372 0.177
Geometric 0.05 0.40 1.053 1.371 0.167
Harmonic 0.05 0.40 1.032 1.371 0.158

MCMC Max 0.13 0.38 1.039 1.694
Min 0.03 0.08 0.407 1.276

Average 0.08 0.28 0.870 1.479 0.573
BNN Max 0.08 0.47 2.105 1.440 0.198

Min 0.06 0.34 1.537 1.052 0.145
Average 0.07 0.41 1.830 1.252 0.172

Pixel 11
Topo-based 0.04 0.38 1.591 1.372 0.282

Homogenization Arithmetic 0.04 0.38 1.463 1.372 0.251
Geometric 0.04 0.38 1.333 1.371 0.237
Harmonic 0.04 0.38 1.224 1.371 0.223

MCMC Max 0.12 0.38 0.964 1.803
Min 0.03 0.07 0.312 1.243

Average 0.08 0.22 0.618 1.497 0.052
BNN Max 0.06 0.44 1.334 1.562 0.176

Min 0.04 0.32 0.974 1.141 0.128
Average 0.05 0.39 1.160 1.359 0.153

Pixel 12
Topo-based 0.03 0.36 1.633 1.359 0.648

Homogenization Arithmetic 0.03 0.37 1.723 1.357 0.669
Geometric 0.03 0.37 1.710 1.357 0.607
Harmonic 0.03 0.37 1.697 1.357 0.543

MCMC Max 0.12 0.39 1.051 2.413
Min 0.03 0.07 0.309 1.386

Average 0.07 0.26 0.691 2.031 0.298
BNN Max 0.04 0.42 5.003 1.590 0.760

Min 0.03 0.30 3.654 1.161 0.555
Average 0.03 0.36 4.350 1.382 0.661

aTopo-based: topography-based scaling scheme; MCMC: Markov chain Monte Carlo-based scaling scheme; BNN: Bayesian neural networks-based
scaling scheme.
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location. A simple homogenization may not be able to cap-
ture the clustering of n values based on the relative eleva-
tions within a domain; a factor which is considered in the
topography-based scaling. This could be the reason for the
low correlation of the parameter. Keeping in line with the
guidelines suggested by Zhu and Mohanty [2002], the arith-
metic average values of all parameters but the van Gen-
uchten � were used in the simulation using HYDRUS-3-D.
For �, the geometric average, which lies between the arith-
metic and harmonic averages, was used.

[29] Upscaled hydraulic parameter values obtained from
the MCMC-based algorithm are plotted in Figure 3, along
with the parameters from the topography-based scheme. As
mentioned before, the MCMC algorithm, as implemented
by Das et al. [2008] provides a distribution for each param-
eter, but for Ks. While the water content values �r and �s

mostly fall within the range of possible values from the
MCMC iterations, the shape parameters, � and n, rarely do
so. The correlations between the averages of the MCMC
derived parameters and the topography based scaling out-
puts are also reported in Table 4. It is seen that the correla-
tions are quite low for most parameters. MCMC is a
statistical technique, rather than a physical model. In the
form as implemented by Das et al. [2008] and adapted
here, it solves the van Genuchten equations (equations (3)

and (4)) at a particular pressure such that the soil moisture
value �(h) is obtained. This value is compared with the pro-
vided ESTAR value and accepted with a particular proba-
bility. With a combination of five parameters working to
match a single value, the matter of nonuniqueness enters. A
total of 45,000 MCMC samples were retained for each pa-
rameter, after discarding an initial 5000 samples as model
burn-in, with an acceptance rate of around 12%. It is possi-
ble that having a larger set of retained samples could widen
the range of probable values. For simulation of the soil do-
main in HYDRUS-3-D, the average values from the
MCMC outputs were used for all soil hydraulic parameters.

[30] Variations across the 12 selected pixels in the
upscaled soil hydraulic parameters estimated by the BNN
methodology are plotted in Figure 4. From the plots, it is
apparent that the �s parameter is the best correlated, and is
verified from Table 4. It should be remembered here that
the shape parameters of the van Genuchten equation a and
n were not upscaled using the BNN methodology, but were
derived from the ROSETTA database from the coarse reso-
lution soil texture and structure properties, and the upscaled
soil water contents at 0.33 and 15 bars.

3.2. Comparison of Average Soil Moisture State With
ESTAR Measurements

[31] The 2 selected pixels of the Little Washita water-
shed were simulated for water movement using HYDRUS-
3-D for the three month period beginning mid-April 1997.
The first two months were used as model spin-up time to
allow for the soil domain characteristics to settle. Analysis
is made of only the last month beginning mid-June (DOY
169 to 197). This is the period when the SGP97 experiment
was conducted, and hence the availability of the ESTAR
data for this period.

[32] Figure 5 shows the average daily surface soil mois-
ture for each pixel simulated using the different sets of soil
hydraulic parameters from the four upscaling methods
compared here, along with the ESTAR measurements. It is
seen that in most cases, the MCMC-predicted parameters
cause an overprediction of the soil moisture state. The

Figure 2. Plots of upscaled soil hydraulic parameters obtained by homogenization and topography-
based upscaling techniques.

Table 4. Pearson’s Correlations for Each Soil Hydraulic Parame-
ter Obtained From Each Upscaling Algorithm With Those
Obtained From the Topography-Based Upscaling Scheme, Across
All Pixels

Average �r �s � n Ks

Arithmetic 0.95a 0.91a 0.89a 0.56b 0.88a

Geometric 0.94a 0.91a 0.85a 0.56b 0.87a

Harmonic 0.92a 0.91a 0.82a 0.56b 0.87a

MCMC 0.72a 0.32 �0.60b 0.36 0.36
BNN 0.68b 0.85a 0.61b �0.03 0.69b

aCorrelations significant at the 0.01 level.
bCorrelations significant at the 0.05 level.
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homogenized parameters too tend to overpredict the soil
moisture in certain cases, especially during the wetter days.
It is also seen that the topography-based and BNN soil
moisture signatures closely follow each other for the most
part. Correlations of the average daily soil moisture simu-
lated using the homogenization, MCMC and BNN derived
soil hydraulic parameters with the simulated soil moisture
using the topography based scaling are reported in Table 5.
It is seen that the MCMC method provides the least correla-
tion, while the BNN technique has a very high correlation
with the topography based technique.

[33] Figure 6 shows the correlations of the simulated soil
moistures for each pixel with the corresponding ESTAR
soil moisture data product. The correlation values are also
reported in Table 11. It is again noticed that the topogra-
phy-based and BNN-based soil moisture correspond very
well with the ESTAR measurements, followed by the ho-
mogenization product. The MCMC based soil moisture is

the least correlated overall, with the highest correlation
being 0.64 (pixel 9). This observation is in line with corre-
lation values reported by Das et al. [2008]. In their study,
correlation values between the simulated and AMSR-E soil
moistures for the Oklahoma Little Washita region ranged
between 0.32 and 0.61, with an average correlation of 0.51
during the summer period, similar in conditions to our
study. The low correlation was attributed by Das et al.
[2008] to the inability of the remote sensor to accurately
compensate for the high level of vegetation water during
this period. As a result, the AMSR-E values were generally
lower during the wetter days.

[34] The ESTAR measurements are made using L-band
frequencies of the microwave spectrum, and are hence
slightly better equipped to account for the vegetation water
content [Njoku et al., 2003]. However, the algorithm devel-
oped by Das et al. [2008] made use of the long time series
of information available for the AMSR-E soil moisture

Figure 4. Plots of upscaled soil hydraulic parameters obtained by BNN-based and topography-based
upscaling techniques.

Figure 3. Plots of upscaled soil hydraulic parameters obtained by MCMC-based and topography-based
upscaling techniques.
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product. In our study we were restricted to the 16 days of
the ESTAR observations. This too could be a factor in the
performance of the MCMC algorithm as the time available
for the algorithm to settle may not be sufficient.

[35] The higher performance of the BNN scaling algo-
rithm may be attributed to the fact that upscaling generally
involves interpolation of soil hydraulic parameter values at
the fine scale. Downscaling, on the other hand, could
involve extrapolation from the averaged values at the
coarse scale. Artificial neural networks work much better
with interpolation than with extrapolation. As a result, the

soil hydraulic parameters output from the BNN methodol-
ogy match those from the topography-based scaling tech-
nique. It should also be noted that the BNN training inputs
included the elevation details, thus making this techniques
the closest to the topography-based algorithm.

3.3. Correlation of Average Soil Moisture Based on
the Location and Elevation

[36] Based on the precipitation maps for 1997, it was
observed that the western portion of the watershed received
more rainfall as compared to the eastern parts. This observa-
tion is different from that made by Illston and Basara
[2003], who analyzed the drought conditions in Oklahoma
between 1998 and 2000, and note that the western portion of
the state is more drought prone as compared to the east.
Table 6 shows the correlation coefficients between the simu-
lated and ESTAR measured soil moisture. It is also to be
noted that three of the four pixels with the lowest elevations
(3, 6, and 7) are situated in the eastern part of the watershed,
along with pixel 12. Pixels 1, 4, 5, and 10, having the highest
elevations, are located in the western portion of the LW
watershed, while the remaining four pixels (8, 9, 11, and 2)
are in the middle portion. It may be observed from the
ESTAR soil moisture data (Figure 5) that none of the pixels
in the middle portion had a significant number of wet days
with a soil moisture value above 20%, while two of the three
pixels with significant number of dry days, with a soil mois-
ture value less than 10%, were in this region. The fact that
the western portion received more rainfall than the east is
also verified by most number of pixels with significant num-
ber of wet days being in this portion. Pixel 5, which exhibits
the most number of wet days, is the western-most pixel

Table 5. Pearson’s Correlations of Average Daily Simulated Soil
Moisture States From Three Upscaling Methods With Simulated
Soil Moisture From Topography-Based Upscaling Schemea

MCMC Hom. BNN

Pixel 1 0.49 0.66b 0.81c

Pixel 2 0.39 0.95c 0.96c

Pixel 3 0.66b 0.71c 0.90c

Pixel 4 0.48 0.87c 0.95c

Pixel 5 0.51b 0.58b 0.98c

Pixel 6 0.24 0.38 1.00b

Pixel 7 0.66b 0.86c 0.98c

Pixel 8 0.54b 0.79c 0.90c

Pixel 9 0.31 0.47 0.95c

Pixel 10 0.05 0.4 0.88c

Pixel 11 0.44 0.61b 0.93c

Pixel 12 0.14 0.39 0.92c

aHom: homogenization; MCMC: Markov Chain Monte Carlo based;
BNN: Bayesian neural networks based.

bCorrelations significant at the 0.05 level.
cCorrelations significant at the 0.01 level.

Figure 5. ESTAR measured, and simulated soil moisture signatures for 12 selected pixels. Topo:
topography-based scaling; Hom: homogenization; MCMC: Markov chain Monte Carlo-based scaling;
BNN: Bayesian neural networks-based scaling.
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selected for analysis. Downstream pixels 2 and 3, which also
exhibit higher soil moisture states, are located close to the
streambed. This would mean that the influx of water into
these pixels is significantly more than the others, which is
reflected in the higher soil moisture values.

[37] While there is no apparent trend in the soil moisture
predictions using the topography-based, MCMC-based, or
BNN-based upscaled soil hydraulic parameters, the homoge-
nized parameters performed slightly better at the lower, east-
ern locations. The worst performance of the homogenized
parameters was in the middle portion of the watershed.

3.4. Correlation of Average Soil Moisture State With
the Topographic Index

[38] Compound topographic indices (ln A
tanðBÞ) [Beven et

al., 1984; Kirkby, 1975] were computed for each of the 12
pixels suing the fine scale (30 m) elevation data. In the
above formulation, A is the upslope contributing area at the
location of interest, while B is the slope of the domain at
the location. It has been reported by Pradhan et al. [2006]
that the grid resolutions of the DEMs used to compute the
topographic index have a significant influence on the reli-
ability of the CTI values. As coarser grids are used, the reli-
ability reduces. This is attributed to the fact that the higher
resolution topographic characteristics are smoothed out and
lost when coarse resolution DEMs are used. Hence we use
the fine scale DEM to compute the CTI. The ‘‘dinf ’’ algo-
rithm suggested by Tarboton [1997] was used to compute
the flow direction, and thus the upslope contributing area
for the compound topographic index (CTI). This algorithm
has been shown to provide more realistic representations
since the flow directions are not fixed, and flow can occur
in multiple directions.

[39] The average CTI values within each of the 12 analy-
sis pixels were computed. The average and variance of the
CTI at each pixel are plotted in Figure 7. It can be seen that
while there is only a small variation in the average CTI

value, the distribution within each pixel, represented by the
error bars, varies more significantly. This signifies that
while at the coarse resolution, all the pixels may seem simi-
lar with respect to the CTI, at the finer resolution, there are
big differences. It is seen that most of the pixels with sig-
nificant number of wet days (Figure 5) have lesser variation
in the CTI. Table 6 shows the correlation coefficients
between the simulated and ESTAR soil moisture values.
Again, as in the previous section, it is seen that only the ho-
mogenized parameters’ performance has some relationship
with the CTI. The homogenization algorithm performed
best in the four pixels which have the highest CTI, while
they perform the worst in the four pixels with the lowest
CTI. A high CTI value denotes either low changes in the
relative elevations within the pixel, or monotonic changes
in elevation. A low CTI value, on the other hand, signifies
that a more complex terrain exists in the pixel. It can be
seen that the three pixels (2, 6, and 7) in which the homoge-
nized parameters performed best, as described in the previ-
ous section, have CTI values in the higher range. These
pixels all had significant plateau areas with some portion of
the domain sloping monotonically toward the flat land. At
the other end of the CTI spectrum, pixel 3, although in the
eastern third of the watershed, displayed the poorest per-
formance by the homogenized parameters. This pixel had
multiple valleys and ridges, thus creating a more complex
topographic configuration.

3.5. Correlation of Average Soil Moisture Based on
the Land Cover

[40] When the correlation coefficients between the
ESTAR observed and simulated soil moistures, are sorted
on the basis of the land cover within the pixel (Table 6), it
is seen that the pasture pixels have the best overall correla-
tions, followed by the bare pixels for the topography-based
and BNN based schemes. The pixels with a winter wheat
cover show the least correlation between the simulated and

Figure 6. Correlations of average daily simulated soil moisture values with ESTAR measurements.
Topo: topography-based scaling; Hom: homogenization; MCMC: Markov chain Monte Carlo-based
scaling; BNN: Bayesian neural networks-based scaling.
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ESTAR measure soil moistures. This could be due to crop
management practices such as harvesting, or water logging
taking place during this period, which has not been
accounted for in our study. Furthermore, it is seen that
most of the pixels with significant wet days have a pasture
cover. The pixel with most wet days (pixel 5) has a bare
soil cover. The homogenization and MCMC methods had
no apparent pattern associated with the land cover.

3.6. Comparison of Generated Surface Runoff

[41] Streamflow gauges at two locations (Figure 1) were
used to compare the generated surface runoff quantities
using the upscaled soil hydraulic parameters from the four
scaling algorithms. The upstream gauge (USGS designation
SG442) is situated near pixel 5, while the downstream
gauge (SG447) is near pixel 9. Surface fluxes routed to the
pixels containing the stream gauges are compared with the
daily stream discharge data from these gauges as shown in
Figures 8 and 9. While the four scaling methods resulted in
different values of the stream flux, the general trend is simi-
lar in all cases. It is seen that the plot for the upstream

gauge (Figure 8) displays high degrees of correlation
between the measured and modeled fluxes. This is due to
the small contributing area for this gauge. It must also be
noted that the correlations are reported after correcting for
a 1 day lag in the modeled fluxes. This lag is attributed to
the time scale (daily) at which the flow routing is imple-
mented between pixel domains in the watershed.

[42] At the downstream gauge (Figure 9), it is seen that
the two scaling methods which take the topography into
consideration have higher correlations between the meas-
ured and modeled fluxes. With a larger contributing area,
the flux discharge at this gauge is more dependent on the
topography than the upstream gauge. In this case, the corre-
lations have been corrected for a 2 day lag. It is expected
that there would be a threshold value for the catchment size
beyond which the lag time would not rise. At this threshold
size the travel time for surface runoff from the nearer pixels
to the stream would dominate those from the farther pixels,
thus creating a spread out response.

[43] Computational restraints permitting, if the entire
watershed were to be simulated in HYDRUS as a single do-
main, slightly improved matches are expected between the
simulated and measured streamflows. This would be attrib-
uted mainly to the fact that an offline routing algorithm
would not be necessary for the overland and subsurface
fluxes. This could result in elimination of the response time
lag, and also a more continuous real-time distribution of
soil moisture and fluxes.

[44] The objective of this study was to compare the per-
formances of the four upscaling algorithms under similar
conditions. From the results obtained, it was seen that,
overall, the two algorithms (topography-based and BNN-
based) which accounted for topographic variations in some
form performed better than the two algorithms (homogeni-
zation, and MCMC-based) that did not factor in the effect
of the topography. It has been previously hypothesized
[Jana and Mohanty, 2012a] that different physical controls
dominate soil property and moisture variability at different
scales. It is thought that the soil texture and structure domi-
nate at the smaller scales, while topography exerts more
influence at hillslope (kilometer) scales. Beyond that, at re-
gional scales, the vegetation or land cover may be the

Figure 7. Average compound topographic index of 12
selected pixels derived from 30 m resolution DEM. Error
bars represent variance of CTI within each pixel.

Table 6. Pearson’s Correlations of Average Daily Simulated Soil Moisture States With ESTAR Measurements Across All Days of
Observationa

Correlations w.r.t. ESTAR
Average

Elevation (m) Location Average CTI Land CoverTopo. Hom. MCMC BNN

Pixel 1 0.87b 0.75b 0.58c 0.77b 446 West 7.332 Wheat
Pixel 2 0.88b 0.87b 0.55c 0.84b 355 Mid 7.312 Pasture
Pixel 3 0.88b 0.62c 0.57c 0.81b 369 East 6.656 Pasture
Pixel 4 0.82b 0.74b 0.49 0.77b 408 West 6.846 Pasture
Pixel 5 0.89b 0.76b 0.60c 0.90b 410 West 6.846 Bare
Pixel 6 0.76b 0.73b 0.45 0.76b 345 East 7.379 Pasture
Pixel 7 0.75b 0.82b 0.52c 0.72b 341 East 7.396 Pasture
Pixel 8 0.88b 0.84b 0.60c 0.74b 407 Mid 7.128 Bare
Pixel 9 0.84b 0.63c 0.64c 0.73b 392 Mid 6.709 Pasture
Pixel 10 0.67c 0.75b 0.53c 0.84b 419 West 7.274 Wheat
Pixel 11 0.76b 0.71b 0.61c 0.76b 377 Mid 7.085 Wheat
Pixel 12 0.84b 0.67c 0.44 0.76b 394 East 7.247 Bare

aHom: homogenization; MCMC: Markov Chain Monte Carlo based; BNN: Bayesian neural networks based.
bCorrelations significant at the 0.01 level.
cCorrelations significant at the 0.05 level.
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dominant control, giving way to the climate at continental
scales. The above discussion brings out the fact that the ho-
mogenized parameters fared poorly in pixels with complex
topographic configurations. However, the topography-
based scaling algorithm, and the BNN-based technique,
which incorporate the elevation differences in their routines
fared equally well across all scenarios. The findings of this
study strengthen the argument that at hillslope scales, the
topography is a dominant factor in dictating the soil hy-
draulic parameter values, and thus the soil water dynamics.

The differences in the correlations based on the land cover
suggest that the vegetation is exerting some influence on
the soil moisture variation at the hillslope scale too.

[45] From this study it can be inferred that when the do-
main of interest and the support dimension are small, the
choice of the upscaling algorithm does not make much dif-
ference since the soil parameter variability is dictated
mainly by the soil texture and structure. However, at hill-
slope scales, selection of upscaling algorithms that account
for the effect of the changing topography at that scale

Figure 9. Comparison of stream discharge at downstream gauge. Correlations are provided between
measured and simulated values, with and without correction for lag in model response time. Topo:
topography-based scaling; Hom: homogenization; MCMC: Markov chain Monte Carlo-based scaling;
BNN: Bayesian neural networks-based scaling.

Figure 8. Comparison of stream discharge at upstream gauge. Correlations are provided between
measured and simulated values, with and without correction for lag in model response time. Topo:
topography-based scaling; Hom: homogenization; MCMC: Markov chain Monte Carlo-based scaling;
BNN: Bayesian neural networks-based scaling.
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significantly improves the effective values for the soil hy-
draulic parameters. The two methods tested here which
account for topography are designed such that when the do-
main has a lower topographic complexity, the effect of the
topography is reduced. Hence, they can be assumed to be
more generic scaling algorithms as compared to the two
that do not include topography.

[46] Based on the simulated streamflow, users interested
in flood analysis may prefer the MCMC-based method over
the others since this method resulted in consistently higher
estimates of the stream discharge during the peaks. Simi-
larly, one interested in drought planning may prefer the to-
pography-based scaling technique due to its better match
with the observed low flow conditions.

[47] While the upscaling methodologies have been tested
at only one watershed in this study, the original articles in
which the methods have been developed report their per-
formances under different hydroclimatic conditions. For
example, the topography-based scaling algorithm has been
tested by Jana and Mohanty [2012a, 2012b] at the Little
Washita watershed as well as the Walnut Creek watershed
in Iowa, apart from a synthetic study under different topo-
graphic scenarios. Similarly, Das et al. [2008] have tested
the MCMC-based algorithm at the Little Washita (OK),
Walnut Creek (IA), and the Walnut Gulch (AZ) water-
sheds. The BNN-based scaling algorithm has been applied
at different locations in the Rio Grande basin and in the
Walnut Creek watershed by Jana et al. [2008] and Jana
and Mohanty [2011]. As such, the algorithms have been
shown to be applicable to upscaling of soil hydraulic pa-
rameters under different conditions of climate, vegetation,
topography, and soils. While the numerical value of the
scale parameters in the change from site to site, the meth-
odologies themselves hold good for all sites.

[48] Certain assumptions were made in setting up the
hydrologic model such as the depths to the water table, the
depths of the root zone, and the initial condition of the soil
moisture. While it is always desirable to have the most accu-
rate information when modeling, such assumptions are
sometimes necessary as a trade-off between accuracy and
practicality. If the water table data were much different from
the model assumptions, different volumes of subsurface
fluxes, soil water storage, and consequently surface runoff
would be seen. Changes in the rooting depth would affect
the ET fluxes, and also the soil moisture in the top layers.
However, from the hydrologic simulations, we see that the
simulated fluxes and soil moisture values match the variabil-
ity in the observed values. Hence, the assigned water tables
and rooting depths can be assumed to be reasonably close to
reality. The initial conditions would definitely dictate the do-
main responses in the early phases of the simulations. How-
ever, after a certain duration, the initial conditions hold no
influence on the simulations. This is the reason why we des-
ignate the first two months of the simulation as the model
spin-up time and discard them from the analysis.

[49] It is possible that different soil parameters may be
better upscaled by different methodologies. In such a sce-
nario, the best set of effective upscaled parameters would
be obtained by using a suite of algorithms instead of a sin-
gle method. However, our aim was to obtain the overall
best set of effective parameters at the coarse resolution, and
to find out which single one of the four upscaling method-

ologies compared here resulted in the best match to
observed data. Hence we do not consider the performance
of individual parameters. Nevertheless, this is a suitable
subject for further investigation.

4. Conclusions
[50] Four different techniques of upscaling soil hydrau-

lic parameters from the 30 m resolution to a 1 km resolu-
tion were compared at the Little Washita watershed. A
topography-based aggregation scheme, a simple homogeni-
zation method, an MCMC-based stochastic technique, and
a Bayesian neural network approach to the upscaling prob-
lem were analyzed in this study. The equivalence of the
upscaled parameters was tested by simulating water flow
for the watershed pixels in HYDRUS-3-D, and comparing
the resultant soil moisture states with data from ESTAR
airborne sensor during the SGP97 hydrology experiment.

[51] Correlations of simulated and observed soil mois-
tures were compared across time, location, elevation,
vegetative cover, and with respect to topographic indices,
with varying results. It was inferred that the inclusion of to-
pography in the hydraulic parameter scaling algorithm
accounts for much of the variability. The topography-based
scaling algorithm, followed by the BNN technique, were
able to capture much of the variation in soil hydraulic pa-
rameters required to generate equivalent soil moisture
states in a coarsened domain. The homogenization and
MCMC methods, which did not account for topographic
variations performed poorly in providing effective soil
hydraulic parameters at the coarse scale.
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