
A topography-based scaling algorithm for soil hydraulic
parameters at hillslope scales: Field testing

Raghavendra B. Jana1 and Binayak P. Mohanty1

Received 27 July 2011; revised 24 November 2011; accepted 5 January 2012; published 18 February 2012.

[1] Soil hydraulic parameters were upscaled from a 30 m resolution to a 1 km resolution
using a new aggregation scheme (described in the companion paper) where the scale
parameter was based on the topography. When soil hydraulic parameter aggregation or
upscaling schemes ignore the effect of topography, their application becomes limited at
hillslope scales and beyond, where topography plays a dominant role in soil deposition and
formation. Hence the new upscaling algorithm was tested at the hillslope scale (1 km)
across two locations: (1) the Little Washita watershed in Oklahoma, and (2) the Walnut
Creek watershed in Iowa. The watersheds were divided into pixels of 1 km resolution and
the effective soil hydraulic parameters obtained for each pixel. Each pixel/domain was then
simulated using the physically based HYDRUS-3-D modeling platform. In order to account
for the surface (runoff/on) and subsurface fluxes between pixels, an algorithm to route
infiltration-excess runoff onto downstream pixels at daily time steps and to update the soil
moisture states of the downstream pixels was applied. Simulated soil moisture states were
compared across scales, and the coarse scale values compared against the airborne soil
moisture data products obtained during the hydrology experiment field campaign periods
(SGP97 and SMEX02) for selected pixels with different topographic complexities, soil
distributions, and land cover. Results from these comparisons show good correlations
between simulated and observed soil moisture states across time, topographic variations,
location, elevation, and land cover. Stream discharge comparisons made at two gauging
stations in the Little Washita watershed also provide reasonably good results as to the
suitability of the upscaling algorithm used. Based only on the topography of the domain, the
new upscaling algorithm was able to provide coarse resolution values for soil hydraulic
parameters which effectively captured the variations in soil moisture across the watershed
domains.
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1. Introduction
[2] Topography is one of the key controls of soil mois-

ture variability at large scales [Mohanty and Mously, 2000;
Famiglietti et al., 1998; Hawley et al., 1983]. Along with
the topography, soil physical properties, vegetation, and
climate have been shown to be the drivers of soil moisture
variation over large scales [Famiglietti et al., 1998; Yeh
and Eltahir, 1998]. Topographic features generate surface
runoff and lateral flows in the vadose zone. It can be argued
that the variations in soil moisture are also due to the varia-
tions in soil hydraulic parameters, which, in turn, are influ-
enced by the soil formation and deposition patterns
[Kohnke and Franzmeier, 1995]. It has been shown by Lag
[1951] and Tedrow [1951] that soils having similar mor-
phological and genetic histories, and subjected to similar

crop practices, displayed different drainage properties
based on the topography and the position of the landscape.
Soil layer depths vary from location to location. Generally,
valleys have deeper soil profiles than locations at higher
elevations where the soil depth is determined by the slope
steepness [Hillel, 1991]. Wilson et al. [2004] reported in a
study covering five catchment areas in Australia and New
Zealand that the topography and the spatial variation of soil
properties and vegetation played equally important roles in
the variability of soil moisture patterns. Similar findings
were reported by Western et al. [2004] who found that the
topography played a dominant role in dictating soil mois-
ture patterns as compared to soil hydraulic parameter vari-
ability. In an analysis of the Swedish National Forest Soil
Inventory data, Seibert et al. [2007] found that, at the land-
scape scale, topography was important in dictating soil for-
mation and deposition, and hence, their properties.

[3] Different hydrological phenomena occur due to differ-
ent causes at a wide range of scales. Modeling of hydrologi-
cal processes and phenomena, especially those occurring in
the unsaturated zone at various scales, is currently a topic of
much interest in the scientific community [Vereecken et al.,
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2007; Wu and Li, 2006; Zhu and Mohanty, 2002a, 2002b,
2002c, 2003, 2004, 2006; Zhu et al., 2004, 2006]. Modeling
of contaminant fate and transport from point and some non-
point sources through the porous media generally takes place
at high (fine) resolutions [e.g., Engesgaard and Traberg,
1996]. Climate forecasting and circulation models utilize
land surface parametric data at much coarser resolutions
[e.g., Williams et al., 1974]. In between these, there are me-
dium resolution models for streamflow generation and water
balance computation among recharge, evapotranspiration,
soil storage, and seepage fluxes across a catchment or water-
shed [e.g., Bloschl and Sivapalan, 1997]. Land surface input
data such as soil hydraulic properties are required for each
of the above mentioned models at their representative scales.
Often the requisite data are measured at a scale inconsistent
with the inherent scale at which these models work. This is
due to the fact that measurement of parameter data at all
such required and different scales is impractical as that would
entail huge outlays of finance, time, and effort. Hence the
need for scaling schemes which enable one to convert avail-
able measured fine resolution data to effective coarser resolu-
tion aggregate values, or vice versa. The Miller similitude
theory [Miller and Miller, 1956] took the first step toward
this goal by representing the dimensions of soil particles and
pores in terms of a characteristic length scale.

[4] While the assumption of a flat terrain during scaling
of soil hydraulic parameters may be reasonable at smaller
scales [Mohanty and Zhu, 2007], it is not really justifiable
at larger scales such as hillslopes and beyond. Scaling

schemes applied to such large domains mandate that the
physical controls influencing soil parameter values be
incorporated into these schemes. The inclusion of the effect
of topography in the upscaling algorithm when considering
large extents is a step in this direction. In the accompanying
companion paper [Jana and Mohanty, 2012] we developed
an upscaling algorithm which considered the topographic
characteristics of the domain, and tested it with several hy-
pothetical scenarios using numerical experiments. Here we
present a study to validate the influence of topographic var-
iations on the effective, upscaled soil hydraulic parameters
at hillslope scales using real-world field data from two
hydroclimatically different locations—the Little Washita
watershed in Oklahoma, and the Walnut Creek watershed
in Iowa. The primary objective of the study was to obtain
effective upscaled values of soil hydraulic parameters such
as the saturated hydraulic conductivity, the saturation and
residual soil water contents, and the van Genuchten param-
eters, at the 1 km � 1 km domain/pixel size (hillslope
scale) for entire watersheds while incorporating the influ-
ence of the local topography into the scaling algorithm.

2. Methods and Materials
2.1. Study Areas

2.1.1. Little Washita Watershed, OK
[5] The Little Washita (LW) River watershed (Figure 1)

in Oklahoma was selected as the first test site for this study.
Covering parts of Caddo, Comanche, and Grady counties of

Figure 1. Little Washita watershed study area, location of selected pixels, stream gauges, meteorologi-
cal stations, and some input layers for modeling.
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Oklahoma, the Little Washita River watershed has an area
of about 600 square kilometers, situated in the Southern
Great Plains region of the United States [Mohanty et al.,
2002]. The Little Washita River is a tributary of the Washita
River, which drains into the Red River on the Oklahoma-
Texas border. Hydrological and meteorological measure-
ments of the watershed have been conducted for decades,
providing scientists a long-term data source to study soil
and water conservation, water quality, and basin hydrology
[Elliott et al., 1993]. Under continuous hydrological obser-
vation since 1936, the watershed has a network of sensors
spread across its extent to measure rainfall, temperature, rel-
ative humidity, and soil radiation. In the 1990s, the United
States Department of Agriculture’s Agricultural Research
Service (USDA-ARS) set up a network of 42 environmental
monitoring stations called the ARS Micronet across this
watershed. The watershed has also been the focus of several
field experiments such as the Washita ’92, Washita ’94,
Southern Great Plains 1997 (SGP97), Soil Moisture Experi-
ments 2003 (SMEX03), and the Cloud and Land Surface
Interaction Campaign (CLASIC) 2007.

[6] The LW region has a moderately rolling topography.
The maximum elevation of the watershed is about 500 m
above mean sea level, with a maximum relief of about 180 m.
Rangeland and pastures are the dominant land use, with
patches of winter wheat and other crops [Allen and Naney,
1991]. Soil textures range from fine sand to silty loam, with

few exposed bedrock areas. The climate of the region is
classified as subhumid/moist, with a mean annual precipita-
tion of 760 mm and mean annual temperature of 16�C.

2.1.2. Walnut Creek Watershed, IA
[7] The Walnut Creek (WC) watershed (Figure 2) in

Iowa was selected as the secondary test site for this study.
This watershed is situated to the south of the city of Ames,
and covers about 100 square kilometers. This watershed
was the focus of the SMEX02 field experiments [Kustas
et al., 2003] and continuing research by the USDA-ARS
National Soil Tilth Lab.

[8] The WC region has an undulating terrain. Most of
the land cover in this watershed is made up of agricultural
crops such as corn and soybean [Doriaswamy et al., 2004].
The surface soil in this region is mainly silty clay loam
with high organic content [Das et al., 2008]. The region
has a humid climate with an average annual rainfall of
about 835 mm, May and June being the months of heaviest
precipitation. Maximum topographic relief of the water-
shed is about 60 m.

2.2. Aggregation Methodology

[9] The power average operator, as described by Yager
[2001] is used in this study to coarsen the soil hydraulic pa-
rameter values. This technique, which has been described in
detail in the companion paper to this study [Jana and

Figure 2. Walnut Creek watershed study area, location of selected pixels and some input layers for
modeling.
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Mohanty, 2012], combines the strengths of both the mean-
type and the mode-type aggregation schemes. It is briefly
reviewed here.

[10] The power average operator is defined as

P�ðp1; p2; . . . ; p1Þ ¼

Xn

i¼1
ð1þ TðpiÞÞpiXn

i¼1
ð1þ TðpiÞÞ

; (1)

where

TðpiÞ ¼
Xn

j ¼ 1
j 6¼ i

Supðpi; pjÞ:
(2)

P� is the power average of the parameter values pi , . . . , pn,
where n is the total number of nodes being aggregated.
Sup(pi, pj) is the support for pi from pj. This feature allows
data clustered around a particular value to combine nonli-
nearly while being aggregated. A general form of the sup-
port equation is given by

Supðpi; pjÞ ¼ e��ðpi�pjÞ2 ; (3)

where � � 0. The value of � is given by the formula

� ¼ zjmax � zjmin

zi � zj

� �2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2

q
S

; (4)

Here x, y, and z are the Cartesian coordinates of the point,
while S is the scale (resolution) to which the hydraulic pa-
rameters are being aggregated. The first term on the right-
hand side is the normalized difference in elevation between
the two locations i and j. The second term provides the lin-
ear distance between measurement values, normalized by
the scale dimension. As mentioned earlier, a more detailed
description of the methodology is given in the article by
Jana and Mohanty [2012].

2.3. Data Sets

[11] Elevation data for the LW and WC watersheds at
30 m resolution were obtained from the National Elevation
Data set from the USDA-NRCS Geospatial Data Gateway
[http://datagateway.nrcs.usda.gov]. From the same source,
the National Land Cover Data set, and the Soil Survey spa-
tial and tabular data (SSURGO) were also obtained for the
LW region.

[12] Daily precipitation and stream discharge data for the
LW watershed were obtained from the USDA-ARS Micro-
net database maintained by the Grazinglands Research
Laboratory [http://ars.mesonet.org/] for the months of
April–July 1997. Precipitation data from the 42 meteoro-
logical observation stations across the watershed were used
to create daily precipitation maps by kriging. The corre-
sponding precipitation value for each pixel was assigned as
the time dependent boundary condition for the day. Daily
temperature, relative humidity, and radiation values were
also obtained from the USDA-ARS in order to compute the
reference evapotranspiration (ET) for the region. ET was
computed using the Penman-Monteith formula.

[13] Soil moisture data products from the electronically
scanned thin array radiometer (ESTAR) for the LW region

are available from the NASA-GSFC’s Goddard Earth
Sciences Data and Information Services Center [http://
daac.gsfc.nasa.gov/]. The data were collected during the
Southern Great Plains Hydrology Experiment 1997 (SGP97)
using the L-band passive microwave ESTAR mapping
instrument mounted on the NASA P-3 airplane. The sensor
measures the microwave brightness temperatures, which are
then converted to predict surface (0–5 cm) soil moisture esti-
mates. The data are processed to produce georeferenced
gridded products for each day of observation at a pixel reso-
lution of 800 m. A detailed description of the ESTAR data
and processing was given by Jackson et al. [1999]. The
ESTAR soil moisture data product was used in this study to
validate the outputs from the simulation of the LW domain
using HYDRUS-3-D. ESTAR soil moisture data is available
for 16 days in the period between mid-June and mid-July
1997 (DOY 169 to 197). This is the period during which the
SGP97 hydrology experiment was conducted in the LW
region.

[14] Data for the WC watershed were obtained from the
National Snow and Ice Data Center (NSIDC) which is the
repository for all data collected during the SMEX02 field
experiments [http://nsidc.org/data/amsr_validation/soil_
moisture/smex02/index.html]. Soil moisture data from the
aircraft borne Polarimetric Scanning Radiometer (PSR)
were used for this region at the coarse scale. The PSR
instrument operates in the CX band, which is similar to the
satellite borne AMSR sensors. The PSR data is available
for a total of ten days between 25 June 2002 and 12 July
2002, during the SMEX02 campaign.

2.4. Physical Domain Setup

[15] The physically based HYDRUS-3-D hydrologic sim-
ulation software [�Simu°nek et al., 2006] was used to simulate
the test domains for soil moisture and water fluxes. The
HYDRUS-3-D software package solves the modified Rich-
ards’ equation for water flow in saturated/unsaturated
domains using numerical techniques and allows the user to
analyze water flow through variably saturated regions with
irregular boundaries and nonuniform soils. As the name
suggests, HYDRUS-3-D allows for three-dimensional flow
representations in the unsaturated zone. The governing
equation (modified Richards’ equation), the mathematical
formulations of the boundary conditions, and other features
of the HYDRUS-3-D model are explained in the companion
paper [Jana and Mohanty, 2012], and are not repeated here.

[16] The entire watershed was divided into a grid of
1000 m � 1000 m pixels (Figure 1). Each of the pixels (672
for LW; 70 for WC) was simulated individually using the
HYDRUS-3-D software. Elevation data at 30 m resolution
were extracted for each grid block using a GIS software.
The data were then fed to the HYDRUS-3-D platform for
creating the geometry of the domain. A minimum soil depth
of 6 m was maintained across all pixels. Corresponding soil
textural properties data from the SSURGO database were
extracted for each pixel and, using the ROSETTA [Schaap
et al., 2001] framework within HYDRUS-3-D, the corre-
sponding soil hydraulic parameters for the van Genuchten-
Mualem model with no hysteresis were obtained. These soil
types were designated in the HYDRUS-3-D domain. Simi-
larly, for each pixel domain, the land cover data were
extracted and suitable root water uptake parameters were
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assigned based on the vegetation. The Feddes model
[Feddes et al., 1978] for the root water uptake was applied in
our study, with a maximum rooting depth of 1 m, and no os-
motic stress. Water tables were assigned to the domain based
on the location and landscape position in the watershed. Pix-
els close to the stream channel in the LW domain had water
tables at 1 m, while those farthest from the stream were
assigned water tables at 4 m depths. Similarly, for the WC
domain, the water table was varied between 0.5 and 2 m.

[17] It has been reported by Schilling and Helmers
[2008] that significant portions of agricultural land in Iowa
are artificially drained by the use of subsurface tile drains.
Based on their analysis of the Walnut Creek watershed, it
was considered necessary to include the effect of the tile
drains under the western third portion of the watershed.
While it is known that the WC domain has an extensive
network of these drains, no reliable information is available
on their density and locations. Furthermore, implementa-
tion of the tile drain condition in the HYDRUS-3-D envi-
ronment is currently not available for general (irregular)
geometries. Hence, in order to approximate the effect of
the tile drains, a sand layer was introduced into the HYD-
RUS simulations of each pixel domain in the western third
of the watershed at a depth of 1 m from the surface. Since
the sand layer is not a perfect representation of the tile
drain network, certain assumptions and approximations are
necessary. One of them deals with the flow direction. In a
tile drain, water moves in only one direction laterally. This
constraint of lateral anisotropy is not imposed in a sand
layer. However, since the sand layer follows the surface to-
pography, it may be reasonably assumed that the majority
of the subsurface flow in this layer is downhill. This
approximates the unidirectional lateral flow in the tile

drain. A further limitation of the approximation is that the
flow within the sand layer is not advective, as it would be
within a tile drain. However, Darcian flow within the sand
layer being a function of the hydraulic conductivity, the
flow magnitude may not be much different since the sand
has a high conductivity. The higher conductivity of the sand
layer also forms a preferential flow path for the water in the
lateral direction, thus limiting the vertical infiltration of
water below the sand layer. This further approximates the
effect of the tile drains. The sand layer was not part of the
scaling algorithm, and was included only in the simulations.

[18] The version of HYDRUS-3-D available at the time
of this study also did not account for surface runoff. This
leads to downstream locations appearing drier than they
actually are, due to the loss of the surface runon into those
locations. Hence, an algorithm to capture the effect of the
runoff/on process, and to update the soil moisture states of
the pixels based on this information was applied. In a GIS
environment, using the elevation data, the flow direction
out of each pixel was computed using a d-inf algorithm
[Tarboton, 1997]. The amount of runoff generated by each
pixel during the one day simulation was computed as the
difference between the precipitation volume over the pixel
domain and the infiltration into the domain. This amount of
water was routed to the downstream pixel based on the
flow direction map (Figure 3). The runon volume to the
downstream pixel was distributed across the entire area and
the surface soil moisture state of the downstream pixel
updated to reflect the increased water content in the do-
main. Also, subsurface flux connections between pixels
were implemented on the seepage faces. Seepage face
boundary conditions allow for the removal of water from
the saturated portions of the domain boundary. At each

Figure 3. Flow routing map for the Little Washita watershed at 1 km resolution.
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cross-sectional boundary, the two adjacent pixels were
compared to determine which one had the higher water ta-
ble at each daily time step. Then, the volume of water
ejected from only those nodes above the water table of the
adjacent pixel was computed. This volume was then dis-
tributed among the unsaturated nodes on the seepage face
of the pixel with the lower water table. This simulates flow
from a higher water table level to a lower one on a daily
time step.

[19] All pixels making up the watershed domain were
individually simulated for one day (at a time) with a mini-
mum time step of 0.5 h. At the end of the daily time step,
the surface and subsurface moisture states of each pixel
were updated for surface runoff/on and seepage as described
above. Once all pixels had been updated, they were then
simulated for the second day, and the process repeated. The
simulation was run for three months—from mid-April 1997
to mid-July 1997 for LW, and mid-April 2002 to mid-July
2002 for WC. The first two months were considered as the
model spin-up time to allow the domain characteristics
to stabilize, and only the last 1 month was used in the
analysis.

[20] Finite element meshes were generated for each pixel
with 20 horizontal layers and node spacings of 30 m. The
top surface was assigned a time-dependent atmospheric
boundary condition, while the vertical cross sections across
the periphery of soil plot were designated as seepage faces
to enable lateral flow of water through the soil domain. The
lower boundary had a variable head boundary condition
depending on the depth to the water table. Initial conditions
of the soil profile were given by soil water contents just
under saturation for the domain since a significant precipi-
tation event occurred immediately before the commence-
ment of the simulations.

[21] Initially, each node in the FEM was assigned a soil
type based on the SSURGO data. The aggregation algo-
rithm, described in section 2.2, was applied to upscale the
five soil hydraulic parameters—residual soil water content
(�r) ; saturation water content (�s) ; van Genuchten parame-
ters � and n ; and the saturated hydraulic conductivity Ks.
These parameters were aggregated from 30 m to the 1 km
resolution. Rather than coarsening the FEM grid, we
assigned the aggregated effective soil hydraulic parameters
to each node within the upscaled pixel footprint. This was
done so that the computational integrity of the FEM would
be consistent across all scales. It must be noted that while
the soil types or hydraulic parameter values were assigned
to the FEM nodes, the HYDRUS program interpolates the
values to the 3-D elements (volume) in the mesh. The pixel
domains with the upscaled soil hydraulic parameters were
then put through the same simulation and soil moisture
updating procedure as before.

[22] The five soil hydraulic parameters (�r, �s, �, n, and
Ks) were upscaled using the power averaging operator from
30 m resolution to 1 km resolution for all 672 pixels in the
Little Washita watershed domain and 70 pixels in the Wal-
nut Creek domain. Twelve pixels of 1 km � 1 km size
were selected from across the LW watershed for analysis,
based on their landscape position, topography, land cover,
and soil type so as to encompass the variety in the water-
shed, as shown in Figure 1. Three coarse resolution pixel
domains were selected in the WC watershed for analysis.

Table 1 shows the average elevation (at 1 km resolution),
land cover, and water table values for the selected pixels.

[23] In the LW watershed, except for pixel 4, all other
pixels had at least three different soil types distributed in
the pixel, as shown in Figure 4. In the WC watershed, all
three pixels had three different soil types distributed within
them.

[24] Average daily surface soil moisture states were
compared for the LW pixels for the 16 days on which the
ESTAR data product is available. Based on the ESTAR
soil moisture data, the days with soil moisture greater than
0.20 (v/v) were designated ‘‘wet’’ days, while those with
less than 0.10 (v/v) were designated ‘‘dry’’ days, with the
‘‘intermediate’’ days when soil moisture values were in
between the 0.10 and 0.20 (v/v). In the WC watershed, PSR
soil moisture data was available for 10 days. Based on the
available data, days with soil moisture greater than 0.28
(v/v) were considered ‘‘wet’’ days and those with soil mois-
ture less than 0.19 (v/v) as ‘‘dry’’ days for this region.

[25] In order to compare the model outputs, we used
Pearson’s correlation coefficient (R) and the root mean
squared error (RMSE) as the main metrics. Pearson’s corre-
lation coefficient is computed as

RX ;Y ¼
covðX ; Y Þ
�X�Y

; (5)

where cov is the covariance between the two quantities
being compared (X and Y), and � is the standard deviation.
The RMSE is computed as

RMSEY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
�
ðY � X Þ2

�r
; (6)

where E is the expected value of the square of the differ-
ence between Y and X. We used Pearson’s R as the compar-
ison metric since we were interested in knowing how the
variability in the simulated fluxes and states related with
the observed data. Rather than trying to reach a determinis-
tic value for the fluxes and states, we wanted to capture the
variability with respect to the controlling factors. Hence the
focus on the correlation. In all discussions for the remainder

Table 1. Elevation, Land Cover, and Compound Topographic
Index (CTI) Details of Selected Pixels in the Watershed Domains

Average
Elevation (m)

Land
Cover

Average
CTI

Water
Table (m)

LW Pixel 1 446 Pasture 7.332 4
Pixel 2 355 Pasture 7.312 1
Pixel 3 369 Pasture 6.656 2
Pixel 4 408 Bare 6.846 3
Pixel 5 410 Bare 6.846 2
Pixel 6 345 Wheat 7.379 1
Pixel 7 341 Wheat 7.396 2
Pixel 8 407 Bare 7.128 4
Pixel 9 392 Pasture 6.709 3
Pixel 10 419 Wheat 7.274 3
Pixel 11 377 Pasture 7.085 2
Pixel 12 394 Pasture 7.247 3

WC Pixel 1 323 Corn 2
Pixel 2 314 Soybean 1
Pixel 3 287 Corn 0.5
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of this article, the term ‘‘correlation’’ will refer to the Pear-
son’s correlation coefficient R. The RMSE, on the other
hand, provides information regarding the bias in the simula-
tion outputs with respect to the observations. While the
simulated and observed values may be highly correlated, a
large bias can put the values far apart from each other, thus
signifying poor model estimation. Hence, for a model to be
accepted as performing well, the value of R should be high
(ideally 1) and RMSE should be low (ideally 0).

3. Results and Discussion
[26] As stated earlier, the primary objective of the study

was to obtain effective upscaled values of soil hydraulic pa-
rameters such as the saturated hydraulic conductivity, the
saturation and residual soil water contents, and the van
Genuchten parameters, at the 1 km � 1 km domain/pixel
size (hillslope scale) for entire watersheds while incorporat-
ing the influence of the local topography into the scaling
algorithm. Here we discuss the performance of the scaling
algorithm and the hydrologic simulation model with regard
to specific research questions which provide evaluations of
the scaling algorithm to meet the stated objectives.

3.1. Does the Topography-Based Scaling Algorithm
Provide Effective Coarse Resolution Soil Hydraulic
Parameters With Respect to Soil Moisture?

[27] In section 3.1 we discuss the performance of the to-
pography-based scaling algorithm in providing effective
coarse resolution soil hydraulic parameters. To be consid-
ered effective, the coarse resolution parameters should gen-
erate the same soil moisture states and fluxes as those at the
fine resolution. Table 2 shows the Pearson’s correlations
(R) and the RMSE between the average daily surface soil
moisture states of the selected analysis pixels as obtained
using fine scale and upscaled soil hydraulic parameters in
the HYDRUS-3-D simulation software. Overall, a high cor-
relation was obtained between the fine and coarse scale
simulated soil moistures at both test sites. It was seen that
for most of the pixels with significant number of wet days
in the LW watershed, the correlations were better without
the runoff routing. This could be due to the updating of soil
moisture states leading to an overprediction of the next
day’s state, as compared to the no-routing methodology. It
was seen that the flow routing algorithm implemented in
the study improved the correlations for the drier pixels. It

Figure 4. Soil distributions in the 12 selected pixels in LW. Different colors represent different soils.
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was observed that the average soil moisture values obtained
with runoff routing were consistently higher than those
without the routing. The average soil moistures (across all
observation days) for each pixel are plotted in Figure 5. As
also shown by the better correlations, the differences in var-
iability between the fine and coarse scale simulated soil
moistures were much smaller when the runoff routing was
implemented. However, it was observed that the range of
soil moisture values across the observation period for each
pixel, represented by the error bars on the plot, was larger
with the routing implementation. This could be an artifact
of the routing algorithm by introducing a lag in the
response times of the domain.

[28] At the WC site, all three selected pixels had wet, in-
termediate, and dry days. Similar to the LW site, the average
soil moisture for all three pixels were consistently higher for
the case with runoff routing, at both scales. However, no sig-
nificant differences in correlations were observed between
the two cases (Table 2). The average soil moisture values for
the three selected pixels in the WC watershed are plotted in
Figure 6.

[29] The high correlations between the fine and coarse
scale simulated soil moistures at both test locations are
indications that the upscaling scheme applied to aggregate
the fine scale soil hydraulic parameter values is providing
an effective set of parameters at the coarse scale.

3.2. Do the Upscaled Soil Hydraulic Parameters
Result in Soil Moisture States That Reflect Reality?

[30] In section 3.2 we compare the coarse resolution
simulated soil moisture states to field observations from
airborne remote sensors. This provides an estimate of the
performance of the upscaling algorithm and the hydrologic
simulation model with regard to producing outputs that
match field data. While the previous subsection provides
insight into the performance of the scaling algorithm with
respect to providing effective coarse resolution parameters,
the ultimate test of applicability of the algorithm in practice
is in how well the simulated soil moisture states match the
observations. In order to test this, the coarse scale simulated

soil moistures were compared with the remotely sensed
ESTAR/PSR soil moisture data products, which were
resampled to the 1 km resolution from 800 m. The average
daily soil moisture values from the ESTAR sensor are plot-
ted in Figure 7 against the simulated soil moisture generated
with runoff routing for the 12 selected pixels in the LW
watershed. It was seen that, while the simulated soil mois-
ture values were slightly overestimated in most cases, in
general, the simulated soil moisture values were clustered
close to the 1:1 line. This signifies that the simulated soil
moisture values are close to the ESTAR-measured values.
Correlations of the simulated soil moisture values with the
ESTAR measured soil moisture for the 12 analysis pixels in
the LW watershed are presented in Table 3. Again, a high
degree of correlation was found between the observed
ESTAR soil moisture and the simulated values. A histogram
of the correlations between the simulated soil moisture gen-
erated with runoff routing and the ESTAR measurements
was plotted (Figure 8) for all 672 pixels in the LW water-
shed. It was seen that the distribution was skewed toward
the higher correlation values, with an average value of 0.85
for the entire watershed.

[31] It was seen that the runoff routing generated consis-
tently better estimates of the surface soil moisture for all
pixels, across wet, intermediate, and dry days. The correla-
tions between the simulated and ESTAR soil moisture
ranged between 0.73 and 0.76 for the wet days when no
runoff routing was implemented. The range improved to
0.76–0.83 when the routing algorithm was applied. The
overall correlation of pixels with significant wet days was
also improved by the runoff routing. This is a marked dif-
ference from the observation in section. 3.1 This implies
that it is in fact the fine scale soil moisture values that were
underpredicted, and not an overprediction when using the
coarse scale effective hydraulic parameters, as previously
mentioned in section 3.1.

[32] While there would be little routing of surface fluxes
on most intermediate, and all dry days, it was seen that the
application of the runoff routing algorithm still improved
the performance on those days. The routing scheme ensured

Table 2. Comparison Between Fine and Coarse Scale Simulated Soil Moistures for Selected Pixelsa

RMSE
(w/o Runoff)

R (w/o Runoff Routing)

RMSE
(With Runoff)

R (With Runoff Routing)

Overall Wet Inter Dry Overall Wet Inter Dry

LW Pixel 1 0.098 0.96b 0.93b 0.83b 0.024 0.92b 0.85b 0.93b

Pixel 2 0.051 0.94b 0.89b 0.83b 0.035 0.91b 0.86b 0.86b

Pixel 3 0.097 0.94b 0.87b 0.84b 0.030 0.92b 0.87b 0.86b

Pixel 4 0.068 0.90b 0.82b 0.025 0.88b 0.89b

Pixel 5 0.098 0.95b 0.88b 0.89b 0.021 0.93b 0.95b 0.86b

Pixel 6 0.087 0.90b 0.91b 0.039 0.94b 0.86b

Pixel 7 0.094 0.84b 0.92b 0.87b 0.045 0.93b 0.81b 0.94b

Pixel 8 0.061 0.95b 0.84b 0.77b 0.046 0.96b 0.89b 0.89b

Pixel 9 0.092 0.92b 0.78b 0.038 0.88b 0.85b

Pixel 10 0.061 0.66c 0.83b 0.72c 0.030 0.73c 0.85b 0.81b

Pixel 11 0.053 0.87b 0.80b 0.049 0.88b 0.82b

Pixel 12 0.094 0.87b 0.83b 0.83b 0.039 0.87b 0.80b 0.93b

WC Pixel 1 0.030 0.96b 0.98b 0.86b 0.89b 0.033 0.94b 0.87b 0.92b 0.93b

Pixel 2 0.037 0.98b 0.89b 0.89b 0.89b 0.026 0.96b 0.88b 0.72b 0.94b

Pixel 3 0.047 0.95b 0.98b 0.86b 0.96b 0.055 0.93b 0.95b 0.94b 0.93b

aRMSE: root mean square error (vol/vol); R : Pearson’s correlation coefficient.
bCorrelations significant at the 0.01 level.
cCorrelations significant at the 0.05 level.
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Figure 5. Average simulated fine and coarse scale soil moistures of selected pixels in LW watershed.
Error bars represent variation across time for each pixel.

Figure 6. Average simulated fine and coarse scale soil
moistures of selected pixels in WC watershed, along with
PSR measured data. Error bars represent variation across
time for each pixel.

Figure 7. ESTAR measured, and simulated soil moisture
(with runoff routing) values for the 12 selected pixels in
LW watershed.
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that a more realistic distribution of soil moisture was
obtained in downstream pixels due to the updating of the
values at daily time steps to reflect the inflow into the pixel
from upstream pixels. On dry days, when there was no sur-
face flux to be routed downstream, the downstream pixels
already had a better estimate of the actual soil moisture
from the previous time steps, as against the case where the
routing was never applied. Hence, this history of soil mois-
ture updating helped the pixel to be better correlated with
the ESTAR observed value even on dry days. It was
observed that during the initial drying phase, the modeled
soil moisture was mostly overpredicted by a small amount,
as compared with the ESTAR data. However, during the
subsequent wetting phase, this pattern was not seen.

[33] Correlations between the simulated coarse resolu-
tion soil moisture and the PSR observations at the WC
location are also given in Table 3. While there was little
difference in the correlations between the PSR observations

and the coarse scale simulated soil moistures with or with-
out runoff routing, it can be seen from Figure 6 that the run-
off routing brought the numerical values of the simulated
soil moisture fields closer to the observations.

3.3. Does the Performance of the Scaling Algorithm
Vary With Changes in Specific Factors?

[34] In section 3.3 we evaluate the performance of the
scaling algorithm varies with changes in physical factors
such as location, elevation, topographic complexity, and
land cover. For a scaling algorithm to be considered a
generic one, it is necessary that the performance not vary
much with changes in these factors.

3.3.1. Location and Elevation
[35] Precipitation data from the 12 meteorological sta-

tions closest to the selected pixels in the LW watershed are
plotted in Figure 9. It can be seen that while the precipita-
tion amounts varied across the watershed, a significant

Table 3. Comparison Between Coarse Scale Simulated Soil Moisture and Remote Sensing Observationsa

Average
Elevation (m)

Land
Cover

Average
CTI

Variance
CTI

Water
Table (m)

RMSE
(w/o Runoff)

R (w/o Runoff Routing)

RMSE
(With Runoff)

R (With Runoff Routing)

Overall Wet Inter Dry Overall Wet Inter Dry

LW Pixel 1 446 Pasture 7.332 1.15 4 0.066 0.87b 0.74c 0.66c 0.043 0.89b 0.81b 0.72c

Pixel 2 355 Pasture 7.312 1.43 1 0.047 0.88b 0.76b 0.69c 0.041 0.91b 0.83b 0.77b

Pixel 3 369 Pasture 6.656 0.82 2 0.050 0.88b 0.73c 0.68c 0.035 0.89b 0.80b 0.76b

Pixel 4 408 Bare 6.846 0.81 3 0.047 0.82b 0.69c 0.040 0.82b 0.70c

Pixel 5 410 Bare 6.846 1.21 2 0.047 0.89b 0.73c 0.67c 0.042 0.90b 0.80b 0.75c

Pixel 6 345 Wheat 7.379 1.67 1 0.045 0.76b 0.67c 0.038 0.84b 0.77b

Pixel 7 341 Wheat 7.396 1.41 2 0.040 0.75c 0.67c 0.62c 0.034 0.84b 0.72c 0.65c

Pixel 8 407 Bare 7.128 1.70 4 0.064 0.88b 0.67c 0.64c 0.022 0.89b 0.75c 0.65c

Pixel 9 392 Pasture 6.709 0.89 3 0.068 0.84b 0.67c 0.035 0.89b 0.76b

Pixel 10 419 Wheat 7.274 0.90 3 0.043 0.67c 0.76b 0.66c 0.032 0.71c 0.76b 0.76b

Pixel 11 377 Pasture 7.085 1.44 2 0.064 0.76b 0.67c 0.039 0.81b 0.75c

Pixel 12 394 Pasture 7.247 1.57 3 0.065 0.84b 0.69c 0.61c 0.024 0.82b 0.71c 0.68c

WC Pixel 1 323 Corn 2 0.055 0.96b 0.76b 0.98b 0.84b 0.035 0.96b 0.84b 0.85b 0.78b

Pixel 2 314 Soybean 1 0.049 0.94b 0.98b 0.77b 0.83b 0.043 0.95b 0.98b 0.84b 0.80b

Pixel 3 287 Corn 0.5 0.046 0.83b 0.63b 0.85b 0.81b 0.041 0.86b 0.72b 0.79b 0.86b

aRMSE: root mean square error (vol/vol); R : Pearson’s correlation coefficient.
bCorrelations significant at the 0.01 level.
cCorrelations significant at the 0.05 level.

Figure 8. Histogram of Pearson’s correlation between coarse scale soil moisture simulated with runoff
and ESTAR measurements for all 672 pixels in LW watershed.
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event occurred around DOY 191 across the entire water-
shed. Based on the precipitation patterns, it was also
observed that the western portion of the watershed received
more rainfall as compared to the eastern parts. However, no
significant difference in the performance of the upscaling
algorithm was observed based on the location of the pixel
within the watershed. Table 3 shows the correlation coeffi-
cients between the simulated and ESTAR measured soil
moisture and the average elevation of the pixel at the 1 km
resolution. It is also to be noted that pixels 2, 3, 6, and 7,
which have the lowest elevations, were situated in the east-
ern part of the watershed. Pixels 1, 4, 5, and 10, having the
highest elevations, were located in the western portion of
the LW watershed, while the remaining four pixels (8, 9,
11, and 12) were in the middle portion. It may be observed
that none of the pixels in the middle portion had a signifi-
cant number of wet days, while two of the three pixels with
significant number of dry days were in this region. The fact
that the western portion received more rainfall than the east
is also verified by most number of pixels with significant
number of wet days being in this portion. Pixel 5, which
exhibited the most number of wet days, was the western-
most pixel selected for analysis. Downstream pixels 2 and
3, which also exhibit higher soil moisture states, were
located close to the streambed. This would mean that the
influx of water by surface runoff into these pixels was sig-
nificantly more than the others located at higher elevation,
which was reflected in the higher soil moisture values.

[36] In the WC region, the streamflow direction was
again generally from west to east. The western portion of
the watershed, in this case, was generally drier than the

eastern portion. This could be due to the presence of sub-
surface tile drains in this portion of the watershed. The WC
watershed is a much smaller catchment as compared to the
LW watershed and the variations in precipitation patterns
across the watershed were negligible. Hence, the variation
in soil moisture across the watershed may be attributed to
the drainage of the water toward the stream channel in the
east. Although pixel 1 is in the western portion of the
watershed, pixel 2 in the middle, and pixel 3 in the east, no
difference was noticed in the performance of the upscaling
algorithm.

3.3.2. Topographic Variations
[37] Compound topographic indices [lnðA=tanðBÞÞ]

[Beven et al., 1984; Kirkby, 1975] were computed for each
of the 12 pixels using the fine scale (30 m) elevation data.
It has been reported by Pradhan et al. [2006] that the grid
resolutions of the DEMs used to compute the topographic
index have a significant influence on the reliability of the
CTI values. As coarser grids are used, the reliability
reduces. This is attributed to the fact that the higher resolu-
tion topographic characteristics are smoothed out and lost
when coarse resolution DEM’s are used. Hence, we used
the fine scale (30 m) DEM to compute the CTI. The ‘‘dinf’’
algorithm suggested by Tarboton [1997] was used to com-
pute the flow direction, and thus the upslope contributing
area for the compound topographic index (CTI). This algo-
rithm has been shown to provide more realistic representa-
tions since the flow directions are not fixed, and flow can
occur in multiple directions.

Figure 9. Precipitation data from twelve meteorological observing stations close to the selected pixels
in LW watershed.

W02519 JANA AND MOHANTY: UPSCALING OF SOIL HYDRAULICS WITH TOPOGRAPHY-FIELD TESTING W02519

11 of 16



[38] The average and variance of the CTI values within
each of the 12 analysis pixels were computed. The average
and variance of the CTI at each pixel are plotted in Figure
10. It can be seen that while there was only a small varia-
tion in the average CTI value among the pixels, the distri-
bution within each pixel, represented by the error bars,
varied more significantly. This signified that while at the
coarse resolution, all the pixels appeared to be similar with
respect to the CTI, at the finer resolution, there were big
differences. Correlations of the average CTI with the simu-
lated and ESTAR measured surface soil moisture distribu-
tions were computed across all the pixels. These are
reported in Table 4. It is immediately apparent that there
was no significant correlation between the soil moisture
pattern and the CTI. This finding is in line with those of
Western et al. [1999] and Jana and Mohanty [2012] who
reported that the wetness index was found to be a very poor
predictor of soil moisture spatial variability. The ESTAR
measured and simulated soil moisture values appeared to
be slightly better correlated with the standard deviation, or
variance, of the CTI within each pixel. However, this was
not a significant relationship. Table 3 shows the average
CTI and the variance in CTI besides the correlation coeffi-
cients between the simulated and ESTAR soil moisture val-
ues. It was seen that most of the pixels with significant
number of wet days had lesser variation in the CTI.

[39] Correlations between the CTI and the upscaled soil
hydraulic parameters were also computed (Table 5). While
no significant relationship could be deduced from this table,

the soil hydraulic parameters showed better correlation
with the average CTI in general. Here again, the variance
in CTI was better correlated over the average for most pa-
rameters. The van Genuchten parameter n showed the best
correlation with the average CTI.

3.3.3. Land Cover
[40] Table 3 shows the correlation coefficients between

the ESTAR observed and simulated soil moistures along
with the land cover within the LW pixel. It was seen that
the pasture pixels had the best overall correlations, fol-
lowed by the bare pixels. The pixels with a winter wheat
cover showed the least correlation between the simulated
and ESTAR measured soil moistures. This could be due to
crop management practices such as harvesting, or water
logging taking place during this period, which have not
been accounted for in our study. Furthermore, it was seen
that most of the pixels with significant wet days had a pas-
ture cover. The pixel with most wet days (pixel 5) had a
bare soil cover.

[41] From Figure 7 it was seen that the simulated soil
moisture for all three land cover types in the LW watershed
were close to the ESTAR measurements. The variation of
standard deviation of soil moisture versus the mean soil
moisture, classified on the land cover is plotted in Figure
11. Following the methodology used by Famiglietti et al.
[2008], the standard deviations were averaged within bins
of width 0.05 v/v of mean soil moisture. While the wheat
pixels displayed a ‘‘concave-upward’’ shape as found by
Famiglietti et al. [2008], the pasture and bare land cover

Figure 10. Average compound topographic index of 12
selected pixels in LW watershed derived from 30 m resolu-
tion DEM. Error bars represent the variance of CTI within
each pixel.

Table 4. Correlations Between Average and Variance of Com-
pound Topographic Index (CTI), and Soil Moisture Values Across
All Pixels in LW Watershed

ESTAR SM
Simulated SM
With Runoff

Simulated SM
w/o Runoff

CTI Average �0.093 �0.082 0.041
Std. Dev. �0.335 �0.150 �0.134
Variance �0.360 �0.176 �0.155

Table 5. Correlations Between Upscaled Soil Hydraulic Parame-
ters and CTI Across All Pixels in LW Watershed

Upscaled Soil Hydraulic Parameters

�r �s � n Ks

CTI Average �0.138 �0.195 �0.167 0.409 0.001
Std. Dev. �0.392 �0.379 0.289 0.264 0.224
Variance �0.414 �0.401 0.289 0.287 0.229

Figure 11. Standard deviations of soil moisture classified
on the land cover. The standard deviations are averaged
within bins of width 0.05 v/v of mean soil moisture.
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pixels did not entirely conform to this shape. In the Little
Washita watershed, the wheat fields tend to be those that
have relatively little topographic relief, as compared to the
pasture/bare fields. This observation is supported by analy-
sis of the CTIs of the pixels. Over all 672 pixels in the LW
watershed, the pixels with a pastureland cover had an aver-
age CTI of 7.018 and a standard deviation of 1.142. An
index of topographic simplicity can be computed as the
mean CTI divided by the standard deviation. This simplic-
ity index provides an estimate of how the CTI varies with
regard to its mean value. High values of the index mean
that there is little variation across fields and the CTI is
high. This means consistent low topographic complexity.
The computed simplicity index for the pastureland cover
pixels was 6.145. Similarly, for the bare pixels, the CTI
mean, CTI standard deviation, and simplicity index were
6.956, 1.002, and 6.939 respectively. The corresponding
values for the wheat pixels were 7.270, 0.633, and 11.477.
The high simplicity index values for the wheat pixels indi-
cated that they displayed simpler topographies. The topo-
graphic complexity of the pasture and bare pixels could be
the reason for the soil moisture from those pixels to deviate
from the parabolic shape. Topography causes ponding of
surface water at the valleys, and also subsurface soil mois-
ture dynamics toward the lower elevations. This causes the
soil profile to generally be drier near the crest, than at the
valley. While the overall mean soil moisture for the pixel
could be high, the variability was also not reduced. In a
flatter terrain, such as a wheat field, there is no topographi-
cally driven surface or subsurface localizing of soil mois-
ture, thus reducing the variability at the higher end of the
soil water retention curve. Hence, while the variations
shown in Figure 10 appear to be land cover specific, they
could very well be caused by the underlying topographic
differences.

[42] While pixels 1 and 3 of the WC watershed have a
corn vegetative cover, pixel 2 has soybean (Table 1). Pixel
2 can also be considered to be mostly bare since the soy-
bean plant does not cover much area. This is especially true
at the beginning of the analysis period when the plant is
very small. However, these vegetation differences did not

seem to affect the upscaling performance of the power
averaging operator used in this study.

[43] It has been previously hypothesized [Jana and
Mohanty, 2012] that different physical controls dominate
soil property and moisture variability at different scales. It
is thought that the soil texture and structure dominate at the
smaller scales, while topography exerts more influence at
hillslope (kilometer) scales. Beyond that, at regional scales,
the vegetation or land cover may be the dominant control,
leading to the controls exerted by regional climate. The dis-
tinct differences in the correlations based on the land cover
suggest that the vegetation is exerting some influence on
the soil moisture variation at the hillslope scale too.

3.4. Does the Scaling Algorithm Provide Effective
Coarse Resolution Soil Hydraulic Parameters With
Respect to Streamflow?

[44] Apart from the soil moisture states, effective soil
hydraulic parameters must also result in comparably simi-
lar fluxes at the coarse resolution. In order to evaluate the
performance of the topography-based scaling algorithm
with regard to fluxes, stream discharge data from the USGS
stream gauges (Figure 1) were used to compare the flux
from the HYDRUS-3-D simulations of the LW domain.
The upstream gauge, SG442, was located close to pixel 5,
while the downstream gauge, SG447, was located close to
pixel 9. Surface flux outputs from those pixels that drained
into the pixel with the stream gauge were summed up and
matched with the stream discharge recorded at the two
gauges daily. It was intended to use another stream gauge
near the watershed outlet for further analysis, but unfortu-
nately none of the gauges near the outlet were functional
during the period of analysis. Hence only two gauges were
used.

[45] Figure 12 shows the plot of the stream discharge as
measured at SG442, along with the flux output from pixel 5
(model). The green box represents the analysis period
between mid-June and mid-July 1997. It was observed that
the model flux had a very poor correlation with the meas-
ured discharge. However, upon accounting for a response
time lag of one day, the correlations improved significantly.

Figure 12. Stream discharge measured at upstream gauge SG442 in LW watershed.
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This time lag could be attributed to the nature of the runoff
routing algorithm implemented in this study. We computed
the surface flows at the end of each daily time step, and
then updated the soil moisture state as initial condition for
the next day. This means that although there may have
been a precipitation event in the morning of a particular
day, and in reality the runoff reached the downstream pixel
the same day, our routing algorithm accounted for this only
the next day. Hence, a response time lag was seen.

[46] Figure 13 shows a similar plot of discharge at the
downstream gauge, SG447, and corresponding surface flux
from pixel 9. In this case, a two-day response time lag was
observed. On accounting for the time lag, it was seen that
the correlation again improved significantly. SG442, being
upstream, has a lesser number of pixels draining into it. A
smaller catchment area also meant lesser travel distance
and time for water to reach the gauge. Hence adjusting for
a one-day lag was sufficient. SG447, on the other hand,
was situated further downstream and had a great drainage
area. This meant a larger travel time, which was further
amplified by the routing algorithm. Hence, a two-day lag
correction was found necessary at this gauge.

[47] However, there would be a threshold value beyond
which the response lag time would remain constant. At that
size of the catchment area, the travel time from the nearer
pixels would take over the dominance from those of the far-
ther pixels. Hence, a slightly more spread out response
would be observed, with no increase in response lag.
Another validation of stream discharge at a gauge further
downstream could have provided some information on the
threshold value for the response time lag. Such a validation
was not possible due to nonavailability of data at the down-
stream gauges for the particular time period.

3.5. What Are the Limitations and Caveats of the
Study?

[48] The method of implementing the surface runoff and
seepage fluxes introduced a lag in the response time of the

pixels. While it is preferable to be able to update the soil
moisture states at much smaller time steps (i.e., minutes and
hours), it was felt that for the reasons of computational effi-
ciency, a daily time step was reasonable. The computation
of the surface runoff and the updating of the soil moisture
states of each of the pixels had to be done offline since
HYDRUS-3-D does not currently have the capability to
handle this. This process consumes considerable computa-
tion time. Although a high degree of correlation was
observed between soil moisture signatures across scales,
some of the loss of correlation may be explained by our
choice of form for the scale parameter �. The � value was
based on the linear distance between nodes in the FE mesh
and was derived from simple topographies [Jana and
Mohanty, 2012]. However, especially at the surface, the soil
formation and deposition patterns would not be linear. With
simple nonlinear configurations such as purely convex or
concave slopes, the linear distance is an acceptable approxi-
mation of the actual distance and path of the water flow.
When the two points i and j at which the parameters are
aggregated are close to each other, approximation of the
curved distance as a straight line may be considered reason-
able. At large separations between i and j, this approxima-
tion is still justifiable due to fact that in this case, the
support between pi and pj is small, and hence, minor differ-
ences in distance may be ignored. However, for more com-
plex nonlinear topographies as encountered in this hillslope
scale study, the linear distance approximation could intro-
duce larger errors. A more comprehensive form of the scale
parameter would need to be formulated based on actual
travel distance between locations, especially at the surface.
Also, local slope and aspect would need to be accounted for
in this parameter. Based on the analysis in section 3.5, it
may also be necessary to incorporate a vegetation compo-
nent into the scale parameter, especially at large supports.
Also, this algorithm may be incorporated into existing scal-
ing schemes [e.g., Zhu et al., 2004] which do not consider
topographic variations, to make them more comprehensive.

Figure 13. Stream discharge measured at downstream gauge SG447 in LW watershed.
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[49] HYDRUS-3-D solves the Richard’s equation, which
was developed at the continuum scale and is valid for small
supports. However, its validity at such large domains has
recently been debated often [Beven, 2001; Downer and
Ogden, 2003; van Dam and Feddes, 2000]. It has been
shown that application of Richards’ equation at large scales
results in over- or underestimation of soil moisture. Since
HYDRUS solves the Richards’ equation for the 1000 m �
1000 m pixel domain in our study, it is reasonable to expect
some deviations from the true values for the soil moisture
states at the coarser pixel scales.

[50] The pixel domains in this study encompass a maxi-
mum of five soil pedons, with some having as few as two
soils. In such a scenario it is not practical to apply the
upscaling algorithm with only a portion of the soil informa-
tion available. However, future work in this direction, when
considering larger pixel domains that could potentially
encompasses greater number of soils, could include studies
to determine the robustness of the method when only partial
information is used, i.e., by varying the sampling density.
This could further lead to newer sampling schemes for soil
information. Also, comparison of scaling performance of
the methodology presented in this article with those of other
available methods, which may or may not account for topo-
graphic variability in their upscaling algorithms would pro-
vide insight into how much the inclusion of topography
could influence the outputs of the hydrologic models. Such
a study is left as part of future work.

4. Conclusions
[51] We successfully upscaled soil hydraulic parameters

from the 30 m resolution to a 1 km resolution at two loca-
tions—the Little Washita watershed in Oklahoma, and the
Walnut Creek watershed in Iowa. Using a scale parameter,
based only on the topography of the domain, in the power
averaging operator algorithm, we have aggregated fine
scale soil hydraulic parameters to the coarse scale for all
pixels in the watershed. The equivalence of the upscaled
parameters was tested by simulating water flow for the
watershed pixels in HYDRUS-3-D model. An algorithm
was developed and implemented around the HYDRUS-3-D
framework to account for routing the surface runoff fluxes
between pixels at the coarse scale.

[52] The simulated soil moisture distributions were com-
pared across scale, and also with measurements made using
the ESTAR airborne sensor during the SGP97 hydrology
experiment at the LW watershed, and with PSR sensor dur-
ing SMEX02 experiment in WC. Correlations of simulated
and observed soil moistures were compared across time,
landscape position/location, elevation, vegetative cover,
and with respect to topographic indices. Inclusion of topog-
raphy in the hydraulic parameter scaling algorithm, and
incorporating a surface flux routing scheme, accounts for
much of the variability in soil moisture across scales. While
the upscaling algorithm employed did not give perfectly
equivalent soil hydraulic parameters at coarser scales, rea-
sonably good correlations between fine and coarse resolu-
tion results for simulated soil moisture states were
obtained. Based on the topography, the scaling algorithm
was able to capture much of the variation in soil hydraulic
parameter required to generate equivalent flows and soil
moisture states in a coarsened domain.

[53] Comparison of stream discharge at two gauging sta-
tions in LW also provided reasonable validation of the
upscaling algorithm. A further improvement in the predic-
tion of equivalent soil hydraulic parameters may be
achieved by modifying the form of the scale parameter to
include more geophysical factors and complexities. Overall,
the upscaling algorithm developed based on the topography
performed reasonably well in providing equivalent soil hy-
draulic parameter values for the Little Washita and Walnut
Creek watersheds at 1 km resolutions from 30 m data.
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