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s u m m a r y

Use of remotely sensed data products in the earth science and water resources fields is growing due to
increasingly easy availability of the data. Traditionally, pedotransfer functions (PTFs) employed for soil
hydraulic parameter estimation from other easily available data have used basic soil texture and struc-
ture information as inputs. Inclusion of surrogate/supplementary data such as topography and vegetation
information has shown some improvement in the PTF’s ability to estimate more accurate soil hydraulic
parameters. Artificial neural networks (ANNs) are a popular tool for PTF development, and are usually
applied across matching spatial scales of inputs and outputs. However, different hydrologic, hydro-cli-
matic, and contaminant transport models require input data at different scales, all of which may not
be easily available from existing databases. In such a scenario, it becomes necessary to scale the soil
hydraulic parameter values estimated by PTFs to suit the model requirements. Also, uncertainties in
the predictions need to be quantified to enable users to gauge the suitability of a particular dataset in
their applications. Bayesian Neural Networks (BNNs) inherently provide uncertainty estimates for their
outputs due to their utilization of Markov Chain Monte Carlo (MCMC) techniques. In this paper, we pres-
ent a PTF methodology to estimate soil water retention characteristics built on a Bayesian framework for
training of neural networks and utilizing several in situ and remotely sensed datasets jointly. The BNN is
also applied across spatial scales to provide fine scale outputs when trained with coarse scale data. Our
training data inputs include ground/remotely sensed soil texture, bulk density, elevation, and Leaf Area
Index (LAI) at 1 km resolutions, while similar properties measured at a point scale are used as fine scale
inputs. The methodology was tested at two different hydro-climatic regions. We also tested the effect of
varying the support scale of the training data for the BNNs by sequentially aggregating finer resolution
training data to coarser resolutions, and the applicability of the technique to upscaling problems. The
BNN outputs are corrected for bias using a non-linear CDF-matching technique. Final results show good
promise of the suitability of this Bayesian Neural Network approach for soil hydraulic parameter estima-
tion across spatial scales using ground-, air-, or space-based remotely sensed geophysical parameters.
Inclusion of remotely sensed data such as elevation and LAI in addition to in situ soil physical properties
improved the estimation capabilities of the BNN-based PTF in certain conditions.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Remotely sensed data products have become increasingly avail-
able for use in earth surface/water resources related research. The
National Aeronautic and Space Administration (NASA) operates a
number of satellites which provide vital information about the
earth’s surface processes. For example, the AQUA mission satellite,
part of NASA’s Earth Observing System (EOS), has six instruments
on board which provide data regarding atmospheric and sea sur-
face temperatures, humidity profiles, cloud data, precipitation,
ll rights reserved.
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radiation balance, terrestrial snow, sea ice, and soil moisture,
among others. Of particular interest are the Moderate-Resolution
Imaging Spectrometer (MODIS) and the Advanced Microwave
Scanning Radiometer for EOS (AMSR-E) instruments. MODIS,
which is also included on the TERRA satellite platform, provides
products that include the Leaf Area Index (LAI) and other vegeta-
tive indices such as the Normalized Difference Vegetative Index
(NDVI) and land use land cover. AMSR-E provides a soil moisture
data product. With the easy availability of global scale remotely
sensed data at different footprints or support scales, new applica-
tions and scaling techniques for their utilization to hydrologic
problems have been investigated.

Pedotransfer functions (PTFs) have been used to obtain certain
complex and expensive soil hydraulic parameters from other
available or easily measurable soil properties in the last two
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decades. Studies have been conducted to develop such transfer
functions and test them against available soil properties databases
(e.g., Cosby et al., 1984; Rawls et al., 1991; van Genuchten and Leij,
1992; Schaap and Bouten, 1996, 1998; Schaap and Leij, 1998a,b;
Pachepsky et al., 1999; Wösten et al., 2001; Sharma et al., 2006;
Jana et al., 2007, 2008). Traditionally, soil texture (%sand, %silt,
%clay), and bulk density have been the predominant inputs in these
PTFs for prediction of soil hydraulic properties. However, usage of
supplementary data in addition to texture and bulk density in
developing pedotransfer functions has increased within the cur-
rent decade. It has been shown that addition of topography and
vegetation parameters enhance the predictive estimates of soil
hydraulic parameters by PTFs to some extent (Pachepsky et al.,
2001; Leij et al., 2004; Sharma et al., 2006). However, increasing
the number of model input parameters also means increasing the
complexity of the model including the inherent uncertainties asso-
ciated with the input data, and, consequently, the PTF estimates.

Artificial neural networks (ANNs) have been a preferred tool for
parameter estimation by PTFs in hydrology (e.g., Schaap and
Bouten, 1996; Schaap et al., 1998; Schaap and Leij, 1998a; Sharma
et al., 2006; Jana et al., 2007, 2008). However, one major drawback
of using a conventional ANN approach is the inherent lack of
uncertainty estimates. This, in turn, brings to question the confi-
dence one may place on the accuracy of the ANN predictions. In
one study, (Schaap et al., 1998) provided a posteriori estimates of
the prediction uncertainties by generating multiple realizations
of the ANN output. The resultant outputs are then bootstrapped
and analyzed to provide confidence levels. Another study by Jana
et al. (2008) provided uncertainty estimates of the predicted soil
hydraulic properties by using Bayesian Neural Networks which
are inherently designed to provide the confidence ranges. Conven-
tionally, the weights of an ANN are obtained during training by
iteratively adjusting the values till a single ‘‘optimal’’ set is ob-
tained. However, the ANN methodology is not based on any phys-
ical processes underlying the hydrology. Rather, the training of the
weights in ANNs is a statistical process that is totally dependent on
the input values. Since most hydrologic systems are inherently sto-
chastic, (Kingston et al., 2005), the existence of an ‘‘optimal’’ set of
weights is questionable.

Bayesian Neural Networks (BNNs) are designed to overcome
this deficiency in conventionally trained ANNs by obtaining a
range of weights. Thus, a distribution of predicted values is gener-
ated, explicitly accounting for the uncertainty in the predictions.
Markov Chain Monte Carlo (MCMC) simulation techniques which
form a part of the BNN training also reduce the possibility of the
training becoming stuck in local minima and overtraining of the
network. As such, BNNs incorporate the best features of conven-
tional ANNs such as their ability to form functional relationships
between the inputs and the targets, while addressing some of the
drawbacks such as the ability to provide stochastic limits. Thus,
BNNs may be thought of as the next generation of neural network
models.

While the use of BNNs in the field of water resources modeling
is still new, relatively little has been done towards using them for
PTF development in the vadose zone. The utility of BNNs has
mostly been in surface hydrology applications where it has been
used for forecasting river salinity (Kingston et al., 2005), rainfall–
runoff (Khan and Coulibaly, 2006), or oxygen demand in estuaries
and coastal regions (Borsuk et al., 2001). Most previous PTF studies
derive and adopt soil hydraulic parameters at the same spatial
scale of input and target data. (Jana et al., 2007, 2008) have dem-
onstrated the usability of ANN- and BNN-based PTFs to estimate
soil water contents at a scale different from that of the training
data. The objective of this study is to develop and test the Bayesian
Neural Network based PTF methodology to derive soil water reten-
tion values (at saturation, h0bar, and field capacity, h0.3bar) at differ-
ent scales using ground-based and remotely sensed data at
multiple scales which include soil texture, bulk density, elevation
and Leaf Area Index (LAI). Remotely sensed data such as brightness
temperature have been used to derive soil state variables such as
soil moisture (Chang and Islam, 2000; Das and Mohanty, 2006).
The novelty of this study lies in the use of such satellite-based
measurements of vegetation and elevation in addition to the
ground based soil data for the estimation of relatively time-invari-
ant parameters such as soil water retention.

In addition, we also study the dependency of the derived soil
water retention values on the scale of the training data. In an ear-
lier work, (Jana et al., 2007) tested the effect of varying the extent
from which training data for an artificial neural network is ex-
tracted. The study showed that there was no significant improve-
ment in the ANN predictions at the fine scale with increase in
the number of training data points at the coarse scale resulting
from widening of the spatial extent. In this study we test the effect
of changing another component of the scale triplet (Blöschl and
Sivapalan, 1995) – the measurement support. The support area is
the region over which a measurement is valid. A test of the effect
of the change in the measurement support was conducted by
sequentially decreasing the support scale of the BNN training data
from 1 km to 30 m.
2. Study areas and data

The Bayesian training methodology is tested in two different re-
gions in USA. The first is the Las Cruces Trench site in the Rio
Grande basin of New Mexico and the second is in the Southern
Great Plain Experiment 1997 (SGP97) hydrology experiment re-
gion in Oklahoma. The test sites were chosen so as to provide vari-
ety in terrain, land use characteristics, vegetation, soil types and
soil distribution patterns. At the same time, sufficient data at the
fine scale is also available to validate the BNN predictions. These
test beds have been used in previous multiscale PTF studies (Jana
et al., 2007, 2008), and as such, provide a reference against which
the results of this new study may be compared. A brief description
of the test locations is given below for completeness.

2.1. Rio Grande Basin

The Las Cruces Trench (Fig. 1) is located on the New Mexico
State University Ranch, roughly 40 miles northeast of the Las Cru-
ces city. The trench is situated in undisturbed soil on a basin slope
of Mt. Summerford, near the northern end of the Dona Ana Moun-
tains. The region has a semi-arid climate and vegetation, with gen-
erally flat topography. The trench is 26.4 m long, 4.5 m wide and
6 m deep (Wierenga et al., 1991). Using in situ and laboratory
methods, Wierenga et al. (1989) developed a comprehensive data-
base of fine-scale soil properties using 594 disturbed soil samples
and 594 associated soil cores taken from nine distinct soil layers
identified on the north wall of the trench. Samples were also taken
from three vertical transects on this wall. The data set included sat-
urated hydraulic conductivity, soil water retention function, parti-
cle size distribution, and bulk density for each layer. Only the fifty
data points from the top 6-cm layer of the Las Cruces Trench site
database is used in this study.

2.2. Little Washita Watershed

Fig. 2 shows the Southern Great Plains 97 (SGP97) experimental
region of approximately 40 km by 250 km (10,000 km2) in the cen-
tral part of the US Great Plains in the sub-humid environment of
Oklahoma (Fig. 2). The region has a moderately rolling topography.
Rangeland and pasture dominate the land use with patches of
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Fig. 1. Rio Grande Basin study area, New Mexico.

Fig. 2. Little Washita study area, Oklahoma.
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winter wheat and other crops. A soil property database of the area
developed by Mohanty et al. (2002) provided the fine-scale data at
this site.

2.3. Coarse-resolution data

Coarse resolution (1 km) data for both test locations are ob-
tained from a variety of sources. The soil texture, bulk density
and water content details were obtained from the Conterminous
United States Multilayer Soil Characteristics Dataset for Regional
Climate and Hydrology Modeling (CONUS-SOIL), a database of soil
characteristics for the conterminous United States based on the
USDA-NRCS State Soil Geographic Database (STATSGO) (Miller
and White, 1998). The STATSGO database was developed for use
in regional scale models by generalizing soil survey maps where
available, and Landsat imagery where soil survey maps were
unavailable. STATSGO base maps were compiled state-wise at
1:250,000 scale. The soil physical properties used in this study
are the sand, silt, and clay percentages, and the bulk density. The
hydraulic parameters are the water content at satiation (h0bar),
and the water content at 1/3 bar (h0.3bar). While we wished to test
the BNN methodology on the entire range of the soil water charac-
teristic, non-availability of water content data at other pressures in
the database to train the Bayesian Neural Networks restricted our
choices to these two parameters.

Elevation data at the 1 km resolution was obtained from the
GTOPO30 global digital elevation model provided by the US Geo-
logical Survey (USGS) Earth Resources Observation and Science
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(EROS) (http://www.eros.usgs.gov/products/elevation/gtopo30.
html). The data is available at a resolution of 30-arc seconds, which
corresponds to approximately 1 km grids. For the RGB site training
dataset, the elevation ranges between 1131 m and 2675 m, with an
average elevation of 1362.49 m. For the LW training dataset, eleva-
tion ranges between 304 m and 683 m, with an average elevation
of 401.78 m. Vegetation characteristics for the test regions were
obtained in the form of the Leaf Area Index (LAI) data product from
NASA’s MODIS instruments on board the AQUA and TERRA satellite
platforms (Myneni et al., 2002). LAI is a measure of the one-sided
leaf area per unit ground area. LAI is derived from multiple prod-
ucts such as the surface reflectance, land cover type, and other
associated surface characteristic information. It is a dimensionless
(m2/m2) quantity ranging between 0 and 8. However, when repre-
sented in the raster format, the values are stretched between 0 and
255. The LAI dataset is available as 8-day composites. Since the
fine-scale data was collected during the month of June 1997, and
the MODIS sensor was launched later, for this study, we have se-
lected an 8-day window in mid-June of 2005, so as to correspond
with the general time of sampling of the fine scale dataset. At
the 1 km resolution, the RGB training data had an average LAI value
of 55.21, while at the LW site, an average LAI of 113.21 was ob-
served. At the fine scale, the value of LAI from the coarse pixel cor-
responding to the data point location is taken as the LAI value.

Coarse scale data is obtained for a region surrounding the loca-
tions from where fine resolution data is available, as shown in Figs.
1 and 2. At the Rio Grande Basin (RGB) site, 5580 sets of 1 km res-
olution data values are used while 6356 sets are used for the Little
Washita (LW) region. Different GIS layers of coarse scale data
including remotely sensed observations are also shown in Figs. 1
and 2.
3. Multiscale Bayesian Neural Network analysis

Conventionally trained artificial neural networks, as used in
most previous PTF applications, form a relationship between the
inputs and the targets during the training. If y be the training target
and x be the input data, then the relationship between x and y can
be described as

y ¼ f ðxjwÞ þ E ð1Þ

where f(x|w) is the functional approximation of the relationship be-
tween the input and the target as described by the ANN, w is the
vector of weights and biases for the layers of ANN neurons, and E
is the error term. Here w is a single set of weights which provide
outputs that best match the targets (i.e., least mean square error be-
tween outputs and targets). However, many such combinations of
input and layer weights could exist which provide best-match
outputs.

Unlike conventional ANNs, Bayesian Neural Networks generate
a probability distribution of the weights which is dependent on the
given input data. From Bayes’ theorem,

Pðwjy;XÞ ¼ Pðyjw;XÞPðwÞ
PðyjXÞ ð2Þ

where X is the input vector (x1, x2, . . . , xn), P(y|X) =
R

P(y|w, X)P(w)
dw, P(w) is the prior distribution of weights, and P(y|w, X) is the
likelihood function (Gelman et al., 1995). As described by Kingston
et al. (2005), the predictive distribution of yn+1 is given by

Pðynþ1jxnþ1; y;XÞ ¼
Z

Pðynþ1jxnþ1;wÞPðwjy;XÞdw ð3Þ

The subscript ‘‘n + 1’’ for x connotes new data that has not been
used in the training of the BNN. This integral can be solved by
numerical integration using Markov Chain Monte Carlo (MCMC)
methods (Neal, 1992).

MCMC methods are used to generate multiple samples from a
continuous target density (Bates and Campbell, 2001). The poster-
ior weight distribution is generally complex and difficult to sample
from. Hence, a simpler symmetrical distribution is used to generate
the weight vectors. This is called the ‘‘proposal’’ distribution and is
considered to be locally Gaussian. This proposal distribution de-
pends only upon the weights from the previous iteration in a ran-
dom walk Markov chain implementation. Arbitrary values are
chosen for the weight vector w to start with. A series of values
w⁄ are then proposed by the Markov chain which are accepted with
a probability given by

a ¼ min
1

PðyjX;w�ÞPðw�Þ
PðyjX;wprev ÞPðwprev Þ

( )
ð4Þ

In the above equation, wprev is the previous value of the weight vec-
tor. If w⁄ is accepted, the previous value wprev is replaced by the pro-
posed value w⁄ and the procedure is iterated over again. An
acceptance rate between 30% and 70% is generally considered to
be optimal (Bates and Campbell, 2001). Generating a large number
of iterations ensures that the Markov chain is forced to converge to
a stationary distribution. At that point, the weight vectors may be
considered to have been generated from the posterior distribution
itself. Detailed descriptions and discussions of the Metropolis
algorithm for the MCMC method used in this study are given by
(Gelman et al., 1995), and Kingston et al., 2005). We generated
15,000 Markov chain iteration samples and discarded the first
5000 samples as burn-in. This is done to allow the network suitable
time to ‘‘understand’’ the relationship between the inputs and
the outputs, and attain stability. Thus, 10,000 possible weight
combinations, each of which satisfy the neural network’s training
requirements, are generated.

Coarse scale information, from grids of 1 km resolution, are fed
to the BNN for training. The input parameters are the sand, silt and
clay percentages, bulk density, elevation and LAI. The training tar-
gets are the soil water contents at matric potentials of 0 bar (sati-
ation, h0bar), and 0.3 bar (field capacity, h0.3bar). Using the BNNs
trained with the coarse-resolution data sets, predictions of soil
water contents were made at the point resolution for the corre-
sponding point-scale data sets.
4. Non-linear bias correction

It has been shown by previous studies that a bias can exist be-
tween data sets due to difference in measurement techniques,
instrument or operator errors, averaging methods, or due to the
scale disjoint between the training and simulation datasets used
in the BNN (Schaap and Leij, 1998b; Jana et al., 2007, 2008). Since
the training of the neural network is done using coarse-scale
(1:250,000, or 1 km resolution) data, the BNN model developed is
a coarse-scale model. When point scale (1:1) inputs are fed to this
model, the predictions obtained for the soil water contents are
technically still at the coarser scale. This gives rise to a bias be-
tween the BNN-predicted values and the measured values at the
point scale. Different hydrological governing processes dictate
the soil water contents at different spatial scales. However, the
BNN is not based on the physical processes underlying the hydrol-
ogy. It only forms a relationship between the inputs and the targets
based on the data provided for training, and thus cannot inherently
account for the support scale disparity between the training and
simulation datasets. Hence, a suitable bias correction technique
needs to be applied to the predicted water content values for
adjustment to the target scale.

http://www.eros.usgs.gov/products/elevation/gtopo30.html
http://www.eros.usgs.gov/products/elevation/gtopo30.html
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A linear bias correction was applied by Jana et al. (2007) to pro-
vide a proportional shifting effect to the ANN predicted values that
brings the mean of the ANN predicted values closer to that of the
measured values. Linear bias correction, however, only accounts
for the first moment (mean) of the data. No correction is applied
to the second moment (spread) of the values. Also, it was observed
that there is a smoothing effect on the soil water content distribu-
tion since only the systematic error is accounted for in this tech-
nique. This smoothing further decreases the variance of the
predicted soil water content values. Using a linear bias correction
technique would provide a good estimate for the mean of the entire
data set (i.e., the effective soil water content values at the field
scale). Further, parametric scaling being a non-linear process, appli-
cation of a linear bias correction can be successful only to a certain
degree. In a subsequent study, (Jana et al., 2008) applied a non-
linear bias correction to the BNN predictions by matching the
cumulative distribution functions (CDFs) of the BNN predicted
and the target (measured) values. The CDF-matching technique is
based on the idea of obtaining the predicted parameter values cor-
responding to the probability of values on the CDF of the target
parameter (Calheiros and Zawadzki, 1987; Atlas et al., 1990;
Reichle and Koster, 2004; Ines and Hansen, 2006). After ascertain-
ing the type of distribution (e.g., normal, log-normal, gamma) of
the parameters by statistical tests, CDFs are obtained for the target
and predicted values for each parameter based on the type of distri-
bution they follow. For each predicted soil water content value,
there exists a particular probability of occurrence. Similarly, for a
particular probability of occurrence, there exists a corresponding
target soil water content value. CDF matching is achieved by forcing
the predicted soil water content value with a particular occurrence
probability towards the corresponding target soil water content
value. For a normally distributed parameter, the CDF is given by

CDFðhi; l;rÞ ¼
Z hi

�1

1ffiffiffiffiffiffiffiffiffiffi
2pr
p exp � ðhi � lÞz

2r2

� �� �
ð5Þ

Here, hi is the water content value at which the CDF is calculated, l
is the mean and r is the standard deviation of the soil water content
Fig. 3. Non-linear b
values. In order to effectively scale the BNN-model predicted values
to the measured dataset, it is required to find hpred

ı such that

CDFðhpred
i Þ ¼ CDFðht arg et

i Þ ð6Þ

This is achieved by computing the inverse of the cumulative prob-
ability values for the calibration dataset, but with the mean and
standard deviation values of the target distribution. The inverse is
the value of the soil water content that corresponds to a particular
probability. This procedure effectively scales the distribution of the
neural network predicted calibration dataset to approximate that of
the target values. A schematic representation of the CDF-matching
technique is shown in Fig. 3. It must be noted that the bias correc-
tion is applied not only to the mean BNN-predicted values, but to
the entire band of uncertainty as well. This means that all the out-
puts from the MCMC algorithm are accounted for in the bias correc-
tion too. Since the bias correction is not the main focus of this study,
the derivation and/or provenance of the method is not discussed in
detail here. More detailed discussions about the method may be
found elsewhere (e.g., Calheiros and Zawadzki, 1987; Atlas et al.,
1990; Reichle and Koster, 2004; Ines and Hansen, 2006).
5. Multiple support scale analysis

(Jana et al., 2007) studied the effect of changing the extent from
which coarse-resolution data is chosen to train the ANN. Extent is
one of the components of the scale triplet – extent, spacing, and
support – as described by Blöschl and Sivapalan (1995)). It was re-
ported by Jana et al. (2007) that no significant change in the ANN
prediction capability was found due to such an increase in the
number of coarse-resolution data points beyond a certain extent.
In this study, we tested the effect of changing the support scale
of the data used for training the multiscale BNNs. Soil physical
and hydraulic property data for training of the BNN were obtained
at resolutions of 30 m, 90 m, 270 m, and 810 m from within the
coarse resolution training data extent for the Rio Grande Basin
study area (Fig. 1). The 30 m data was primarily obtained from
ias correction.
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the Soil Survey Geographic (SSURGO) database compiled by the
United States Department of Agriculture – Natural Resources Con-
servation Service (USDA-NRCS) (http://soildatamart.nrcs.usda.
gov). This public domain database contains geo-referenced spatial
and attribute data for soils compiled from soil surveys. These sur-
veys cover large spatial extents (usually county-wide) and the soil
property data are based on soil type rather than the spatial loca-
tion. The SSURGO database was created by field methods, using
observations along soil delineation boundaries and traverses, and
determining map unit composition by field transects. Aerial photo-
graphs are interpreted and used as the field map base. Multiple
readings are taken for each property within each map unit. The
number of readings taken differs between map units that are based
on factors such as the size of the soil polygon, the variation in
topography and change in vegetation, among others. Low, high,
and representative values for each soil physical and/or hydraulic
property are provided in the database for each soil type/map unit
at scales ranging between 1:12,000 and 1:31,680 (http://www.
nrcs.usda.gov/technical/soils/soilfact.html). In this study, the rep-
resentative values for the soil texture (sand, silt and clay percent-
ages), bulk density, elevation, and soil water contents were
obtained from 1:24,000 resolution SSURGO soil maps in a gridded
format with a resolution of 30 m. The LAI values were re-sampled
from the MODIS data described earlier.

The 3 � 3 grids of parametric data at the 30 m resolution are
generalized to 90 m resolution using the mean aggregation feature
in ArcMap™ software by ESRI�. The 270 m resolution data was ob-
tained by aggregating 3 � 3 grids of 90 m data, and so on. Since the
soil property data are in grid format, changing the support area of
the parameter causes a corresponding change in the spacing too.
Hence, in reality, two components of the scale triplet are being
modified here.

The BNN methodology, along with the non-linear bias
correction technique, was applied with the BNN being trained with
data at each coarse resolution. Predictions of the soil water
contents at saturation and field capacity at the point (1:1) resolu-
tion were obtained, and corrected for bias by the CDF mapping
method.
Fig. 4. Target, BNN-predicted, and bias c
6. Upscaling study

In order to investigate the multi-scale nature of the Bayesian
Neural Networks, a study was conducted to upscale the soil water
retention parameters from the 30 m resolution to the 1 km resolu-
tion at the Little Washita Watershed site. Training data at the 30 m
resolution for this study consisted of the soil texture (sand, silt and
clay percentages), and the bulk density from the USDA-NRCS SSUR-
GO database. Elevation data obtained at the 30 m resolution from
the United States Geological Survey’s (USGS) National Elevation
Dataset was also used as a training input. Training targets were
the water content at satiation (h0bar) and the water content at 1/
3 bar (h0.3bar). Simulation input data for soil texture and bulk den-
sity at the 1 km resolution were obtained from the STATSGO data-
base, while the elevation data were from the GTOPO30 global
digital elevation model mentioned earlier.

Twelve coarse resolution (1 km) pixels were taken from the LW
region for this study. Fine (30 m) resolution training input and tar-
get data from within these areas were taken from the SSURGO and
National Elevation databases. The BNN methodology was applied
with the networks being trained at the fine scale. Predictions of
the soil water contents at saturation and field capacity at the
coarse (1 km) resolution were then obtained.
7. Results and discussion

Data from multiple scales, from satellite-based remote sensing
footprints to ground-based point scale measurements, were ap-
plied in a multiscale Bayesian Neural Network methodology to ob-
tain fine-scale soil water content values after being trained with
coarse scale data. The resultant outputs from the BNN were plotted
along with their respective expected values (Fig. 4). The error bars,
obtained from the Markov chain Monte Carlo simulations, repre-
sent the uncertainty in the neural network predictions. BNNs, as
mentioned earlier, generate a distribution of weights instead of a
single set. The uncertainty band (error bars) show the limits to
which the predictions could have varied based on the combination
orrected soil water content values.

http://www.soildatamart.nrcs.usda.gov
http://www.soildatamart.nrcs.usda.gov
http://www.nrcs.usda.gov/technical/soils/soilfact.html
http://www.nrcs.usda.gov/technical/soils/soilfact.html
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of weights used. The final predicted soil water content value is an
average of all such possible values from the 1000 Monte Carlo sim-
ulations. Fifty sets of point scale inputs/outputs are available for
each parameter at the Rio Grande Basin (RGB), while in the Little
Washita Watershed (LW), we have seventy values measured at
the point scale. The comparative statistics for the target and pre-
dicted parameters at the two sites are given in Table 1. As ex-
pected, BNN predictions at both test sites and for both water
content parameters were biased from the expected target values.
As previously noted, this bias is an artifact of the scale disjoint be-
tween the training and simulation data sets, and is eliminated by
application of the non-linear bias correction technique.

As in the study by Jana et al. (2008), it is apparent that the out-
puts at the RGB site showed less variations than those at the LW
site (Fig. 4). This relative invariance is attributed to the small range
in variations of the corresponding inputs at the fine scale. Descrip-
tive statistics for the soil physical properties at the coarse and fine
scales from the two test sites are presented in Table 2. There is a
significant difference in the amount of variation of the texture be-
tween the coarse and fine scales at RGB. The fine-scale soil is pre-
dominantly sandy and almost uniform. Further, the Las Cruces
trench has a dimension of 26 m. This means that all the observa-
tion points at this site lie within one coarse scale pixel, thus show-
ing invariance in topography and vegetation too. Like any other
model, neural network outputs too are dependent on the quality
of input data. The invariance in the inputs at the fine scale is re-
flected in the soil water content estimates produced by the BNN.
In contrast, the LW data are spread over a much wider area
(approximately 10,000 km2). Fine scale observation points lie in
different coarse scale pixels. The variability in the soil physical
properties are also comparable at the two scales (Table 2). This re-
sults in a better estimation of the water content values at the LW
site as compared to the RGB site, as can be seen from the R values
in Table 1.
Table 1
Descriptive and comparative statistics of target, BNN-predicted, and Bias Corrected
soil water content values.

h0bar (v/v) h0.3bar (v/v)

Target BNN-
predicted

Bias
corrected

Target BNN-
predicted

Bias
corrected

RGB
Mean 0.342 0.443 0.342 0.127 0.418 0.127
Std. dev. 0.024 0.012 0.024 0.013 0.011 0.013
R 0.328 0.333 0.223 0.257
RMSE 0.103 0.026 0.246 0.015

LW
Mean 0.370 0.414 0.370 0.210 0.533 0.210
Std. dev. 0.046 0.019 0.046 0.064 0.111 0.064
R 0.416 0.421 0.762 0.764
RMSE 0.061 0.050 0.331 0.044

RGB: Rio Grande Basin; LW: Little Washita; BNN: Bayesian Neural Network; R:
Correlation coefficient; RMSE: Root mean square error.

Table 2
Bayesian Neural Network input parameters at coarse and fine scales.

Sand (%) Silt (%) Clay (%)

Mean Std. dev. Mean Std. dev. Mean Std. de

RGB
Coarse scale 54.641 13.973 30.603 7.796 14.752 7.751
Fine scale 81.458 1.666 9.760 1.170 8.780 1.200

LW
Coarse scale 41.969 17.280 43.875 14.034 14.226 5.726
Fine scale 51.913 21.113 33.606 16.412 14.482 6.040

RGB: Rio Grande Basin; LW: Little Washita; LAI: Leaf Area Index.
From Table 1, for the RGB region, we see that the BNN estima-
tion of the water content at saturation (h0bar) is slightly better than
that for the field capacity (h0.3bar). A correlation coefficient value of
0.333 is observed for the h0bar value, while the value is 0.257 for
h0.3bar. Earlier studies (Jana et al., 2008) have shown similar corre-
lation values. No significant improvement or deterioration in the
BNN’s prediction capabilities were seen for the RGB site although
the resolution of the training data is much coarser (1 km) in this
study as compared to the earlier study (30 m), and considering that
topography and vegetation have been added to the training factors.
We suggest that this is due to the general conditions of the RGB
site. This site exhibited more uniformity in soil texture, topogra-
phy, and vegetation with large spatial correlation length scale
when compared to the LW site.

For the LW site, the R value for the h0bar, at 0.421, remains sim-
ilar to the earlier study (Jana et al., 2008). The correlation value for
the h0.3bar, however, is greatly improved (0.764). This improvement
in the correlation can be attributed to the use of the topographic
information in this model, as against using only texture and bulk
density. Field capacity (h0.3bar) is defined as the available water
content in the soil after gravity draining. Drainage by gravity, espe-
cially from the wet end of the soil water characteristic, is greatly
influenced by the topography. By including the elevation in the
BNN model, a better estimate of the variability is obtained for this
parameter as compared to the earlier study (Jana et al., 2008).

Kolmogorov–Smirnov tests showed that the BNN predicted and
field measured fine scale water content values are normally dis-
tributed. Hence, the CDF matching algorithm for non-linear bias
correction could be carried out using the normal CDF equation
(Eq. (5)). Normal CDFs were plotted for the target and predicted
h values for both the regions (Fig. 5). It can be seen that the CDFs
of the model predicted soil water content values and those of the
measured (target) values do not match for either region. Probabil-
ity Density Functions (PDFs) are also plotted for the target and
BNN-predicted h values for both the regions (Fig. 6). The difference
in the mean and spread of the target and BNN-predicted distribu-
tions is apparent here. The means of the BNN-predicted values are
consistently higher than the measured values for each water con-
tent at either location. The BNN-predicted h values were randomly
split into two halves, one half for model calibration and the other
for validation of the bias correction scheme. The cumulative prob-
abilities for each point value are computed using the mean and
standard deviation of the calibration dataset. The calibrated (bias
corrected) soil water content CDF values (Fig. 5) now follow the
target CDF closely.

To test the calibration of the bias correction scheme, the
remaining half of the neural network predicted soil water content
values (the validation dataset) is used. The calibration is found to
be correct as the distributions of validation data are aligned with
the target distributions (Fig. 5). This suggests that our bias correc-
tion scheme for the predicted h values approximates the target val-
ues well. In concurrence with the CDFs, the PDFs of the calibration
Bulk density (–) Elevation (m) LAI (m2/m2)

v. Mean Std. dev. Mean Std. dev. Mean Std. dev.

1.520 0.174 1362.490 167.060 55.210 19.874
1.660 0.050 1200.000 0.000 250.000 0.000

1.437 0.015 401.783 45.431 113.210 15.272
1.396 0.099 391.000 25.213 12.400 2.815



Fig. 5. Cumulative probability distributions of soil water content values.

Fig. 6. Probability distributions of soil water content values.
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and validation datasets plot on top of the target PDF (Fig. 6). Scatter
plots of the target, BNN-Prediction, calibration and validation val-
ues for both water contents at both sites are also plotted (Fig. 7) to
provide a sense of how the bias correction procedure shifts the
BNN predictions closer to the targets.

From Fig. 4 it can be seen that the variability of the target values
is largely approximated by the non-linear bias-corrected h values.
However, point-to-point matching of values is still not obtained.
The bias-corrected values are being sampled from the same distri-
bution as the target values, but at a different probability. Uncer-
tainties introduced into the observations of any point-scale data
due to measurement and operator errors, and other influencing
factors such as the presence of macropores or roots debris have
not been considered here. These factors make the approximation
of the particular point values dictated by stochastic natural pro-
cesses a near-impossible task, given the current inputs. Since the
individual values may also be considered as being sampled from
a distribution (to cover the uncertainties), the point-to-point
match of the values is neither practically achievable nor really
necessary. In other words, if we select values from the normal



Fig. 7. Scatter plots of soil water content values.
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distribution of the bias-corrected values for the exact probabilities
as those of the target values, we would get a much better match at
each point. Further, uncertainties in fine-scale data due to factors
such as measurement and/or operator errors and presence of mac-
ropores or organic debris make it nearly impossible to precisely
estimate the observed values. The non-linear bias correction ap-
proach provides h values for any probability, which is not possible
by using a linear bias correction. Matching of the distributions,
along with the Bayesian nature of the neural network model, en-
sures that the above-mentioned uncertainties are incorporated
into the estimation scheme.

The mean, standard deviation, root mean square error (RMSE)
and average bias correction applied to the predicted h values from
BNNs trained with data from different coarse resolutions (support
scales) in the multiple support scale analysis are given in Table 3.
The average bias corrections applied at different resolutions are
graphed in Fig. 8. It is found that a fourth order polynomial fits
the average bias correction curve with an R2 of 1 for both h values.
We have used a non-linear bias correction based on the assump-
tion that scaling is a non-linear process. The findings shown in
Fig. 8 support this assumption. If the effect of scale on the BNN pre-
Table 3
Average bias correction necessary for different scales of training data.

h0bar (v/v) Target 30 m 90 m

Pred BC Pred BC

RGB
Mean 0.342 0.482 0.342 0.447 0.342
Std. dev. 0.023 0.006 0.023 0.012 0.023
Avg. BC �0.140 �0.105

LW
Mean 0.127 0.405 0.127 0.582 0.127
Std. dev. 0.013 0.003 0.013 0.012 0.013
Avg. BC �0.278 �0.455

h: Soil water content; Pred: BNN Predicted value; BC: Bias-corrected value; Avg. BC: Av
diction were to be linear, we would find that the average bias cor-
rection rises linearly with increase in resolution. Further, the non-
monotonic nature of the curve may be an indicator of the fractal/
self-similar nature of the hydraulic property itself.

The target (from STATSGO) and BNN-predicted values for the
water content values at the 1 km resolution from the upscaling
study are plotted in Fig. 9. It can be seen that the BNN-predicted
water content values are close to the target values at all locations.
The target h0bar values fall within the band of uncertainty at all
locations, while the target h0.3bar values lie within the uncertainty
band at most (10/12) locations. Comparative statistics between
the target and BNN-predicted values are given in Table 4. It can
be seen that the correlation values are much higher for the upscal-
ing study than for the downscaling case, and the RMSE is much
smaller for both water content values. This shows that the upscal-
ing was successful.

It may be observed that the bias correction was not applied in
the upscaling study. It was not considered necessary since upscal-
ing is an interpolative exercise for the BNN. Neural networks per-
form better at interpolation than they do at extrapolation. This
inherent property of BNN’s means that they are naturally better
270 m 810 m 1 km

Pred BC Pred BC Pred BC

0.486 0.342 0.424 0.342 0.443 0.342
0.016 0.023 0.011 0.023 0.012 0.024

�0.144 �0.082 �0.100

0.537 0.127 0.570 0.127 0.418 0.127
0.012 0.013 0.014 0.013 0.011 0.013

�0.410 �0.443 �0.012

erage bias correction applied.



Fig. 8. Average bias correction necessary for different scales of training data.

Fig. 9. Target and BNN-predicted soil water content values at 1 km resolution from upscaling study.

Table 4
Descriptive and comparative statistics of target, and BNN-predicted soil water content
values at 1 km resolution from upscaling study.

h0bar (v/v) h0.3bar (v/v)

Target BNN-predicted Target BNN-predicted

Mean 0.397 0.377 0.230 0.228
Std. dev. 0.026 0.020 0.060 0.049
R 0.598 0.802
RMSE 0.028 0.035
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at upscaling exercises than downscaling, where an additional bias
correction step would be necessary to account for the scale
disjoint.

Remotely sensed data products are becoming increasingly easy
to obtain and newer applications are being developed. The quality
of remotely sensed data is improving all the time. However, at the
present time, the resolutions at which such data are available are
still rather coarse. This results in our having to resample the coarse
resolution pixels to finer resolutions. Such simple resampling
methods are not a substitute to rigorous scaling techniques, and
introduce errors in parametric values. Empirical PTFs based on
statistical techniques such as neural networks are inherently
site-specific as they need to be trained to recognize the patterns
particular to that site. So a network would need to be trained fresh
if estimating soil hydraulic parameters at a site outside the area
from which the coarse scale data is provided. Alternatively, the
network would need to be trained with a very comprehensive
dataset encompassing all possible variability in soil physical prop-
erties in order to be considered as a generic pedotransfer function
application. Further, using this methodology, a few representative
measurements are necessary at the fine scale for the bias correc-
tion procedure when downscaling the soil water retention param-
eters. Using these measurements, an estimate of the amount of
correction to be applied can be obtained which can then be used
for the entire extent of interest. However, this step is not necessary
for upscaling the water retention parameters.
8. Conclusions

Using coarse scale soil properties data from ground-based and
remote sensing platforms up to 1 km resolution and point scale
measured soil properties data, we have shown that a Bayesian
Neural Network can be applied across spatial scales to approxi-
mate fine-scale soil hydraulic properties. The study was conducted
for two regions which are greatly different in soil, topography, veg-
etation, climate, and in the spatial extent from which the point
data was collected. It has been shown that the BNN predictions
are superior when the training data covers a larger region. This is
due to the large scale heterogeneity encompassed in the training
process. Using remotely sensed topographical and vegetation
parameters in the training showed improvements in the Little
Washita region where the point scale inputs are from a widely dis-
persed region. On the contrary, no significant improvement was
found by the inclusion of additional parameters in the BNN train-
ing at the Rio Grande Basin site where it is limited to a small
trench/plot. A marked improvement in predicted h0.3bar values
was found at the LW site, and is attributed to the inclusion of the
additional factors such as topography which represents the gravity
draining component. As expected, the scale disjoint between train-
ing and simulation data made the application of a bias correction
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procedure necessary. The non-linear technique of CDF matching
was used to obtain the bias correction. The average bias correction
necessary to be applied was found to vary as a fourth order poly-
nomial based on the resolution of the training data. BNNs also eas-
ily provide an estimate of the uncertainties involved in the
prediction scheme. Traditional ANN methods would involve a
few further steps to obtain an a posteriori estimate of the same
uncertainties. Overall, the Bayesian Neural Network, coupled with
a non-linear bias correction scheme, appears to work well for esti-
mation of soil hydraulic properties at a fine scale from data at coar-
ser scales (downscaling). The Bayesian Neural Networks performed
better at upscaling of water retention parameters than at down-
scaling, due to the inherent properties of the networks. However,
this study also underlines the necessity of better input and training
data using remote sensing techniques for better predictions, as also
the fact that no single model is applicable at all geographical
locations. Also, the currently available coarse scale data allows
for testing of this approach only at the wet end of the soil water
characteristic. If more points on the soil water characteristic curve
are known at the coarse scale, then a comprehensive test of the
methodology would be possible.
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