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[1] Successful application of dual permeability models (DPM) to predict contaminant
transport is contingent upon measured or inversely estimated soil hydraulic and solute
transport parameters. The difficulty in unique identification of parameters for the additional
macropore- and matrix-macropore interface regions, and knowledge about requisite
experimental data for DPM has not been resolved to date. Therefore, this study quantifies
uncertainty in dual permeability model parameters of experimental soil columns with
different macropore distributions (single macropore, and low- and high-density multiple
macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte
Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming
10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves
parameter correlations and exhibits fast convergence for all DPM parameters while MH
displays large posterior correlations for various parameters. This study demonstrates that
the choice of parameter sampling algorithms is paramount in obtaining unique DPM
parameters when information on covariance structure is lacking, or else additional
information on parameter correlations must be supplied to resolve the problem of
equifinality of DPM parameters. This study also highlights the placement and significance
of matrix-macropore interface in flow experiments of soil columns with different macropore
densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics
implying that macropores are drained first followed by the interface region and then by
pores of the matrix domain in drainage experiments. Results indicate that hydraulic
properties and behavior of the matrix-macropore interface is not only a function of saturated
hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf)
but also of other parameters of the matrix and macropore domains.
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1. Introduction
[2] Reliable predictions of flow and transport in the

vadose zone are important to address the issue of potential
contamination of groundwater and the deterioration of water
quality. Various studies have reported faster transport of fer-
tilizers, pesticides, industrial chemicals, and pathogens to
groundwater through fractures and preferential flow paths
[National Research Council, 1994; Mohanty et al., 1997,
1998; Kladivko et al., 2001; Böhlke, 2002; Jamieson et al.,
2002]. Preferential flow phenomenon can be described using
a variety of single-, dual- or multiple-porosity/permeability
models [Gwo et al., 1995; �Simùnek and van Genuchten,
2008; Arora et al., 2011]. The classical dual permeability
approach assumes that the soil contains two interacting
domains, one associated with the fast-flowing fracture or
macropore domain and the other with the less-permeable

soil matrix domain [van Genuchten and Wierenga, 1976;
Gerke and van Genuchten, 1993a, 1993b]. Dual permeabil-
ity model formulations differ in their description of flow
through the macropore domain and in their characterization
of exchange between the two regions [Jarvis, 1994;
�Simùnek et al., 2003; Köhne et al., 2004]. Both types of
dual permeability models (DPM) are widely applied at col-
umn, plot, and field scales [Larsbo et al., 2005; Köhne and
Mohanty, 2005; Köhne et al., 2009]. The main disadvantage
of DPM is the requirement of a large number of input parame-
ters. Parameters associated with additional pore regions and
matrix-macropore interface cannot be directly estimated by in-
dependent measurements or by expert judgment [e.g., Gwo
et al., 1995; Schwartz et al., 2000; Roulier and Jarvis,
2003]. Since direct estimation is not feasible, an inverse
procedure is applied wherein observed data are used to
obtain an optimal set of model parameters [Zachman et al.,
1981; Kool and Parker, 1988]. Inverse parameter estima-
tion is challenging with respect to obtaining a unique pa-
rameter set, nonidentifiability of the solution set, and ill-
posedness of the inverse problem [Carrera and Neumann,
1986]. This problem is significant for the case of structured
soils where interdependence and multicolinearity between
dual permeability model parameters increase the risk of
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reaching local minima in the parameter set [Ginn and
Cushman, 1990]. The identification of parameters is also
hindered by poor measurement quality, nonoptimal experi-
mental design, and parsimonious data sets such as omitting
the near-saturated stage of an outflow experiment [Durner
et al., 1999; Dubus et al., 2002].

[3] One response to counter the problem of parameter
identification is to adopt a Bayesian viewpoint which evalu-
ates the distribution of parameters instead of a single ‘‘best’’
estimate [Vrugt et al., 2008]. The Bayesian approach quanti-
fies uncertainty bands around parameter mean values and
incorporates the associated uncertainty to generate better fore-
casts, especially for complex nonlinear systems [Wu et al.,
2010; Jana and Mohanty, 2011]. Consider a radioactive
waste disposal facility, for instance, where combining the sin-
gle ‘‘best’’ estimates for the uncertain inputs will not neces-
sarily produce the ‘‘most probable’’ output estimate. Most
importantly, Bayesian probabilistic modeling can prove use-
ful in identifying additional parameters of the dual permeabil-
ity model, analyzing the relationship among parameters of
significant domains, and quantifying uncertainty in flow and
transport predictions using the dual permeability framework.

[4] The use of Bayesian techniques in the field of prefer-
ential flow and transport is generally limited to conventional
Markov chain Monte Carlo algorithms such as Metropolis-
Hastings and Gibbs sampling [Gelman et al., 1995; Cowles
and Carlin, 1996; Marshall et al., 2004; Reis and Stedinger,
2005]. The computational efficiency of sampling the param-
eter space can be improved by employing an adaptive
Markov chain Monte Carlo (AMCMC) scheme that can
cater to model parameters having a high degree of correlation
and interdependence as is the case with the dual permeability
framework [Haario et al., 2001; Atchadé and Rosenthal,
2005]. The AMCMC scheme is compared to a conventional
Metropolis-Hastings (MH) algorithm that uses a random
walk in the parameter space while describing uncertainty
based on preexisting (or prior) knowledge and experimental
observations [Metropolis et al., 1953; Hastings, 1970]. The
algorithms differ in their updating mechanisms, the conven-
tional MH algorithm uses a single-site (one parameter at a
time) updating while the AMCMC approach uses the history
of the process to ‘‘tune’’ the proposal distribution and update
the parameter covariance structure [Marshall et al., 2004;
Peters et al., 2009]. The algorithms will be compared for
their predictive performance in quantifying parameter and
output uncertainty.

[5] In summary, dual permeability models are para-
mount in predicting reliable estimates of preferential flow
and contaminant transport in structured soil systems but
their application is hindered by difficulties in estimating the
large number of input parameters [�Simùnek et al., 2001;
Jarvis et al., 2007]. The focus of this study is to estimate
uncertainty in dual permeability model parameters and to
investigate the stability of preferential flow estimates from
experimental soil columns, especially when a large number
of dual permeability parameters are considered unknown or
random. The research is motivated by a realization that cor-
relation and interdependence among parameters of the dual
permeability framework cannot be described explicitly for
any study for one of the following reasons: it may be
unknown, known but extremely complex, or it may even be
nonexistent, and difficult to investigate through controlled

experiments alone. This leads by default to a replacement
of the uncertain parameters and unknown covariance struc-
ture with probabilistic assumptions which are compatible
with Bayesian statistics. Therefore, the primary objectives
of this study are: (1) to quantify uncertainty in dual perme-
ability model parameters obtained from experiments of sin-
gle and multiple (low- and high-density) macropore soil
columns, and (2) to compare the conventional Metropolis-
Hastings and adaptive Markov chain Monte Carlo algo-
rithms in terms of convergence rate and for quantifying
uncertainty in simulating preferential flow from the experi-
mental soil columns.

2. Theoretical Considerations
2.1. Dual-Permeability Model Formulation

[6] The dual-permeability model of Gerke and van Gen-
uchten [1993a, 1993b] is used in this study. Conceptually,
the model assumes the porous medium to be divided into
two pore regions, with relatively fast water flow in one
region (often called the interaggregate, macropore, or frac-
ture domain) when close to full saturation, and slow in the
other region (often referred to as the intra-aggregate, micro-
pore, or matrix domain) [�Simùnek and van Genuchten,
2008]. Flow in both macropore (subscript f ) and matrix
(subscript m) domains is described using two Richards’
equations primarily with different sets of water retention
and hydraulic conductivity functions:

@�f

@t
¼ @

@z
Kf
@hf

@z
þ Kf

� �
� Cw

wf
; (1)

@�m

@t
¼ @

@z
Km

@hm

@z
þ Km

� �
� Cw

1� wf
; (2)

where z is the vertical coordinate positive upward [L], t is
time (T), h is the pressure head [L], � is the water content
[L3L�3], K is the unsaturated hydraulic conductivity
[LT�1], wf is the ratio of the volumes of the macropore do-
main and the total soil system [dimensionless], and Cw is
the rate of water exchange between the two domains [T�1].
The soil water retention and hydraulic conductivity func-
tions can be described using the equations [Mualem, 1976;
van Genuchten, 1980]:

�dðhÞ ¼ �rd þ ð�sd � �rdÞ½1þ ð�dhÞnd ��md ; (3)

KdðhÞ ¼ Ksd
f1� ð�dhÞmd nd ½1þ ð�dhÞnd ��mdg2

½1þ f�dhgnd �ld md
; (4)

md ¼ 1� 1
nd
; (5)

where subscript d represents the matrix (m) or fracture (f )
domains, �r and �s are the residual and saturated water con-
tents [L3L�3], respectively, Ks is the saturated hydraulic
conductivity [LT�1], � [L�1], n [�], m [�], and l [�] are
empirical parameters determining the shape of the hydrau-
lic conductivity functions.

[7] The mass transfer rate (Cw) in equations (1) and (2)
is assumed to be proportional to the difference in pressure
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heads between the fracture and matrix domains, given by
[Gerke and van Genuchten, 1993a]:

Cw ¼ �wðhf � hmÞ; (6)

in which �w is a first-order mass transfer coefficient for
water [L�1T�1]. For porous media with well-defined geo-
metries, �w can be defined as follows [Gerke and van Gen-
uchten, 1993b]:

�w ¼
�

a2 Ksa�; (7)

where � is a dimensionless geometry-dependent shape fac-
tor, a is the characteristic length of the aggregate (L) (e.g.,
the radius of a spherical or solid cylindrical aggregate, or
the half-width of a rectangular aggregate), Ksa is the satu-
rated hydraulic conductivity of the fracture/matrix interface
region [LT�1], and � is a dimensionless scaling factor.
2.2. Description of Bayesian Methods

[8] Bayesian methods provide a statistical framework for
obtaining an improved estimate of parameter distributions
by mathematically combining specific prior knowledge with
what is known about those parameters through observations.
To facilitate the description of the Bayesian analysis, we
represent the soil hydrologic system in a Bayes’ framework:

pðHjDÞ ¼ f ðDjHÞ�ðHÞ
�ðDÞ; (8)

where D is the observed data, p(HjD) is the conditional
posterior probability of the soil hydraulic parameters given
the data, f(DjH) is the likelihood function summarizing the
model for the data given the parameters, �(D) is a normal-
izing constant, �(H) is the prior joint probability for the
soil hydraulic parameters, and H is the vector of van Gen-
uchten soil hydraulic parameters given by:

H ¼fð�rd ; �sd ; �d ; nd ;Ksd ; ldÞ; ðwf ; �; �; a;KsaÞg; d ¼ m or f ;
(9)

where subscripts m and f represent the matrix and macro-
pore domain parameters, respectively, and (wf, �, �, a, Ksa)
constitute the interface region (int) parameters. The prior
joint probability can be further broken down as the joint
probability for the matrix, macropore, and interface compo-
nents of the dual-permeability model :

�ðHÞ ¼ �nparmum ��nparf uf ��nparint uint ; (10)

where npar is the number of parameters of a particular
region that are considered random and u is the set contain-
ing the random soil hydraulic parameters for that particular
region. Once the conditional posterior probability is known,
the marginal posterior distribution p(.jD) that retains the
dependence on one parameter exclusively (e.g., residual
soil water content for the matrix domain, �rm) is given by:

pð�rmjDÞ ¼

Z Z Z
�2; ... ;�tot

f ðDjHÞ � �ðHÞd�2; . . . ; d�tot

�ðDÞ ;
(11)

where �2, �3, . . . , �tot represent the soil hydraulic parame-
ters contained in the set H apart from �1 (¼ �rm). The main
complication is the intractability of the multidimensional
integration of the target density including the computation
of the normalizing constant �(D). A possible solution is to
use any MCMC algorithm that ignores �(D) and generates
a sequence of parameter sets, {H(0), H(1), . . . , H(t)} that
converge to the stationary proposal distribution p(HjD) for
large number of iterations t [Gelman et al., 1995]. Diagnos-
tic measures of central tendency and dispersion can then be
calculated from the mean and variance of the large sample
generated using MCMC simulations. The MCMC algo-
rithms used in this study are described below.
2.2.1. Metropolis-Hastings Algorithm

[9] One of the widely used MCMC techniques is the Me-
tropolis-Hastings algorithm proposed by Hastings [1970].
It samples the posterior distribution of the parameters as
described below:

[10] 1. Choose a starting point randomly within the feasi-
ble parameter space, H(i) ¼ H(0) with a covariance matrix
R0.

[11] 2. Draw a candidate vector H(i þ 1) from the previ-
ous vector H(i) using a proposal distribution q(H(i þ 1)j
H(i)) � N(H(i),R0), where H(i) is the current state of the
chain, and the proposal density is a normal distribution (for
this study).

[12] 3. Compute the odds ratio: r ¼ q(H(i þ 1))/q(H(i)).
[13] 4. If r � 1, accept the new candidate vector H(i þ 1)

as it leads to a higher value of the proposal distribution.
[14] 5. If r < 1, draw a number at random from a uni-

form distribution U[0,1]. If the random number is less than
r, accept ‘‘H(i þ 1)’’ else remain at the current position
‘‘H(i).’’

[15] 6. Repeat steps 2–5 for the given number of itera-
tions (t).

[16] A single parameter updating is usually done in this
algorithm which may be problematic with high-dimensional
H. If two or more parameters are highly correlated, a larger
number of simulations are required and block or simultaneous
updating is necessitated for correlated parameters [Marshall
et al., 2004].
2.2.2. Adaptive Metropolis Algorithm

[17] We employ the AMCMC scheme of Harrio et al.
[2001], which corresponds to our need for resolving a large
number of dual-permeability parameters and understanding
the correlation among these parameters. Harrio et al. [2001]
chose a multivariate normal distribution as the proposal den-
sity which is centered on the current state and obtains empir-
ical covariance from a fixed number of previous states. A
fixed value of the covariance matrix R is employed for a fi-
nite number of initial iterations (t0) after which it is updated
as a function of all the previous iterations:

X
i
¼

P
0; i � t0

sdCovðH1;H2; . . . ;Hiter�1Þ þ sd"Id ; i > t0;

(
(12)

where R0 is the initial covariance based on prior knowledge,
d is the dimension of H, " is a small parameter chosen to
ensure Ri does not become singular, Id is the d-dimensional
identity matrix, and sd is a scaling parameter that depends
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only on d. A basic choice for the scaling parameter can be
sd ¼ (2.4)2/d for Gaussian targets and Gaussian proposals
[Gelman et al., 1995]. The covariance at iteration (i þ 1)
can be obtained without much computational cost using the
recursive formula:

X
iþ1
¼ i� 1

i
X

i
þ sd

i
ði �Hi�1

�H
T
i � ðiþ 1Þ �Hi �H

T
i þ "IdÞ: (13)

[18] The important steps of the AMCMC algorithm can
be described as follows:

[19] 1. Choose a starting point randomly within the feasi-
ble parameter space, H(i) ¼ H(0) with a covariance matrix
Ri ¼ S0.

[20] 2. Draw a candidate vector H(i þ 1) from the previ-
ous vector H(i) using a proposal distribution q(H(i þ
1)jH(i)) � N(H(i),Ri), where H(i) and Ri define the current
state of the chain, and the proposal density is a normal dis-
tribution (for this study). Ri depends on the iteration num-
ber i according to equation (12).

[21] 3. Compute the odds ratio: r ¼ q(H(i þ 1))/q(H(i)).
[22] 4. If r � 1, accept the new candidate vector H(i þ 1)

as it leads to a higher value of the proposal distribution.
[23] 5. If r < 1, draw a number at random from a uniform

distribution U[0,1]. If the random number is <r, accept
‘‘H(i þ 1)’’ or else remain at the current position ‘‘H(i).’’

[24] 6. Repeat steps 2–5 for the given number of itera-
tions (t).

[25] The distinguishing feature of adaptive MCMC algo-
rithms, compared to the MH algorithm, is that it updates all
elements of H simultaneously due to the description of the
covariance structure. This also helps in adapting the simu-
lation at an early stage and reducing computation time.
Both adaptive MCMC and AMCMC terms are used inter-
changeably throughout the paper.

3. Case Study
3.1. Soil Column Data

[26] This work uses soil column experiments with well-
defined boundary conditions [Arora et al., 2011] to fully
understand the prospects and limitations of employing
adaptive MCMC versus the conventional MH algorithm
to quantify uncertainty in 10 out of 17 dual-permeability
model parameters. Three large acrylic cylinders (75 cm
long and 24 cm wide) are packed with sandy loam soil to a
dry bulk density of 1.56 g cm�3. The central macropore
column is provided with a single macropore of 1 mm diam-
eter all along the vertical axis of the column, open to both
the soil surface and to the bottom outflow plate. In the low-
and high-density multiple macropore columns, 3 and 19 ar-
tificial holes (1 mm diameter each) are created with a stain-
less steel rod in one-half of the column cross-section,
respectively (Figure 1). Basic outflow curves from the three
columns are also displayed in Figure 1. Tensiometers and
time domain reflectometry (TDR) probes are installed at
various depths in both macropore and nonmacropore halves
of the soil columns to monitor pressure head profiles and
water/tracer concentrations, respectively (Figure 2). At the
bottom of the column, outflow rates and flux-averaged bro-
mide (Br�) concentrations are measured separately in six
effluent chambers: three for each soil region with and without

macropores. The top boundary condition is maintained
using a tension infiltrometer and the bottom boundary is
open to the atmosphere with provision for pressure control.
A detailed description of the soil columns and collection of
data are provided elsewhere [Arora et al., 2011].

3.2. Model Parameters, Initial and Boundary
Conditions

[27] We present results for infiltration and drainage experi-
ments performed on the single macropore, and low- and
high-density multiple macropore columns. Simulations of
the experimental soil columns are implemented using the
HYDRUS-1D software package [�Simùnek et al., 2001,
2003]. Initial conditions for the simulations are described
in terms of vertical pressure head distribution using tensio-
metric data at different depths of the soil column (5 cm
intervals from the top). Upper and lower boundary condi-
tions are derived from observed tensiometric data at the top
(close to 0 cm) and bottom (close to 75 cm) of the soil pro-
file, respectively. A spatial discretization (Dz ¼ 0.5 cm)

Figure 1. Experimental design and outflow from infiltra-
tion experiments of the (i) single macropore, (ii) low-density,
and (iii) high-density multiple macropore columns. Symbol
M represents soil matrix and F represents fracture or macro-
pore domain.
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uniformly distributed over the length of the column is used
for all experiments. The initial time step is Dt ¼ 10�5 h,
and minimum and maximum time steps are Dtmin ¼ 10�6 h
and Dtmax ¼ 10�1 h, respectively. Space and time discreti-
zation are kept identical for all soil columns. The simulation
periods for the different experiments vary according to the
respective duration of each experiment.

[28] In the dual-permeability framework, any water flow
simulation requires the following 17 parameters : van Gen-
uchten-Mualem parameters (�r, �s, �, n, Ks, and l) for both
matrix and macropore domains, and interface parameters
(wf, �, �, a, and Ksa). The parameters of the matrix-macro-
pore interface, except Ksa, are either based on their geome-
try (wf, �, and a) or obtained by empirical estimation (�)
for the single and multiple macropore columns [Castiglione
et al., 2003; Arora et al., 2011]. As these parameters are
kept as constants, one may argue that �w is a function of
Ksa only (equations (6) and (7)), which is regarded as a cal-
ibration parameter in HYDRUS. This suggests that there
are only 13 independent parameters based on degrees of
freedom. These constant interface parameters along with
lm, �rm, and �rf are not included in the uncertainty analysis
because they are not considered to be sensitive (see section
4.1). However, correlations with respect to �rm and �rf are
taken into account.

3.3. Markov Chain Monte Carlo Sampling
[29] The MCMC algorithms are applied to the experi-

mental soil columns to investigate the effect of parameter
correlations and uncertain model parameters on model out-
puts. The first step is to establish prior density and parame-
ter uncertainty limits for each of the random parameters.

As discussed in section 3.2, the 10 dual permeability
parameters that will be analyzed using MCMC algorithms
are um ¼ {�sm, �m, nm, and Ksm}, uf ¼ {�sf, �f, nf, Ksf, and
lf}, and uint ¼ {Ksa}. A log-transformation is used for the
saturated hydraulic conductivity parameter (Ks) of matrix,
macropore, and interface regions as suggested by de Rooij
et al. [2004]. A uniform distribution is assigned to parame-
ters whose literature references are unavailable except for
their ranges. Therefore, the prior for lf is U[0,1]. A normal
distribution is assigned as a prior to the rest of the soil hy-
draulic parameters for both matrix and macropore domains,
e.g., �sm � N(��sm, ��sm). Nonnormal priors can be used as
well but they will increase the computational complexity
considering the number of parameters involved in this
problem. The means of the prior densities for the matrix
and macropore domains are set at the optimized values
obtained using inverse modeling of the various flow experi-
ments as they reflect the least squares estimate from HYD-
RUS. Table 1 summarizes the inverse modeling technique
used in this study and further details are given elsewhere
[Arora et al., 2011]. The variances for the normal densities
are obtained from Vrugt et al. [2003] using the van Gen-
uchten model for the loam and coarse sand textures reflect-
ing the parameters of the matrix and macropore domains,
respectively. The uncertainty limits for these parameters
are based on ranges obtained from the UNSODA database
[Nemes et al., 1999, 2001] again using the loam and sand
textures. To avoid MCMC algorithms from progressively
sampling outside realistic parameter ranges, the variances
and applicable uncertainty limits are further refined by
prior experiences with the model. Table 2 enlists the opti-
mized parameter values used as means for the prior density

Figure 2. Schematic of the soil column with instrumentation.
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and the uncertainty bounds approximately reflect the values
at 63� (standard deviation) for parameters with normal
priors.

[30] The second step is to consider an appropriate likeli-
hood function and create a proposal distribution that is
close to the posterior target distribution. Sampling from
proposal distributions should be consistent with expected
model responses to changes in parameter values [Larsbo
et al., 2005]. Therefore, the proposal distribution is taken to
be a multivariate normal distribution for each region/do-
main, and a Gaussian jump function is used to move around
the parameter space. HYDRUS-1D is run for each ‘‘new’’
vector in the dual-permeability framework and the likeli-
hood is based on the weighted least squares estimate
between observed (D) and predicted values (E) [�Simùnek
et al., 2001, 2003]:

f ðDjHr; �rÞ / ��N
r exp � 1

2�2
r

XN
i¼1

wi½rðHÞ�2
� �

; (14)

rðHÞ ¼ Dðx; tÞ � Eðx; t;HÞ; (15)

where N is the number of observations, wi are weights asso-
ciated with a particular observation, r(H) are model resid-
uals calculated using the observation data D(x, t) at time t
and location x (see Table 1), and the corresponding model

predictions E(x, t, H) for the vector H of dual-permeability
model parameters. We assumed wi’s to be equal to 1 for
this study to represent similar error variances for all obser-
vations. A problem with equation (14) is that the standard
deviation of model residuals (�r), which is not known a pri-
ori, is also included in the likelihood function. Typically,
�r can be integrated out of the equation using a Jeffreys
prior, and the likelihood therefore becomes [Scharnagl
et al., 2011]:

f ðDjHrÞ /
�XN

i¼1
wi½rðHÞ�2

��N=2
: (16)

[31] The Bayesian technique can thus produce full prob-
ability distributions for each parameter that is obtained
after integrating all possible combinations of the dual per-
meability parameters using equation (11). This multidimen-
sional integration is performed using the MH and AMCMC
algorithms which differ primarily in their dealings with the
covariance matrix.

3.4. Implementation of the MCMC Algorithms
3.4.1. Convergence Criteria

[32] A variety of graphical techniques such as trace
plots, running mean plots, posterior means, variances, and
standard errors are used to assess convergence of MCMC
chains. Apart from these, convergence diagnostics of

Table 1. Experimental Observations Used for Parameter Estimation and Likelihood Calculations

Group of Observations Method Resolution for Data Collection
Minimum Resolution for
Likelihood Calculation

Pressure head (cm) 13 tensiometers 5-cm depth intervals starting from top
until bottom of the soil column

Three depths

Soil water content (cm3 cm�3) 12 TDR probes 10-cm depth intervals starting from 5 cm
until 55 cm on both matrix and macro-
pore halves of the columns

Two depths in both matrix
and macropore halves

Outflow (cm) Six pie-shaped chambers,
intermittent use of fraction collector

75 cm depth One depth in both matrix and
macropore halves

Table 2. Initial Uncertainty Range and Optimal Parameter Values Obtained From HYDRUS for MCMC Simulations

Dual Permeability
Parameters

Initial Uncertainty
Range

Parameter Value for Best HYDRUS Simulation

Single Macropore
Column

Low-Density Macropore
Column

High-Density Macropore
Column

Matrix or immobile
region

�rm (�) Fixed 0.2 0.2 0.2
�sm (�) 0.35–0.41 0.38 0.38 0.38

�m (cm�1) 0–0.14 0.004 0.004 0.004
nm (�) 1.38–2.22 1.8 1.8 1.8

Ksm (cm h�1) 0.003–5.53 0.13 0.13 0.13
lm (�) Fixed 0.5 0.5 0.5

Macropore or mobile
region

�rf (�) Fixed 0.08 0.08 0.08
�sf (�) 0.36–0.42 0.39 0.39 0.39

�f (cm�1) 0–0.14 0.01 0.01 0.01
nf (�) 1.1–2.9 2 2 2

Ksf (cm h�1) 1.85–37 8.27 8.27 8.27
lf (�) 0–1 0.5 0.5 0.5

Interface region wf (�) Fixed 1.7 � 10�5 5.2 � 10�5 3.3 � 10�4

� (�) Fixed 0.45 0.54 0.67
� (�) Fixed 0.001 0.001 0.001
a (cm) Fixed 11.95 4.85 1.89

Ksa (cm h�1) 0.07–4.15a 0.26 4.17 4.17
0.25–13.87b

aValue is best suited for the single macropore column.
bValue is best suited for the multiple macropore columns.

W01524 ARORA ET AL.: UNCERTAINTY IN DUAL PERMEABILITY MODEL PARAMETERS W01524

6 of 17



MCMC are also based on the Geweke test statistic [Geweke,
1992]. The Geweke test splits the MCMC chain into two
‘‘windows’’: the first window containing the beginning
20% of the chain, and the second usually containing the
last 50% of the chain. If the samples are drawn from the sta-
tionary distribution of the chain, the mean of the two win-
dows are equal. A Z-test of the hypothesis of equality of
these two means is carried out and the chi-squared marginal
significance is reported. A value of <0.01 for the chi-squared
estimate indicates that the mean of the series is still drifting.
3.4.2. Number of Simulations

[33] Raftery and Lewis’s [1992] method is intended to
detect convergence to the stationary distribution as well as
to provide the total number of iterations required to esti-
mate quantiles of any MCMC output with desired accuracy.
The estimation of quantiles is very useful as they provide
robust estimates of the mean and variability of the parame-
ter. If the number of iterations is insufficient, the diagnostic
process can be repeated to verify the minimum number of
samples (Nmin) that should be run. One can determine the
increment required in the number of simulations because of
the dependence (I) in the sequence:

I ¼ Bþ T
Nmin

; (17)

where B is the number of initial iterations to be discarded
and commonly referred to as the burn-in length, and T is
the total number of simulations. Values of I larger than 5
indicate strong autocorrelation which may be due to a poor
choice of starting value, high posterior correlations, or
stickiness of the MCMC algorithm.

4. Results
4.1. Sensitivity Analysis

[34] The objective of sensitivity analysis is to evaluate
appropriate range of parameters and identify critical values
that may lead to suboptimal or local solutions. In this study,
sensitivity analysis is carried out by individually varying
each parameter by 630% and keeping the rest of the param-
eters constant at their inversely estimated values. Table 3
lists the top three parameters that produced the most sensi-
tivity to modeled preferential flow results when compared
with the optimal HYDRUS simulation. This ranking sug-
gests that variations in matrix parameters cause larger sensi-
tivity than macropore parameters for preferential flow
through experimental soil columns. Tortuosity of the matrix

domain (lm), and residual water content (�r) for the matrix
and macropore domains are not considered sensitive parame-
ters as they result in small changes to the optimal HYDRUS
simulation. Therefore, these parameters are disregarded for
uncertainty evaluation using MCMC simulations essentially
to curtail the dimensionality of the problem.
4.2. Comparison of Adaptive and Conventional MH
Algorithms

[35] MCMC iterations are run for developing an initial
covariance structure among the soil hydraulic parameters
for the experimental soil columns. Although more than
50% acceptance ratio is observed for all experiments, the
initial 4000 MCMC samples do not show convergence for
certain parameters (not shown here). Specifically, the pore
size distribution index for the matrix domain (nm), saturated
water content for the matrix (�sm), and fracture (�sf)
domains do not converge for any of the soil columns.
Among these, �sm and nm are found to be sensitive parame-
ters for most of the experiments (Table 3). However,
another common sensitive parameter �m seems to converge
efficiently. We argue that it is not the information in the
measurements that is lacking but in extracting information
about the interactions of the parameters which restricts us
from obtaining a unique parameter set. By simultaneously
using a number of correlated parameters, the identification
of unique dual-permeability parameters is at stake. This
result is confirmed by posterior cross-correlation plots,
which show high correlation between parameters such as
�sm�nm, �sm��m, and �sf�nf for different experiments of
the soil columns. A correlation among soil hydraulic pa-
rameters is not uncommon, however, prior information
about correlation between the soil properties is nonexistent
for most soils [Vrugt et al., 2003; Pollacco et al., 2008].
Therefore, the initial covariance structure (R0) of the pa-
rameters for both MCMC techniques is obtained from the
initial 4000 MCMC simulations for all types of flow
experiments as follows:X

0
ðHa

mÞ ¼ EðfHa
m�E½Ha

m� g
TfHa

m � E½Ha
m�gÞ;

Ha
m ¼ fð�a

rm; �
a
sm; �

a
m; na

m;Ka
smÞg;

ð18Þ

X
0
ðHa

f Þ ¼ EðfHa
f � E½Ha

f �g TfHa
f � E½Ha

f �gÞ;

Ha
f ¼ fð�a

rf ; �
a
sf ; �

a
f ; na

f ;Ka
sf ; la

f Þg;
ð19Þ

where, E is the mathematical expectation, a is the number
of accepted samples from the initial 4000 MCMC simula-
tions after 10% burn-in and thinning, and Ha

m (Ha
f ) is the

set of random matrix (macropore) parameters as well as �rm
(�rf) as suggested in section 3.2. The covariance with
respect to interface parameters is limited to the variance of
Ksa as the rest of the parameters are constant (section 3.2).
Our goal here is to compare the traditional Metropolis-
Hastings (MH) and the adaptive (AMCMC) techniques in
estimating soil hydraulic parameters and in producing
meaningful outputs that mimic the properties of our prefer-
ential flow system.

[36] After initializing the covariance structure, the MH
and AMCMC techniques were used to determine uncer-
tainty in the random parameter set {um, uf, ui} for an

Table 3. Sensitive Parameters for Different Types of Experiments
of the Single and Multiple Macropore Columns

Column Type Type of Experiment
Sensitive

Parameters

Single macropore Infiltration (0 cm head) �sm �m nm
Drainage �sm �m nm

Low-density multiple
macropore

Infiltration (6 cm head) �sm nm –
Drainage nf �sm –

High-density multiple
macropore

Infiltration (0 cm head) �sm �m –
Infiltration (4 cm head) �sm nf nm
Drainage �sm nm –
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infiltration experiment of the single macropore column.
Although both algorithms share the HYDRUS-optimized
starting values and parameter priors, Raftery and Lewis’s
[1992] diagnostic indicates 3295 additional iterations for
the MH algorithm as opposed to 235 additional iterations
for AMCMC to estimate 0.975 quantile of the parameters
to the specified accuracy (equal to 0.02). Figure 3 presents
contrasting posterior parameter distributions for the two
algorithms. Since the truth about parameter distributions is
unknown, there is no way to ascertain which algorithm pre-
dicts the correct posterior. However, the prediction of a
unimodal distribution for Ksf by the MH algorithm implies
that the chain takes a long time to move away from a local
mode because of the single-update mechanism of the MH
algorithm. On the other hand, the identification of a multi-
modal distribution for Ksf and lf in the vicinity of local
maxima is suggestive of desirable convergence and mixing
characteristics of the AMCMC algorithm. The mean accep-
tance rate of AMCMC (34%) as compared to the MH algo-
rithm (43%) is also suggestive of the comparatively slow
convergence of the MH algorithm.

[37] The MCMC procedure is also carried out for infil-
tration experiments with constant pressure head boundary
conditions for the low- and high-density multiple macro-
pore columns. Parameter trace plots for 5000 and 3000 sim-
ulations for these experimental soil columns are shown in
Figures 4 and 5, respectively. Figure 4 indicates that the
sequence of draws converged quickly, within 5000 itera-
tions, using the AMCMC technique. The performance of
both algorithms is similar except for parameters such as
�sm, nm, �sf, Ksf, and Ksa. Many more iterations are required
to obtain convergence and/or better mixing with the MH
approach. Since smoothness of the running mean plots is
an indicator of good mixing of the MCMC chain, Figure 6
compares the running mean plots of nm and nf parameters
of the low-density macropore column for the two algo-
rithms. This plot suggests slow mixing of the MH chain as

compared to the AMCMC chain for both of the parameters.
Geweke’s diagnostic is also used to assess chain conver-
gence and rejects convergence of �sf and Ksa at 90% level of
significance using the MH algorithm (column 5 of Table 4).
On the other hand, Geweke’s statistic indicates satisfactory
convergence (chi-squared probability >0.01) for all dual-
permeability parameters using the AMCMC algorithm (col-
umn 6 of Table 4). The higher acceptance rate of 33% for
the MH algorithm again confirms the slow mixing and con-
vergence characteristics of this algorithm as compared to the
lower mean acceptance (26%) of the AMCMC technique.

[38] Consistent with findings from the single macropore
and low-density multiple macropore columns, the AMCMC
algorithm provides better mixing and convergence with a
36% acceptance rate for the dual-permeability parameters
of the high-density macropore column (Figure 5). This time
series plot shows poor mixing (�sm) and trends in data (�m,
nm, �sf, and �f) at the 45% acceptance rate for the conven-
tional MH algorithm. The results of the Geweke test con-
firm the lack of convergence for some of these dual-
permeability parameters (nm and �sf) using the MH algo-
rithm (last two columns of Table 4). Raftery and Lewis’s
convergence diagnostic also indicates high autocorrelation
(I > 5) in all parameters except Ksm and lf for the MH algo-
rithm and in �sm and nm for the AMCMC algorithm for
the high-density macropore column (Table 5). Since the
statistic is calculated before thinning of the chains, autocor-
relation observed in �sm and nm using AMCMC, and nf, Ksf,
and Ksa using MH is expected as the chain is not independ-
ent and identically distributed (i.i.d.) as yet. The burn-in
length (B) and additional number of samples (not shown
here) obtained from the Raftery-Lewis statistic are not
unreasonable even for the MH algorithm, however, this
problem may worsen with addition of parameters, changes
to correlation structure, and increment in desired accuracy.

[39] The nonconvergent parameters across the different
experiments using the conventional Metropolis-Hastings

Figure 3. Posterior distributions of Ksf and lf using (i) MH and (ii) AMCMC algorithms for an infiltra-
tion experiment of the single macropore column.
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algorithm do not have a direct relationship with the listed
sensitive parameters for the different soil columns (Table 3).
We argue that the MH algorithm was analyzing the trade-
offs in the fitting of these highly correlated parameters due
to its one-parameter-at-a-time updating approach. This
argument is further strengthened by investigations into pos-
terior cross-correlations among the simulated matrix and
macropore domain parameters. Figures 7 and 8 present a
scatterplot of parameters generated by the MH and
AMCMC algorithms after convergence has been achieved
for infiltration experiments of the low- and high-density
multiple macropore columns, respectively. Specifically, pa-
rameter correlations (jrj > 0.5) are evident for �sm with �m
and nm for the low-density macropore column, and �sf with
�f for the high-density macropore column using the MH
algorithm. For the high-density macropore column, the
scatterplots developed using the AMCMC algorithm are
patchy only at the ends with respect to Ksf, while the MH
algorithm produces scatterplots that are patchy within the
parameter space for almost all of the macropore parame-
ters. This suggests that the MH algorithm has been unable
to cover the entire parameter space and explore the full
posterior distribution of the parameters in the given number

of iterations due to evident correlations between the param-
eters. On the other hand, the simultaneous updating of the
parameters within the AMCMC algorithm enables it to pro-
vide better posterior estimates in lesser iterations. We con-
clude that carefully formulated AMCMC yields sufficient
information to estimate parameter uncertainty with a faster
convergence rate when a large number of parameters (as in
a dual-permeability model) are considered random and
prior information with respect to their interdependence and
correlation is lacking.

4.3. Ouput Uncertainty
[40] To verify whether improved predictions of preferen-

tial flow can be made by either algorithm, we compare
AMCMC and MH simulation results for a constant head (0
cm) infiltration experiment of the high-density multiple
macropore column. Figure 9 illustrates pressure head pro-
files at 10 cm depth and soil water retention curves for the
matrix domain for the two algorithms. The MH algorithm
displays a wider range of uncertainty in predicting the entire
pressure head profile as compared to the AMCMC algo-
rithm. This is also true for water content profiles at all depths
and for all experiments of the different soil columns (not

Figure 4. Parameter trace plots using (i) MH and (ii) AMCMC algorithms for an infiltration experi-
ment (6 cm head) of the low-density multiple-macropore column.
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shown here). This can be explained with the reasoning that
the AMCMC algorithm has a narrow range of the highest-
posterior density region in the physically plausible space for
each of the dual-permeability parameters. The AMCMC
algorithm is able to resolve parameter correlations and
consequently, has a lower uncertainty associated with the
dual-permeability parameters. On the other hand, the MH
algorithm relies on the inverse procedure, which minimizes

the squared residuals between model predictions and meas-
urements, and fails to provide a single, relatively unique set
of hydraulic parameters from experimental observations.
This is also reflected in the 99% prediction uncertainty
bounds where the most optimal hydraulic properties,
obtained from the inverse procedure and indicated with the
dotted line (Figure 9), are at the center of the bounds for the
pressure head curve. On the contrary, the observations,

Figure 5. Parameter trace plots using (i) MH and (ii) AMCMC algorithms for an infiltration experi-
ment (4 cm head) of the high-density multiple-macropore column.

Figure 6. Moving average plots for nm (�) and nf (�) for an infiltration experiment of the low-density
multiple-macropore column.

W01524 ARORA ET AL.: UNCERTAINTY IN DUAL PERMEABILITY MODEL PARAMETERS W01524

10 of 17



Table 4. Geweke Convergence Diagnostics Following 10% Burn-In for Dual-Permeability Parameters of Single and Multiple
Macropore Columns

Dual-Permeability Parameters

Chi-Squared Probabilitya

Single Macropore
Column

Low-Density
Macropore Column

High-Density
Macropore Column

MH AMCMC MH AMCMC MH AMCMC

Matrix or immobile region �sm (�) 0.003 0.728 0.963 0.330 0.807 0.992
�m (cm�1) 0.610 0.164 0.355 0.205 0.060 0.127

nm (�) 0.960 0.180 0.057 0.934 0.001 0.147
Ksm (cm h�1) 0.632 0.209 0.190 0.809 0.157 0.163

Macropore or mobile region �sf (�) 0.898 0.246 0.001 0.161 0.001 0.182
�f (cm�1) 0.363 0.507 0.155 0.155 0.023 0.870

nf (�) 0.234 0.260 0.147 0.579 0.758 0.698
Ksf (cm h�1) 0.001 0.448 0.056 0.294 0.268 0.134

lf (�) 0.413 0.944 0.798 0.691 0.105 0.680
Interface region Ksa (cm h�1) 0.008 0.336 0.001 0.439 0.342 0.777

aUnderline indicates chi-squared probability <0.01.

Figure 7. Scatterplots of 5000 combinations of different matrix parameters for the low-density macro-
pore column using (i) MH and (ii) AMCMC algorithms.
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indicated with squares, are at the center of the prediction
bounds for the AMCMC algorithm, especially during pertur-
bations of the pressure head potential between 12 and 18 h.
There is also considerable uncertainty associated with the
MH algorithm where the soil moisture potential is at satura-
tion. This is in agreement with �sm being highly correlated
with other parameters (Figure 7) and the high sensitivity of
preferential flow output associated with �sm for all experi-
ments (Table 3). It is important to note that AMCMC is not
deemed better due to the smaller uncertainty range in output
predictions as true uncertainty bounds are unknown for the
experimental soil columns. However, we believe that signifi-
cant uncertainly associated with the fitted soil water reten-
tion functions is due to unresolved parameter correlations
using the MH algorithm. It is therefore recommended that
additional water content measurements at a lower pressure

potential be included to condense parameter correlations and
reduce uncertainty associated with such parameter sampling
algorithms. For the dual permeability modeling framework,
the comparison between MH and AMCMC algorithms clearly
demonstrates that correlations among dual-permeability pa-
rameters are present, and the output uncertainty range sug-
gests that these correlations must be accounted for by the
parameter sampling algorithms (either by including additional
information on the correlation structure or through an efficient
sampling scheme).

4.4. Uncertainty in Soil Hydraulic Parameters
[41] The estimation of marginal posterior distribution is

obtained assuming homoscedatic, uncorrelated error terms
using the adaptive MCMC technique. Histograms of the
dual-permeability parameters generated after convergence

Figure 8. Scatterplots of 3000 combinations of different macropore parameters for the high-density
macropore column using (i) MH and (ii) AMCMC algorithms.
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to the stationary posterior distribution for drainage experi-
ments of the single macropore and high-density multiple
macropore columns are shown in Figures 10 and 11,
respectively. The posterior distributions show evidence of
the bi- and multimodal nature for certain soil hydraulic pa-
rameters. An explanation for the occurrence of multiple
modes in the posterior is the inherent structure of the prior
distribution. Multivariate normal priors can result in multi-
modal or Student’s t-type of posterior distributions [Esco-
bar and West, 1995]. For the soil column data, the different
modes suggest that the experimental data are coming from
two (or three) sets of population, which represent the differ-
ent retention and hydraulic conductivity functions. de Rooij

et al. [2004] obtained different modes with the same para-
metric distribution for soil hydraulic parameters of the
plow layer and the subsoil thereby reflecting different soil
depths and different retention functions. This result can be
transferred here to suggest that these modes are related to
the different domains of the dual-permeability system. The
relative dominance of the matrix, macropore, and interface
regions is easy to discern in the histograms. Specifically, in
the drainage experiments of the single macropore and high-
density multiple macropore columns, the macropores are
drained first, followed by the matrix-macropore interface,
and then by pores of the matrix domain. Therefore, the ex-
istence of three modes in Ksm, Ksa, �sf, and lf for the single
macropore column, and in Ksa, �sm, �sf, nf, and lf for the
high-density multiple macropore column suggest the partic-
ipation of these parameters in controlling flow processes
through the matrix, macropore, and interface regions. Note
that the parameters showing bimodality such as �m, �f, and
nf for the single macropore column, and Ksm and �f for the
high-density multiple macropore column belong to matrix
and macropore domains only. This suggests that apart from
the conductivity parameter of the matrix-macropore inter-
face (Ksa) and the tortuosity of the macropores (lf), soil hy-
draulic parameters of matrix and macropore domains also
play an important role in regulating the flow through the
interface region.

[42] Table 6 summarizes the posterior mean and variance
of the various dual-permeability parameters for drainage
experiments of the single and multiple macropore columns
using the AMCMC algorithm. Since the MH algorithm pro-
duces incorrect posterior means and large variances for
certain highly correlated variables, these results are not pre-
sented here. It is important to note that same initial parame-
ters were employed for all of the soil columns and the only
difference between them was in the number of macropores
and therefore, in the geometry-based interface parameters
(Table 2). The results presented in Table 6 illustrate that
we end up with different parameter means for the different
experimental columns. Most importantly, the posterior
means of the Ks parameter for the matrix, macropore, and
interface regions show a similarity between the low- and

Figure 9. Uncertainty in predicting pressure head profiles
and �-h curves of the high-density multiple-macropore col-
umn for an infiltration experiment using (i) MH and (ii)
AMCMC algorithms. The dashed lines define the HYDRUS
simulation for the most likely parameter set, the gray shaded
area denotes the 99% prediction uncertainty range, and the
squares correspond to experimental observations at 10 cm
depth.

Figure 10. Posterior probability distributions of the parameters using observed data for drainage
experiment of the single macropore column.
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high-density macropore columns, and are consistently lower
for the single macropore column. Also, saturated hydraulic
conductivity for the macropore domain (Ksf) is found to have
the highest posterior variance for all the soil columns. This
suggests that saturated hydraulic conductivity parameter is
influenced by macropore density. Mild nonequilibrium con-
ditions observed in the single macropore column are reflected
through low posterior mean of Ks parameters for all three
regions. Results from our previous study [Arora et al., 2011]
also indicate the need to adjust saturated hydraulic conductiv-
ity parameter (Ksm) to account for an increase in macropore
density and to correctly predict flow through the structured
soil system.
4.5. Comparison with Deterministic Approach

[43] For the sake of comparison with the stochastic/
Bayesian approach, a deterministic framework is applied
using a similar weighted least squares approach as described
in equation (14):

 ðHÞ ¼
Xm

j¼1
vj
Xnj

i¼1
wi; j½rðHÞ�2; (20)

where wij’s are equal to 1 (as in the stochastic approach), m
is the number of different sets of measurements, nj is the
number of observations in a particular measurement set
such that the total number of observations N (in equation
(14)) is a summation of nj (for j ¼ 1, 2, . . . , m). An addi-
tional set of weights (vj) associated with each measurement
set is used in the deterministic approach. The weighting ele-
ments vj are inversely related to measurement variances (�2

j )
and number of data (nj) [Clausnitzer and Hopmans, 1995]:

vj ¼
1

nj�2
j
: (21)

An advantage of the Bayesian approach is that it integrates
out the error related to measurement variances (equation
(16)). As mentioned in section 4.4, the deterministic
approach resulted in similar parameters for all the soil col-
umns except the interface parameters (Table 2) and sug-
gested changes to Ksm for incorporating the effect of
macropore density [Arora et al., 2011]. On the other hand,
the Bayesian framework resulted in consistently lower pos-
terior means for Ks parameters for all regions of the single
macropore column as compared to the multiple macropore
columns. Thus, AMCMC suggests that the impact of macro-
pore density be incorporated by calibrating saturated hy-
draulic conductivity parameters for all three regions.
Another difference between the two approaches is high-
lighted through hydrologic outputs from the soil columns.
The Bayesian framework provides a comprehensive evalu-
ation of multiple realizations of preferential flow output
from the columns using uncertain parameters, while the
deterministic approach provides a single realization of the
output (Figure 9). This single realization does not even lie
at the center of the 99% uncertainty bounds obtained
through AMCMC because the deterministic approach also
analyzes parameter tradeoffs due to correlation among
DPM parameters. We must mention that the Bayesian tech-
nique does not consider error related to the model structure.
The use of a probabilistic framework in this study was
solely to emphasize the correlation structure of DPM

Figure 11. Posterior probability distributions of the parameters using observed data for drainage
experiment of the high-density multiple macropore column.

Table 5. Evaluation of the Raftery-Lewis Statistic for Dual-
Permeability Parameters of the High-Density Multiple Macropore
Column

Parameters

MH AMCMC

I B I B

�sm (�) 34.54 138 10.17 41
�m (cm�1) 17.83 99 1.81 4
nm (�) 10.36 42 11.62 49
Ksm (cm h�1) 0.96 2 0.96 2
�sf (�) 67.71 195 3.82 20
�f (cm�1) 8.29 46 2.63 5
nf (�) 18.78 78 3.32 12
Ksf (cm h�1) 6.03 21 2.42 5
lf (�) 0.71 3 0.71 3
Ksa (cm h�1) 38.69 103 5.89 21
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parameters and its effect on posterior parameter values,
uncertainty limits, and hydrological output.

5. Summary and Conclusions
[44] The applicability of dual-permeability models for

structured soils is hindered by the large number of input pa-
rameters, some of which cannot be measured directly
[�Simùnek et al., 2003]. This study depicts the usefulness of
Bayesian methods in evaluating parameter uncertainty and
its effect on model predictions in a preferential flow system
that considers 10 out of 17 (or 13 based on degrees of free-
dom) DPM parameters to be random. Bayesian modeling
framework is applied using an adaptive MCMC scheme
and the conventional Metropolis-Hastings algorithm on ex-
perimental soil columns with different macropore distribu-
tions (single macropore, low-, and high-density multiple
macropores). The distinguishing feature of the AMCMC
algorithm is its simultaneous parameter update due to the
description of the parameter covariance matrix as opposed
to the single-site update of the MH algorithm. The results
indicate that AMCMC accelerates convergence of the mul-
tidimensional dual-permeability model for all experimental
soil columns and identifies marginal posterior distributions
even in the vicinity of local maxima due to its online updat-
ing mechanism. On the other hand, the MH algorithm
reveals high-posterior correlations obtained with respect to
�sm with nm and �m, and �sf with �f for different experi-
ments of the soil columns. In terms of predicting preferen-
tial flow, this study shows that the MH algorithm produces
larger uncertainties than AMCMC in pressure head and
water content profiles at different depths of the soil col-
umns. The larger variability near the saturation end of the
water retention curve using the MH algorithm is related to
high correlations with �sf and high sensitivity of preferen-
tial flow estimates to the saturated water content parameter
(�sm). It seems that the MH algorithm requires additional
experimental data sets or supplemental information on pa-
rameter covariance structure to resolve these correlations
efficiently while AMCMC has faster convergence in estimat-
ing unique parameters using just the information contained in
experimental observations. For the dual-permeability frame-
work, the comparison between the two algorithms highlights
the existence of a correlation structure among DPM parame-
ters and indicates that the selection of parameter sampling
algorithms, whether deterministic or stochastic, is paramount

in obtaining unique DPM parameters. When correlation
structure of dual-permeability parameters is unknown or
complex, the parameter sampling schemes should either have
efficient update mechanisms (e.g., AMCMC) or be supplied
with supplemental information (e.g., MH) to improve identi-
fication of DPM parameters. Other studies have also reported
that prior knowledge about correlation structure significantly
improves equifinality of parameter estimates [Flores et al.,
2010; Scharnagl et al., 2011].

[45] In terms of parameter uncertainty, both order and
value of parameters are well-estimated and within credible
limits according to the UNSODA database using the
AMCMC algorithm [Nemes et al., 1999, 2001]. The effect
of macropore density is evident in a saturated hydraulic
conductivity parameter for matrix (Ksm), macropore (Ksf),
and interface regions (Ksa) as their posterior means are con-
sistently lower for the single macropore column as com-
pared to the multiple macropore columns. A high posterior
variance found in Ksf also reflects higher uncertainty in the
consistency of this parameter across soil columns with
changing macropore density. Our previous study also
emphasizes the need to account for changes in macropore
density through some parameters of the dual permeability
model [Arora et al., 2011]. Histograms of certain parame-
ters are found to display bi- or tri-modal characteristics.
We believe that this is not a peculiarity of the posterior dis-
tribution but reflects the sequence of flow processes of the
matrix, macropore, and/or the interface region. This is simi-
lar to observations in natural systems, where macropores
are predominantly active at and near saturation; the micro-
pores get active at a relatively lower pressure; and the
interface at a variety of pressure heads in between the
extremes. Results indicate that the degree of local nonequi-
librium in the matrix-macropore interface is controlled not
only by the transfer term parameter (Ksa) and macropore tor-
tuosity (lf) but also by other parameters governing the shape
of water retention curves for the matrix and macropore
domains. This result is important from the perspective of
understanding the physical meaning and effect of dual per-
meability parameters, and incorporating uncertainty in cer-
tain parameters to better account for lateral flow processes
through the matrix-macropore interface region.

[46] We must note that theoretical concepts derived from
this one-dimensional column study are applicable to multidi-
mensional settings of structured soils. This is because prefer-
ential flow causes the majority of the flow (disregarding

Table 6. Summary of Posterior Distributions for the Soil Hydraulic Parameters Using the AMCMC Algorithm

Dual-Permeability Parameters

Single Macropore
Column

Low-Density
Macropore Column

High-Density
Macropore Column

Mean Variance Mean Variance Mean Variance

Matrix or immobile region �sm (�) 0.457 0.024 0.304 0.054 0.413 0.024
�m (cm�1) 0.070 0.027 0.107 0.020 0.060 0.026

nm (�) 1.725 0.323 1.904 0.320 1.663 0.342
Ksm (cm h�1) 0.434 0.091 2.097 1.002 2.603 1.020

Macropore or mobile region �sf (�) 0.256 0.046 0.226 0.020 0.433 0.029
�f (cm�1) 0.058 0.026 0.021 0.015 0.061 0.034

nf (�) 2.220 0.237 2.302 0.223 2.258 0.285
Ksf (cm h�1) 2.518 1.092 3.871 1.518 3.530 1.326

lf (�) 0.494 0.028 0.530 0.029 0.510 0.028
Interface region Ksa (cm h�1) 0.524 0.034 2.508 1.029 2.311 1.001
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macropore tortuosity and dead ends) to be carried through
macropores and fractures, making the flow essentially one-
dimensional [Flury et al., 1994; Mohanty et al., 1998].
Therefore, specific results like the existence of correlation
among DPM parameters, the need for requisite changes to
Ks to account for increase in macropore density, and the
dominance of interface region in any flow process are all
transferrable to the field scale. A recent study by Kodêsová
et al. [2010] also demonstrates correlations with respect to
Ksf with Ksa, and Ksf with shape parameters of the macropore
domain for an experimental field setting. In addition, three-
dimensional field settings can only enhance the problem of
correlated parameters by introducing spatial correlation in
the added dimension [Mallants et al., 1997; Coppola et al.,
2009].
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