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[1] Understanding of near-surface soil moisture variability at different spatial scales and
associated dominant physical controls is limited. In the past, soil moisture dynamics
studies have been conducted extensively at different spatial scales using both in situ and
remote sensing (RS) data in the subhumid Southern Great Plains region, which has mostly
pasture and range land cover with rolling topography. Compared to the past efforts, we
investigated the space-time characterization of near-surface soil moisture and associated
physical controls at multiple scales (field, watershed, and region) in a humid hydroclimatic
region with different topography and agricultural land cover. Soil moisture data from
two different measurement support scales (theta probe based (point scale) and airborne
RS derived; footprint scale, 800 m x 800 m), obtained during the Soil Moisture
Experiment 2002 (SMEXO02) in Iowa were used. Geostatistical analysis showed the
spatial soil moisture correlation lengths varied between 78 m and 307 m (at the field scale),
2044 m and 11,882 m (at the watershed scale), and 19,500 m and 118,500 m (at the
regional scale). The correlation length values were usually smaller on wet days than the
relatively dry days at the field and watershed scales. The trend was opposite at the
regional scale with correlation lengths being larger on wet days. Furthermore, the soil
moisture data sets were decomposed into spatial Empirical Orthogonal Function (EOF)
patterns, and their relationship with various geophysical parameters (rainfall, topography,
soil texture, and vegetation) was examined to determine the dominant control on the
near-surface soil moisture variability. At the field scale, the first four EOFs together
explained about 81% of the total variability. At the watershed scale, the first two EOFs
were dominant explaining about 93% of the total variance, whereas at the regional scale,
the primary EOF itself explained more than 70% of the variance. In other words, the
complicated dynamics of near-surface soil moisture fields can be described by a few
underlying orthogonal spatial structures related to the geophysical attributes of the
region. Correlation analysis of the RS soil moisture data showed that rainfall,
topography, and soil texture have mixed effects on the variability explained by the
dominant EOFs, at both watershed and regional scales, with limited influence of
vegetation parameters. The effect of rainfall on the soil moisture variability is higher at
the watershed scale compared to the regional scale in lowa.
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1. Introduction

[2] Near-surface soil moisture is a key state variable of
the water cycle as it plays a significant role in the global
water and energy balance by affecting several hydrological,
ecological, meteorological, geomorphologic, and other nat-
ural processes. Soil moisture varies greatly across space and
time based on different soil properties, topographic features,
vegetation characteristics, and atmospheric dynamics
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[Famiglietti et al., 1999; Entin et al., 2000; Mohanty and
Skaggs, 2001]. Soil moisture is either measured directly
using in situ methods, e.g., gravimetric sampling, time
domain reflectrometry (TDR) [Grayson and Western, 1998;
Mohanty et al., 1998], or estimated indirectly through active
[Dubois et al., 1995; De Troch et al., 1996; Ulaby et al.,
1996] or passive [Jackson, 1993; Jackson and Schmugge,
1995; Jackson and Le Vine, 1996; Schmugge, 1998; Njoku
et al., 2003] remote sensing (RS) techniques. As in situ
measurements have small support, therefore, for estimation
of soil moisture fields at larger spatial scales, we rely greatly
on the RS methods. However, the passive microwave RS
sensors have limited penetration depths, ranging from ~5 cm
for the low-frequency L band, to a few mm for the high-
frequency X band radiometry [Kerr, 2007]. Nevertheless,
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the spatial resolution of remotely sensed soil moisture
footprints very often conflicts with the needs of the scientific
or research community, necessitating the use of down-/
up-scaling algorithms to render the data suitable for various
applications (e.g., large-scale general circulation models
(GCMs), weather forecast models, hydrologic models, or
precision agriculture) [Dubayah et al., 1997; Drusch and
Wood, 1999; Crow and Wood, 2002; Kim and Barros,
2002a; Merlin et al., 2006, 2008]. Therefore, knowledge of
spatiotemporal variability of soil moisture patterns and their
evolution across widely ranging scales of both space and
time, along with the geophysical parameters (e.g., topogra-
phy, rainfall, soil texture, and vegetation) controlling the
variability, is crucial for numerous hydrological research and
applications, such as flood/drought prediction, climate fore-
cast modeling, and agricultural management practices
[Gordon and Hunt, 1987; Crow and Wood, 2002; Delin and
Berglund, 2005; Starr, 2005]. In particular, a better under-
standing of the variability of RS soil moisture, will help
evaluate the passive microwave sensor performance, thereby,
increasing the quality and credibility of the RS data. It will
also help to quantify the variability underlying large-scale RS
averaged soil moisture data that the sensor fails to capture
explicitly which in turn will increase the usage of the data in
scientific/research community [Famiglietti et al., 1999].
Knowledge of the various geophysical controls affecting the
RS soil moisture variability at varying spatial scales (e.g.,
watershed and regional scales) can also help to improve the
performance of soil moisture retrieval algorithm by decreas-
ing the uncertainty in assigning proper weights to the various
geophysical parameters involved in the derivation of the
moisture estimates.

[3] In the past, soil moisture characterization studies using
ground-based soil moisture measurements have focused
mostly on small scales [e.g., Hills and Reynolds, 1969;
Charpentier and Groffman, 1992; Famiglietti et al., 1999;
Mohanty et al., 2000], while those using RS soil moisture
data encompassed larger spatial scales [e.g., Hu et al., 1997;
Kim and Barros, 2002b; Ryu and Famiglietti, 2006; Jawson
and Niemann, 2007]. Though it is easy to calibrate the
ground-based measurements, but they cover small areas,
thereby, limiting the spatial correlation analysis of soil
moisture due to the small number of measurements [ Western
et al., 1998]. On the other hand, RS soil moisture measure-
ments provide data over larger spatial extents, but the
interpretation poses a challenge, especially for surfaces
having vegetative cover. The footprint often results in sig-
nificant smoothing of the small-scale variability present in
near-surface soil moisture [Western et al., 2004].

[4] To study the space-time characterization of soil
moisture patterns, two different techniques widely used by
hydrologists are the geostatistical method [Journel and
Huijbregts, 1978], and the Empirical Orthogonal Function
(EOF) analysis [Preisendorfer, 1988]. Standard geostatis-
tical techniques involve the estimation of isotropic/direc-
tional semivariograms to understand the spatial structure of
soil moisture and determining the correlation lengths at dif-
ferent sampling scales. The correlation length is a measure of
the spatial continuity of the soil moisture. The sample var-
iogram calculated from the soil moisture data gives infor-
mation about the sample properties only. The properties of
the true population (or the underlying soil moisture distri-
bution) are then statistically determined by fitting a theo-
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retical variogram model to the sample variogram. Whether
the variogram parameters (i.e., the sill, nugget, and range/
correlation length) determined from the sample truly repre-
sent the population depends on the nature of the soil moisture
variability and the sampling regime [Western et al., 1998].
[5s] Literature contains a wealth of information where
geostatistical method was used to study the spatial structure
and correlation lengths of soil moisture, both at small and
large spatial scales. Results obtained from various studies
are of conflicting nature. Some authors [Schmugge and
Jackson, 1996; Charpentier and Groffman, 1992; Hills
and Reynolds, 1969] found little evidence, while several
others [Warrick et al., 1990; Nyberg, 1996; Western et al.,
1998] observed the presence of spatial correlations in soil
moisture. However, their studies differ from each other
depending on the methods employed for data collection, the
support scale, and the depth to which the soil moisture
measurements were recorded. While Schmugge and Jackson
[1996] used RS soil moisture estimates with a larger support
scale in their study, other authors used in situ measured
point-scale data. Furthermore, works of Schmugge and
Jackson [1996], Charpentier and Groffman [1992], and
Hills and Reynolds [1969] focus on the near-surface soil
moisture, whereas Warrick et al. [1990], Nyberg [1996],
and Western et al. [1998] used profile soil moisture up to a
depth of about 15-30 cm from soil surface. From soil
moisture data (~0—8 cm) collected over a range of scales in
Chew Stoke catchment (UK), Hills and Reynolds [1969]
inferred that the soil moisture variability increased signifi-
cantly with scale, suggesting the presence of spatial corre-
lation. Western et al. [1998] conducted the geostatistical
characterization of soil moisture patterns (top 30 cm) in the
10.5 ha Tarrawarra catchment in Australia on 13 occasions.
Using TDR, they measured soil moisture between 500 and
2000 points for each occasion and analyzed the spatial cor-
relation structure. They found the sample variograms with a
clear sill and nugget and observed that the geostatistical
structure of soil moisture evolved seasonally. During the wet
winter period, high sills (15-25 (%v/v)?) and low correlation
lengths (35-50 m) were observed, whereas in the dry sum-
mer period sills were smaller (5-15 (%v/v)?) and correlation
lengths longer (50—-60 m). They concluded that this seasonal
evolution is based on the lateral redistribution of soil mois-
ture during different seasons. Mohanty et al. [2000] analyzed
the spatial structure of near-surface soil moisture (0—6 cm) in
a mixed vegetation pixel during the Southern Great Plains
1997 (SGP97) hydrology experiment. They explored the
within-season spatiotemporal variability of surface soil
moisture in a 800 m x 800 m field (LW21) having a rela-
tively uniform topography and soil texture, but variable land
cover. Their analyses showed the effects of daily precipita-
tion, variable land cover, land management, vegetation
growth, and microheterogeneity on soil moisture distribu-
tion. Isotropic correlation length for soil moisture varied
between <100 m (for nugget and subgrid-scale variability)
and >428 m (for spherical and Gaussian models reflecting
contribution from coexisting geophysical processes). Anal-
ysis of spatial structure at other scales up to 10 km using the
RS soil moisture (Electronically Scanned Thinned Array
Radiometer, ESTAR-derived) fields (soil depth ~top 5 cm;
resolution ~200 m x 200 m) from the Washita *92 campaign
[Jackson et al., 1995] exhibited fractal behavior [Hu et al.,
1997]. Using the same data set, Cosh and Brutsaert [1999]
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subdivided an 18 km x 25 km study region in to 32 block
grids consisting of 200 m x 200 m pixels; and concluded that
for distances <5 km, the surface soil moisture exhibited
spatial correlation with correlation length of approximately
1 km. Based on their analysis for each of the individual soil
types over the entire Washita 92 region, they observed
similar correlation length with the soil moisture variability
being strongly affected by the soil type. Ryu and Famiglietti
[2006] investigated the scaling behavior of near-surface
soil moisture spatial variance with increasing support scale
(1 x 1 km?® to 140 x 140 km?) using SGP97 ESTAR data
in a 50 km X% 250 km region of central Oklahoma. They
observed a nested correlation structure within regional-scale
fields, with the smaller-scale correlation (10 ~ 30 km)
governed by land surface features (soil texture and vegeta-
tion), and larger-scale correlation (60 ~ >100 km) by pre-
cipitation. They further concluded that at the larger scales
(considered in their study), the type of correlation function
and correlation length are significant in determining the
relationship between soil moisture variance and support
area, and the variance no longer follows a power law decay
rule with increasing support area as it does at smaller
scales (<1 km?). The differences in correlation length
between small-scale and large-scale studies may be due to
the effects of sampling design [Western and Bloschl, 1999]
and the uncertainty associated with sampling [Western et al.,
1998]. Geophysical process controls also change with
changes in spatial scale leading to differences in correlation
lengths [Western et al., 2004].

[6] The EOF analysis [Preisendorfer, 1988] has also been
extensively used to study spatial patterns and the ensuing
dynamics of soil moisture. The method essentially generates
orthogonal spatial patterns called ‘EOFs’ (invariant in time),
and a set of time series referred to as ‘Principal Components’
or ‘PCs’ (invariant in space), of the soil moisture anomalies.
The method computes the amount of variance explained by
different modes of variability (i.e., each EOF/PC pair). The
primary EOF/PC pair explains the maximum amount of
variance. The EOF method is also used to investigate which
regional geophysical characteristics (e.g., topography, soil
texture, vegetation) control the EOF patterns.

[7] Kim and Barros [2002b] explored the statistical
structure of large-scale (40 km % 250 km) soil moisture fields
obtained during the SGP97 hydrology experiment. The EOF
analysis was used to determine the relationship between the
spatial structure of soil moisture and the available ancillary
data (topography, soil texture, and vegetation cover). They
observed that topography dominated the spatial structure of
soil moisture only during and immediately after a rainfall
event. In interstorm periods, the spatial evolution of soil
moisture was associated mainly with the soil hydraulic
properties when the soil was above field capacity, while
vegetation dominated soil moisture evolution during the dry
down period. Yoo and Kim [2004] investigated the spatio-
temporal variability of field-scale soil moisture using
gravimetric soil moisture data from two Little Washita fields
(LW10 and LW13) during SGP97. They evaluated the rel-
ative roles of various factors (topography, soil properties,
and vegetation) and concluded that there is no simple and
unique mechanism that can be applied to explain the evo-
lution of soil moisture field. Even though topography was
found to be dominant, other factors such as soil and land use
were also significant in controlling the spatial organization of
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soil moisture content. Jawson and Niemann [2007] used
EOF approach to show that the spatial and temporal variation
of large-scale soil moisture patterns can be described by a
small number of spatial structures related to soil texture,
topography, and land use. They analyzed the spatial and
temporal anomalies computed from the ESTAR based soil
moisture data set from SGP97, and found that one spatial
EOF pattern explained most of the variance in both the
spatial and temporal cases. They further concluded that the
spatial structures (EOFs) of both the spatial and temporal
anomalies were mostly correlated with the soil texture,
whereas the effects of topography were relatively insignifi-
cant for the range of spatial scales considered in their study.
Perry and Niemann [2007] examined the soil moisture data
set obtained from the Tarrawara catchment in Australia.
They concluded that the spatial patterns are controlled by
local soil properties in wet and dry conditions and by
topography during the intermediate period.

[8] The primary objective of this study is to investigate
the space-time variability and the associated dominant
physical control(s) of near-surface soil moisture at varying
spatial scales in an agricultural landscape in Iowa. Com-
pared to the works by Yoo and Kim [2004] and Jawson and
Niemann [2007] in the SGP region, Oklahoma, this study is
focused on the soil moisture patterns at multiple spatial
scales (field, watershed, and region) in a different hydro-
climatic (humid climate, gentle terrain, agricultural land-
scape, and glacial till soil) region.

2. Study Site and Data Description

[o] Figure 1 shows the regional study area of the
SMEXO02 campaign in lowa (including the insets of 100 km?
Walnut Creek (WC) watershed and the 800 m x 800 m
WCI1 field) located south of Ames, lowa. The climate of
the region is mostly humid, with an average annual pre-
cipitation of 835 mm. The heaviest rainfall usually occurs in
May and June and amounts to about one third of the annual
total. The regional topography consists of low relief (max-
imum elevation ~320 m) with poor surface drainage due to
the existing prairie potholes of glacial origin. Soil texture
varies considerably from fine sandy loam to clay, with the
majority classified as silt loam with a relatively low per-
meability. Corn (50%) and soybean (40%) crops dominate
the land cover with row type cultivation [Choi and Jacobs,
2007].

[10] The SMEXO02 field campaign took place in lowa
from 25 June to 12 July 2002. A detailed description of this
campaign including the mission objectives, experiment plan,
site description can be found at URL http://hydroloab.
arsusda.gov/smex02. During SMEXO02, ground-based soil
moisture measurements were done for 12 days at 92 sam-
pling points in the WCI1 field. Measurements were
conducted between 1100 and 1500 local time (CDST).
Sampling points were located at nearly 30 m intervals along
the four transects oriented east-west (EWN and EWS) and
north—south (NSE and NSW) within the field (Figure 1).
The volumetric soil moisture contents were measured using
6 cm long theta probes and data loggers (ML-2 probes and
HH2 data loggers of Delta-T Inc.; http://www.delta-t.co.uk).
During SMEX02, the WC11 field had a corn crop cover
with a small patch of soybean planted near the western edge
of the field. The soil texture of the field consists of 24.5%

3 of 21



W12503

0 10 20 30 40 50
Km

Figure 1.

JOSHI AND MOHANTY: PHYSICAL CONTROLS OF SOIL MOISTURE

W12503

Field WC11

Tr - EWN

'Y .m.wi."'.ooo.

0000000000000e% 0000000000000

Tr - EWS ‘
Tr - NSW
TR - NSE
0 100200 400 600 800

I TN 0000 m

The SMEXO02 regional study area including the WC watershed and the WC11 field in lowa.

Transects (EWN, EWS, NSE, and NSW) within the WC11 field indicate soil moisture sampling locations.

sand and 28.6% clay. The dimension of the WCI11 field
(800 m x 800 m) is similar to the resolution of an airborne
remote sensor footprint. However, for analysis purposes at
the field scale, only the sampling domain (effective size
~700 m x 455 m) consisting of the four transects (see
Figure 1) was considered.

[11] The airborne Polarimetric Scanning Radiometer
(PSR) observations (resolution: 800 m x 800 m, regional
coverage: 144 x 70 pixels) were collected for 10 days,
between 25 June and 12 July, during SMEX02. The PSR is
an airborne microwave imaging radiometer developed and
operated by the National Oceanic and Atmospheric
Administration (NOAA) Environmental Technology Labo-
ratory [Piepmeier and Gasiewski, 2001]. During the cam-
paign, PSR used various frequencies (6.0 GHz, 6.5 GHz,
6.92 GHz, 7.32 GHz, 10.64 GHz, 10.69 GHz, 10.70 GHz,
10.75 GHz and thermal) for passive microwave remote
sensing [Bindlish et al., 2006; Das and Mohanty, 2008].
Bindlish et al. [2006] examined the effects of Radio Fre-
quency Interference (RFI) and suggested that the 7.32 GHz
and 10.70 GHz bands were far superior to the other PSR

frequencies. Therefore, the soil moisture fields of the
SMEXO02 region were created using these two PSR/CX band
channels. During the experiment, the vegetation conditions
were close to peak biomass conditions (~8 kg/m?). Bindlish
et al. [2006] developed a soil moisture retrieval algorithm
similar to one proposed by Jackson [1993] to account for the
nonlinear relationship between brightness temperature, soil
moisture, surface roughness and vegetation water content. In
addition to the sensor-measured brightness temperature,
their algorithm requires several ancillary data sets for
implementation, such as, surface soil texture, land cover,
and Normalized Difference Vegetation Index (NDVI). The
sensor measurements were validated against 42 theta probe
readings from 14 different locations and 4 gravimetric soil
moisture (GSM) samples (coincident with 4 theta probe
locations) taken in every field across the WC watershed
area. However, the penetration depth of the high-frequency
PSR/CX band channels is low compared to the top 6 cm of
the surface soil layers sensed by the theta probe instrument.
At the field scale, the PSR soil moisture estimates have
a standard error of estimate (SEE) of 5.5%. At coarser
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Figure 2. Topographic, soil, and vegetation attributes of (a) the WC watershed and (b) the SMEX02
regional site, during the SMEX02 campaign (resolution ~800 m x 800 m).

resolution (~25 km), the errors dropped considerably with
SEE = 2.85%. For analysis purposes, the null values
present near the bottom portion of the PSR-derived
regional soil moisture fields were discarded by trimming
the moisture fields to a net size of 118 x 69 pixels (i.e.,
94,400 m x 55,200 m) of 800 m x 800 m resolution. The
WC watershed consists of 84 pixels of similar resolution.

[12] To conduct the correlation analysis for exploring the
relationship between the various regional characteristics and
the spatial variability of soil moisture fields at the watershed
and the regional scales, the digital elevation model (DEM)
(USGS GTOPO30 data: resolution ~1 km x 1 km), slope
(derived from DEM), vegetation water content (VWC)
(Landsat Imagery; resolution ~30 m), NDVI (Landsat
Imagery; resolution ~30 m), percent sand and percent clay
in the soils (derived from CONUS-SOIL data set; resolution
~1 km x 1 km) were used. The DEM, slope, VWC, NDVI,
percent sand and percent clay data were normalized using
the corresponding mean and standard deviation for corre-
lation analysis. Figures 2a and 2b show the topographic,
soil, and vegetation attributes for the WC watershed and the
SMEXO02 regional site, respectively. The precipitation
information comes from the Soil Climate Analysis Network
(SCAN) site in Ames for the field-scale analysis, while at
the watershed and the regional scales, the NEXRAD data
(resolution: 4 km x 4 km) were used. Figures 3a and 3b
show the precipitation evolution map of the watershed and
the regional site, respectively. All the ancillary data sets
(DEM, slope, VWC, NDVI, CONUS-based soil data, and
NEXRAD-precipitation) were aggregated/disaggregated to

a spatial resolution of 800 m x 800 m to match with the
resolution of the PSR pixels. The RS soil moisture images
as well as the ancillary data sets were georeferenced and
projected in the WGS84 UTM Zone 15 coordinate system
for analyses purpose.

3. Methods

3.1. Variogram Analysis

[13] To study the evolution of spatial structure of near-
surface soil moisture with time, at varying spatial scales
(i.e., field, watershed, and regional scales), we conducted a
variogram analysis using standard geostatistical techniques
[Journel and Huijbregts, 1978; Issaks and Srivastava, 1989;
Mohanty et al., 2000; Wackernagel, 2003]. The analysis
involves calculating the experimental (or sample) semivar-
iogram for the soil moisture fields obtained for each sam-
pling date, and thereafter, fitting a theoretical semivariogram
model to the experimental semivariogram. The traditional
semivariogram estimator, y*(%;) is defined as

N(h;

1 ) )
k(L)) — _ .
74(0) = 3y D E) 0+ ) M
where N(h;) is the number of pairs of soil moisture mea-
surements [6(z), (z + h;)] separated by a lag range A;. As
semivariogram is a function of both lag distance and direc-
tion (resulting in directional/anisotropic semivariograms),
we have considered only the isotropic semivariograms for

the present study, ignoring the directional ones. The isotropic
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Figure 3. Precipitation evolution map of (a) the WC watershed and (b) the SMEX02 regional site,
during the SMEXO02 campaign (resolution ~800 m x 800 m).

semivariograms for the theta probe measurements as well as
the PSR-derived remotely sensed soil moisture fields were
estimated using geostatistical software, GS* (Gamma Design
Software, Plainwell, Michigan). Lag distances were grouped
for producing semivariogram estimations with reasonably
large number of data pairs at both the watershed and regional
scales. Using a nonlinear least squares technique, three
different theoretical semivariogram (spherical, exponential
and Gaussian) models were fitted to the isotropic experi-
mental semivariograms, for quantifying the geostatistical
structure of the theta probed measured and PSR-derived soil
moisture patterns. A brief description of these theoretical
models is given below.

Spherical isotropic model

h < A
h> Ay

) = { C0+C[1.5(h/A0) —0.5(h/4p)? 2

Co+C
Exponential isotropic model
V(h) =
Gaussian isotropic model
v(h) 4)

where ~(#) is the semivariance for lag 4, 4 is the lag interval,
Cy is the nugget variance, C is the structural variance, and 4
is the correlation range parameter.

[14] For a spherical model, the effective range (or the
spatial correlation length) is the same as the range parameter
Ay, whereas for a Gauss1an and an exponential model, the
effective range is 3%5A, and 3A,, respectively. For further
details, readers may refer to the standard geostatistics texts

Co + C[1 — exp(—h/4o)] (3)

= Co+ C[1 —exp(—h*/45)]

[Journel and Huijbregts, 1978; Cressie, 1993; Wackernagel,
2003].

3.2. Empirical Orthogonal Function Analysis

[15] The Empirical Orthogonal Function (EOF) analysis,
also referred to as the Principal Component Analysis (PCA),
is a statistical tool used for analyzing the spatial or temporal
variability of geophysical fields [Preisendorfer, 1988]. The
EOF analysis aims to reduce the dimensionality of a data set
consisting of a large number of correlated variables, while
preserving maximum possible variability present in the data
set. This is done by transforming the original data set into a
new set of uncorrelated variables, ordered so that the first
few of the new variables explain most of the variation
existing in the original data set [Jolliffe, 2002].

[16] For a spatiotemporal soil moisture data set, the EOF
method can be used to decompose the observed soil mois-
ture variability into a set of orthogonal spatial patterns
(called EOFs), which are invariant in time, and a set of time
series (termed as Principal Components or PCs), which are
invariant in space. For EOF analysis, we used the spatial
anomalies of soil moisture data set obtained from the theta
probe measurements and the PSR sensor during the
SMEXO02 campaign. Using spatial anomalies instead of the
soil moisture excludes the temporal variation from consid-
eration [Perry and Niemann, 2007]. The spatial anomalies
are calculated by subtracting the mean soil moisture for a
given sampling day from all the soil moisture observations
collected on that day. Thus, the spatial anomaly x{?) at a
location i at time ¢ can be defined as

01350 )
=
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Table 1. Summary of Theta Probe Measured Soil Moisture Data in the WC11 Field and PSR-Derived Soil Moisture Fields Observed in
the WC Watershed and the SMEX02 Regional Site in lowa During SMEX02

Minimum Maximum Mean Median Variance

Site Date (%v/v) (%v/v) (%v/v) (%v/v) (%V/v)2 Skewness Kurtosis Ccv
WCI1 Field 26 Jun 5.40 36.70 16.04 14.90 48.66 1.08 091 0.44
27 Jun 5.00 35.50 15.67 14.30 36.46 1.17 1.66 0.39

28 Jun 6.60 36.10 17.18 17.00 40.05 0.49 -0.04 0.37

29 Jun 433 29.50 13.76 13.45 23.45 0.33 0.17 0.35

30 Jun 5.07 24.20 13.37 12.10 24.48 0.47 —-0.83 0.37

1 Jul 4.40 22.05 11.84 11.20 15.08 0.35 -0.43 0.33

3 Jul 0.00 28.55 12.29 12.35 22.00 0.69 1.57 0.38

5 Jul 17.40 36.90 27.10 27.10 18.85 -0.11 —-0.54 0.16

7 Jul 12.75 39.15 30.07 30.55 21.00 -0.72 1.40 0.15

8 Jul 16.55 36.15 26.91 26.60 15.66 -0.17 -0.12 0.15

9 Jul 15.55 33.40 23.29 23.05 19.24 0.25 —-0.84 0.19

10 Jul 27.30 43.17 36.80 36.85 9.98 -0.39 -0.01 0.09

WC Watershed 25 Jun 14.66 25.32 18.37 17.66 8.88 0.41 -1.13 0.16
27 Jun 13.67 22.19 16.90 16.21 7.26 0.21 -1.61 0.16

29 Jun 14.43 25.58 18.20 17.43 7.08 0.67 -0.39 0.15

1 Jul 15.71 27.24 20.07 19.81 6.91 0.53 —-0.49 0.13

4 Jul 17.91 30.68 23.08 22.40 5.87 0.62 0.24 0.10

8 Jul 16.41 24.87 20.63 20.65 1.73 —-0.03 1.23 0.06

9 Jul 17.58 28.60 23.13 23.04 3.86 0.15 0.48 0.08

10 Jul 20.78 36.23 27.53 27.20 7.63 0.67 0.92 0.10

11 Jul 26.16 51.00 35.08 34.60 25.49 0.54 -0.01 0.14

12 Jul 20.41 33.27 27.72 27.97 8.29 -0.24 -0.37 0.10

SMEXO02 Regional Site 25 Jun 8.93 28.29 15.88 15.88 6.40 0.28 0.59 0.16
27 Jun 8.25 30.12 14.96 14.82 6.91 0.33 0.13 0.18

29 Jun 7.48 31.63 15.41 15.22 6.46 0.46 1.16 0.16

1 Jul 6.67 36.26 18.05 18.09 13.31 —0.04 0.33 0.20

4 Jul 5.00 51.00 19.56 18.72 46.39 1.67 5.12 0.35

8 Jul 8.68 51.00 22.72 22.41 22.03 0.36 1.27 0.21

9 Jul 8.85 51.00 20.95 21.11 18.56 0.36 1.71 0.21

10 Jul 9.81 51.00 28.15 27.33 43.68 0.81 1.34 0.23

11 Jul 10.51 51.00 31.77 29.84 82.71 0.58 -0.34 0.29

12 Jul 9.24 51.00 26.81 25.18 64.70 1.14 1.32 0.30

where s,(¢) is the soil moisture observation at location i at
time ¢, j is an index of locations, and m is the total number of
observation locations.

[17] In EOF analysis, the PCs and EOFs of a data set are
generated by conducting an eigenanalysis of the covariance
matrix of the data set. If X denotes an m X n matrix con-
sisting of the spatial anomalies of a soil moisture data set,
where m is the number of sampling locations and # is the
sampling days, then the covariance matrix R (n X n) can be
written as

1

=—Xx"x
m

R (6)
where superscript 7 indicates the matrix transpose. The
spatial covariance matrix determines the correlation of
spatial anomalies between times [Perry and Niemann, 2007;
Jawson and Niemann, 2007].

[18] Next we compute the eigenvectors and eigenvalues
of the covariance matrix R, which satisfy the equation

RE = LE (7)
where E is an n x n matrix with columns consisting of the
eigenvectors of R, and the diagonal matrix L (n x n) contains
the corresponding eigenvalues. Each eigenvector represented
by the columns of matrix £ is a time series and is referred to
as ‘principal components’ or PCs. The related EOF pattern

can be obtained by projecting the spatial anomaly matrix X
onto the matrix E as

F = XE (8)
where the columns of matrix /' (m x n) contain the EOF
patterns. The amount of variance explained by each EOF/PC
pair is calculated by dividing the corresponding eigenvalue
by the trace of diagonal matrix L [Jawson and Niemann,
2007]. The original spatial anomaly data set X can be
rebuilt by multiplying the EOF matrix with the transpose of
the PC matrix E as

X =FET 9)

[19] This diagonalization of the covariance matrix R in
equation (7) causes a rotation of the original coordinate axes
in multidimensional space, where each sampling day/time
has a dimension. The first/primary axis in the multidimen-
sional space is the direction that explains the maximum
covariance in the spatial anomaly data set. The EOF/PC pair
along this direction is therefore, referred to as the primary
EOF/PC pair. Each new axis is orthogonal to the other axes
and explains the most remaining covariance. Thus, the
sampling days are replaced by the new axes due to the
transformation. The eigenvalues indicate the amount of
variance occurring in the direction of each new axis.
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Table 2. Parameters and Goodness of Fit of Isotropic Theoretical Models Fitted to Experimental Semivariograms of Theta Probe
Measured and PSR-Derived Soil Moisture Fields, Observed During the SMEX02 Campaign in lowa

Model Nugget Sill Nugget/Sill Model Practical

Site Date Type? Co Co+C Co/(Cy+C) Range® (m) Range® (m) ? p value!
WCI1 Field 26 Jun S 9.80 48.01 0.204 78 78 0.570 <0.0001(N)
27 Jun S 2.10 43.73 0.048 103 103 0.483 <0.0001(N)

28 Jun S 14.20 41.64 0.341 146 146 0.726 0.0701°¢

29 Jun S 8.07 26.65 0.303 113 113 0.588 0.3864°

30 Jun S 5.24 29.06 0.180 175 175 0.899 0.0021°

1 Jul S 8.26 16.53 0.500 230 230 0.706 0.2460°

3 Jul S 11.80 24.80 0.476 307 307 0.833 0.0167°

5 Jul S 7.50 20.08 0.374 140 140 0.668 0.6399°

7 Jul S 6.96 22.23 0.313 115 115 0.459 0.0455°

8 Jul S 8.80 17.61 0.500 199 199 0.700 0.3276°

9 Jul S 8.24 21.05 0.391 173 173 0.799 0.0535°¢

10 Jul S 4.86 10.41 0.467 101 101 0.387 0.4107¢
WC Watershed 25 Jun G 0.01 19.61 0.001 9855 >6670 0.999 <0.0001(N)
27 Jun G 0.12 16.86 0.007 11882 >6670 0.999 <0.0001(N)
29 Jun G 0.09 13.83 0.007 8556 >6670 0.999 <0.0001(N)

1 Jul G 0.04 12.37 0.003 7361 >6670 0.996 0.0019"

4 Jul G 0.36 8.98 0.040 6305 6305 0.999 0.0231°¢

8 Jul G 0.00 2.07 0.000 2581 2581 0.510 0.4941¢

9 Jul G 0.22 4.66 0.047 3724 3724 0.985 0.9093°¢

10 Jul G 0.01 6.97 0.001 2893 2893 0.675 0.0348°

11 Jul G 0.62 4.40 0.141 2044 2044 0.252 0.0498°

12 Jul G 0.01 7.65 0.001 2944 2944 0.951 0.2763°¢

SMEXO02 Regional Site 25 Jun E 0.66 6.83 0.097 42000 42000 0.973 0.0100°

27 Jun E 0.01 7.45 0.001 24900 24900 0.934 0.0100°

29 Jun E 0.01 6.96 0.001 21900 21900 0.982 0.0100°

1 Jul E 1.53 18.17 0.084 63300 >52150 0.992 0.0100°

4 Jul E 1.80 52.13 0.035 56700 >52150 0.978 0.0100°

8 Jul E 0.01 23.35 0.000 21900 21900 0.980 0.0100°

9 Jul E 0.01 18.82 0.001 19500 19500 0.990 0.0100°

10 Jul E 4.70 44.99 0.104 38400 38400 0.950 0.0100°

11 Jul E 12.40 133.00 0.093 118500 >52150 0.987 0.0100°

12 Jul E 8.10 97.20 0.083 102300 >52150 0.981 0.0100°

G, Gaussian; E, exponential; S, spherical.

PRange for Gaussian model is ~3%°A,, for exponential model is 3A,, and for spherical model is A,.

“Practical range indicates the actual correlation length.

N, Soil moisture distribution not normal.

“°Soil moisture distribution normal at the 0.01 significance level.
fSoil moisture distribution normal at the 0.001 significance level.

[20] In this study, we have 12 days of theta probe mea-
surements for the WC11 field, and 10 days of PSR-derived
soil moisture observations for the WC watershed and the
SMEXO02 regional site. Therefore, the total number of EOF/
PC patterns generated from the spatial anomaly data set is
also 12 in case of WC11 field, and 10 each for the water-
shed and the regional domain. Furthermore, to explore the
relationship between the spatial variability of soil moisture
and various regional characteristics, a simple correlation
analysis was conducted at the watershed and regional scales
using the normalized values of all the variables involved in
the analysis.

4. Results and Discussions

4.1. Variogram Analysis

[21] Table 1 presents the summary statistics of the theta
probe based measurements in the WC11 field, and PSR-
derived soil moisture at the watershed and regional scales
obtained during the SMEX02 campaign. Within a span of
12 days (from 26 June to 10 July 2002) during which the
observations were taken, the mean soil moisture content in the
WCl1 field varied from a minimum value of 11.84 (%v/v) on
1 July to a maximum value of 36.80 (%v/v) on 10 July. In

the WC watershed, the mean soil moisture varied within
a range of 16.90 (%v/v) to 35.08 (%v/v) for a period of
10 days from 25 June to 12 July 2002. The eleventh of July
was the wettest day with the highest mean, whereas 27 June
was the driest day with the lowest mean soil moisture
content in the watershed. At the regional scale, the mean soil
moisture content showed a minimum value of 14.96 (%v/v)
on 27 June and a maximum of 31.77 (%v/v) on 11 July 2002.
The statistics provide how the mean, standard deviation,
variance, skewness, kurtosis, and the coefficient of variation
(CV) vary at different spatial scales during SMEXO02 in Iowa.

[22] Before conducting the geostatistical analysis, a nor-
mality test (based on the sample size, n: Shapiro-Wilk test
(n < 2000) for the WC11 field and the WC watershed; and
Kolmogorov-Smirnov-Lilliefers (KSL) test (n > 2000) for
the SMEXO02 regional domain) was performed using a sta-
tistical analysis software, JMP (SAS Institute Inc., Cary,
North Carolina) to check whether the soil moisture values at
the considered spatial scales were distributed normally. The
Q-Q plots as well as the p values for the normality test (see
Table 2) proved that the soil moisture data have a fairly
normal distribution at o = 0.01 significance level. At the
field and the watershed scales, we have a few exceptions,
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Figure 4. Theoretical semivariograms (solid lines) fitted to the isotropic experimental semivariograms
(+) of the theta probe measured soil moisture data within the WCI11 field (Iowa), during SMEXO02.

but for analyses purposes, the data distribution was con-
sidered normal.

[23] Table 2 gives a summary of the parameters and
goodness of fit of the isotropic theoretical models fitted to
the experimental semivariograms of the theta probe mea-
sured and PSR-derived soil moisture data set at different
scales during SMEXO02. For estimating the semivariograms
in the WCI11 field, the lag distances were grouped with

fairly large number of data pairs (i.e., 21 m, 64; 39 m, 127;
64 m, 125; 90 m, 236; 113 m, 241; 138 m, 248; 164 m, 204;
188 m, 229; 213 m, 216; 238 m, 229; 263 m, 346; 288 m,
295; 313 m, 218; 338 m, 230; and 363 m, 207). At the field
scale, an isotropic spherical model with a nugget provides a
reasonably good fit to the daily soil moisture semivario-
grams with the correlation lengths varying between 78 m
and 307 m. For estimating the semivariograms within the
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Figure 5. Theoretical semivariograms (solid lines) fitted to the isotropic experimental semivariograms
(+) of the PSR based soil moisture fields within the WC watershed (Iowa), during SMEXO02.

WC watershed, the lag distances were grouped with rea-
sonably large number of data pairs (i.e., 960 m, 262; 1842 m,
403; 2631 m, 386; 3381 m, 347; 4231 m, 406; 5045 m, 277,
5835 m, 270; and 6670 m, 250). Similarly, for the SMEX02
regional site, lag distances ranging between 2513 m and
52,150 m were grouped with large number of data pairs
for generating the semivariograms (i.e., 2513 m, 264,232;
5595 m, 658,734; 9085 m, 1,120,473; 12,633 m, 1,355,262;

16,216 m, 1,735,274; 19,834 m, 1,849,222; 23,418 m,
2,070,160; 30,587 m, 2,270,976; 34,203 m, 2,139,316;
37,781 m, 2,192,217; 41,371 m, 2,029,154; 44,941 m,
1,968,104; 48,540 m, 1,777,658; and 52,150 m, 1,627,827).
At the watershed scale, an isotropic Gaussian model with a
nugget provides a good fit to the daily soil moisture semi-
variograms with the correlation lengths varying between
2044 m and 11,882 m. Here, the modeled spatial correlation
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Figure 6. Theoretical semivariograms (solid lines) fitted to the isotropic experimental semivariograms
(+) of the PSR based soil moisture fields within the SMEXO02 regional site (Iowa), during the SMEX02

campaign.

length (e.g., 11,882 m) larger than the maximum lag dis-
tance (~6670 m at the watershed scale) used in estimating
experimental semivariograms implies that the soil mois-
ture field was extrapolated for the purpose of model
fitting. In other words, soil moisture is correlated for the
entire lag distance used in experimental semivariogram
estimation on such occasions. On the other hand, at the
regional scale, the exponential model with a nugget pro-
vides a reasonably good fit for the experimental semivario-
grams with the correlation lengths ranging between 19,500 m
and 118,500 m.

[24] Table 2 shows that the nugget value is higher at the
field scale for the theta probe soil moisture measurements.

The nugget variance is low at the watershed scale, but
increases as it goes toward the regional scale for the PSR-
derived soil moisture fields (see Table 2). The nugget
represents the measurement errors and any microhetero-
geneity present in soil moisture. In case of the remotely
sensed PSR data, the nugget may also represent the level of
image smoothing used in the soil moisture retrieval algo-
rithm to obtain the soil moisture estimates. At the field scale,
the microheterogeneity of (point scale) soil moisture is
higher resulting in larger values of the nugget for the WC11
field. On the other hand, at the watershed and regional scales,
the subpixel soil moisture variability smoothens out dur-
ing the soil moisture retrieval process lowering the nugget
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Figure 7. Signature of theta probe soil moisture measure-
ments along the four transects (EWS, EWN, NSE, and
NSW) in the WC11 field on (a) dry and (b) wet days during
SMEXO02.

variance. In addition, the measurement/calibration errors of
PSR based soil moisture (at the measurement support scale)
under a variety of land surface features may also have con-
tributed toward the nugget variance. Therefore, as we
increase the sampling extent, from the watershed scale to the
regional scale, the measurement errors get lumped leading to
increased values of the nugget for the semivariograms gen-
erated from the PSR data set.

[25] At the field scale, for the theta probe soil moisture
data collected from the WC11 field, we observe that the
correlation lengths are usually higher for relatively dry days
with the exception of 26 June 2002 (Table 2). The corre-
lation lengths are comparatively lower on the days when the
soil is wetter. The correlation lengths vary between 101 m
and 199 m for the wet days as against between 78 m and
307 m for the dry days. Among the wet days, the correlation
length is the lowest on 10 July when the soil moisture
content is the highest due to the precipitation event (CV =
0.09). This does not match with the findings of Mohanty
et al. [2000] for the LW21 field, where the correlation
length on 11 July 1997 (CV = 0.23), after the precipitation
event on 10 July, was 348 m (lowest correlation length
being <100 m). LW21 is a silt loam field with flat topog-
raphy [Mohanty and Skaggs, 2001], while the WCI11 field
has soil texture with a higher silt content (~47%) with
topography consisting of hilltop and slope [Jacobs et al.,
2004]. The topography of the WCI11 field may be respon-
sible for the lateral drainage following the rainfall event,
resulting in lower correlation length on the wettest day. The
variation in the correlation length with changes in soil mois-
ture conditions within the WC11 field is shown in Figure 4.
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[26] Similar to the field-scale observations, at the water-
shed scale the correlation lengths are higher on dry days
(2581-11,882 m) compared to relatively wet days (2044—
2944 m) (see Table 2). Thus, with the increase in wetness, the
correlation length decreases within the watershed. Figure 5
shows how the correlation length increases with decreas-
ing mean soil moisture content within the watershed. As
compared to the watershed scale, at the regional scale, we
observe an opposite trend with correlation length being
higher on wet days compared to the dry days (see Table 2
and Figure 6). The correlation length values ranged between
38,400 m and 118,500 m on wet days as opposed to between
24,900 m and 63,300 m on dry days. The only exception is
1 July 2002 when the correlation length (63,300 m) is a bit
higher compared to the other dry days. Thus, the increase in
moisture content seems to have an opposite impact on the
spatial correlation length at the regional scale as opposed to
the field and watershed scales. The precipitation map
(Figure 3b) shows that the SMEX02 regional site received
medium to high rainfall throughout on 10 July 2002. Con-
sequently, the soil moisture correlation length on 11 July
was highest as the study area was closer to saturation on
account of the rainfall event on the previous day. But similar
observations were not made after the precipitation event on
10 July within the WC11 field or the WC watershed. Thus,
apart from precipitation, other geophysical factors seem to
dominate the variability and spatial structure of soil moisture
at the field and watershed scales.

[27] At the field scale, the fitted isotropic variograms
reached their sill fairly well on almost all the days the theta
probe measurements were taken. But at the watershed and
regional scales, the variograms did not reach their sills on
most of the days exhibiting nonstationarity in the data set.
This nonstationarity in the soil moisture data may be due to
the various geophysical factors (e.g., topography, soil tex-
ture, vegetation, etc.) that impact the soil moisture vari-
ability. It may also be due to the measurement errors or the
calibration issues related to the PSR-derived soil moisture
fields at the watershed and the regional scales. We have not
investigated the issue of nonstationarity in detail in this
paper, as we are more interested in finding the various
geophysical factors controlling the spatiotemporal variabil-
ity of soil moisture at different scales in an agricultural
landscape employing the data collected by two different
platforms: ground-based theta probe measurements and the
PSR-derived airborne RS data. Therefore, this matter re-
quires a more detailed investigation and is beyond the scope
of this paper.

4.2. EOF Analysis

4.2.1. Field Scale

[28] Figure 7 shows the signature of the 12 day long theta
probe soil moisture contents measured along the four
transects (see Figure 1) in the WC11 field during SMEXO02.
For EOF analysis, only 85 (of a total of 92) locations were
selected where the soil moisture contents were recorded
every day for the 12 day period. Transects EWN and EWS
oriented east-west contain 20 and 17 sampling locations
(marked in +ve x direction), respectively. Transects NSE
and NSW in the north—south direction contain 28 and 20
sampling locations (marked in the +ve y direction),
respectively. Twelve EOF/PC pairs were generated from the
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Figure 8. The primary EOFs (and the variance explained by them) for the theta probe soil moisture mea-
surements along the four transects (EWS, EWN, NSE, and NSW) in the WC11 field (for the complete

data set, wet days, and dry days) during SMEXO02.

EOF analysis of the complete soil moisture data set for the
WCI1 field. The first EOF (also, known as the primary
EOF) values are plotted transect-wise in Figures 8a—8d, for
the four transects in the field. The eigenvalues associated
with the EOF/PC pairs can be used to determine the amount
of variance explained by each EOF/PC pair. Figure 9a
shows the scree plot of the percent variability explained
by each EOF/PC pair at the field scale. The first four EOFs
together explain about 81% of the total variability, whereas
the first three EOFs explain approximately 74% of the total
variance. The primary EOF (or EOF1) explains about 50%
of the total soil moisture variance. The rest of the EOFs after
the fourth one each explain less than 5% of the total vari-
ability. Additional analysis from the WCI12 field (results
not presented here) also showed that the first four EOFs
explained 83% of the variance, while the first three of the
EOF patterns explained nearly 73% of the total variability.
Further, the primary EOF explained only 36% of the total
variance in the WC12 field. Therefore, at the field scale,
we observe that the soil moisture patterns obtained for the
12 day period can largely be explained by only four
underlying spatial structures or EOF patterns that in turn
may be correlated to the various geophysical characteristics,
such as, soil texture, topography, land use/land cover, etc.
[29] Figure 10a shows the weighted PC series obtained
from the EOF analysis of the 12 day soil moisture anomalies
for the WCI11 field. The weighted PCs are obtained by
multiplying the PCs by the amount of variance explained by
them. Thus, the weighted PCs give a measure of the relative

importance of the EOFs in describing the variance in daily
soil moisture pattern. Further, the weighted PCs exhibit
temporal variations which can be associated with the
occurrence of rainfall events and the following dry down
periods [Jawson and Niemann, 2007]. It is evident from
Figure 10a that the primary EOF is dominant throughout the
observation period during the SMEX02 campaign.

[30] Different geophysical processes are significant in the
vadose zone water balance depending on the overall soil
moisture content which in turn could lead to stronger re-
lationships between the soil moisture patterns and certain
regional characteristics for wet or dry days [Jawson and
Niemann, 2007]. To examine this possibility, the soil
moisture data set was divided into wet, average, and dry
days within the WC11 field (Figure 11a) as per the +25%
standard deviation rule proposed by Jawson and Niemann
[2007]. Further, the EOF analysis was individually con-
ducted using the spatial soil moisture anomalies obtained for
the wet, average, and dry days. At the field scale, the pri-
mary EOF explains about 67% of the total amount of var-
iance on wet days, while on the dry days, it explains about
55% of the total soil moisture variability. The amount of the
total variance explained as well as the distribution of the
primary EOF values at most of the sampling locations for
the dry days is very similar to those generated from the
complete soil moisture data set (see Figures 8a—8d). Note
that the area experienced a rainfall event on 10 July 2002.
This similarity between the primary EOFs of the dry days
and the complete data set implies that the primary EOF (or
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Figure 9. Scree plot of the percent variability explained by
each EOF (from complete data set) in (a) the WC11 field,
(b) the WC watershed, and (¢) the SMEXO02 regional site,
during the SMEX02 campaign.

EOF1) of soil moisture at the field scale, is mainly domi-
nated by the mean soil moisture status of the field during the
entire duration of the SMEX02 campaign rather than solely
by precipitation. The fact that the primary EOF of wet days
explains just 67% of the variance (compared to 55% and
50% for the dry days and the complete data set, respec-
tively) further strengthens this inference.
4.2.2. Watershed Scale

[31] The PSR based soil moisture evolution map for the
WC watershed during the SMEX02 campaign is shown in
Figure 12. The EOF analysis of the complete 10 day soil
moisture data set for the watershed generated ten EOF/PC
pairs. Figure 13a shows the first three EOF patterns obtained
from the analysis. From the scree plot shown in Figure 9b, it
is apparent that the first two EOFs together explain more
than 93% of the total variance. The rest of the eight EOFs
each explain less than 5% of the total variance. In fact, from
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the 5th EOF onward, the variance explained by the EOF
patterns is almost negligible. The primary EOF explains
51.5%, while the second EOF (EOF2) explains about 42%
of the total variance. Therefore, the soil moisture patterns
within the WC watershed obtained for the 10 day period can
largely be explained by only two underlying spatial struc-
tures. Figure 3a shows that the watershed received a high
rainfall on 10 July 2002 and the distribution of precipitation
was relatively uniform. The soil moisture pattern on 11 July
shows above average soil moisture content in northwestern
and southeastern part of the watershed (Figure 12). A close
examination of the EOF patterns in Figure 13a reveals that
the EOF1 and EOF2 have high values in the southeastern
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Figure 10. Weighted coefficient time series of EOFs gen-
erated from theta probe soil moisture measurements in (a)
the WCI11 field and PSR-derived soil moisture in (b) the
WC watershed and (c) the SMEXO02 regional site, during
the SMEX02 campaign.
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site, during the SMEXO02 campaign.

and northwestern part of the watershed, respectively. From
the weighted PC series (Figure 10b), it is obvious that the
effect of primary EOF (EOF1) is dominant throughout the
observation period, except for the last day when EOF2 is
more dominant. The influence of both EOF1 and EOF?2 rises
sharply after the 10 July rainfall event.

[32] Figure 11b shows the classification of the PSR-
derived soil moisture data into wet, average or dry days
within the WC watershed. At the watershed scale, the pri-
mary EOF itself explains more than 90% of the total amount
of variance for both the average and dry days, while for the
wet days, it explains about 87% of the variance (Figure 13b).
The primary EOF for the wet days has high values in the
northwestern and southeastern parts within the watershed.
This EOF pattern is similar to the soil moisture pattern on
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11 July 2002 (Figure 12), where the above average soil
moisture values are also clustered in the northwestern and
southeastern parts of the watershed. Note that the water-
shed received a rainfall event on the previous day on 10
July 2002 (Figure 3a). The primary EOF pattern for the
dry days (Figure 13b) is similar to the primary EOF pattern
obtained for the complete soil moisture data set for the 10
day period (Figure 13a). Based on these observations, we
infer that within the WC watershed, the primary EOF is
not affected solely by precipitation but seems to be con-
trolled by other geophysical parameters (e.g., soil texture,
topography) as well. This observation will be examined
later on in the study by performing the correlation analysis.
4.2.3. Regional Scale

[33] Figure 14 shows the PSR-derived soil moisture
evolution map for the SMEXO02 regional study site in Iowa.
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Figure 12. Soil moisture evolution map estimated from
PSR remote sensing data within the WC watershed (Iowa),
during the SMEX02 campaign.
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Figure 13. (a) The first three EOFs generated from the
spatial anomalies of PSR-derived soil moisture and the var-
iance explained by each EOF/PC pair. (b) The primary
EOFs obtained from wet, average and dry days at the WC
watershed during SMEX02.

Three of the ten EOF/PC pairs generated from the EOF
analysis for the study area are shown in Figure 15a. The
scree plot of the percent variability explained by each EOF
pattern at the regional scale during SMEXO02 is shown in
Figure 9c. From Figure 15a, we observe that the first three
EOFs together explain about 93% of the total variance,
whereas the first two EOFs together explain nearly 86% of
the total variability. Also, at the regional scale, the primary
EOF pattern explains more than 70% of the total variance
compared to the 50% variance explained by EOF1 at both
the field and watershed scales. Thus, the soil moisture pat-
terns obtained for the 10 day period at the regional scale can
largely be explained by only three underlying spatial
structures. The precipitation map given in Figure 3b shows
that the regional site received medium to high rainfall
throughout on 10 July 2002, while the precipitation events
on 4 and 6 July had localized medium to high rainfall va-
lues. The primary EOF pattern (Figure 15a) has high values
clustered in the northwest region of the study site which is
similar to the above average soil moisture values in the
northwestern region of the soil moisture patterns from 10 to
12 July 2002 (Figure 14). Similar to the field and watershed
scales, at the regional scale, the primary EOF (EOF1) is
dominant throughout the observation period (Figure 10c).
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The influence of EOF1 rises sharply after each precipitation
event and wanes during the dry down periods.

[34] The PSR soil moisture observations for the SMEX02
regional site was classified into wet, average or dry days as
shown in Figure 11c. At the regional scale, EOF1 explains
more than 90% of the total amount of variance for both the
wet and average days, while for the dry days; only 68% of
the variance is explained by the primary EOF (Figure 15b).
The average days received a moderate rainfall on 6 July,
while the wet days experienced a heavy precipitation event
on 10 July 2002. The primary EOF pattern for the wet days is
similar to the primary EOF pattern obtained for the complete
soil moisture data set for the 10 day period as well as the soil
moisture patterns from the wet days, i.e., 1012 July 2002
(see Figures 14, 15a, and 15b). Thus, the primary EOF on
average and wet days seems to be related to a combination of
regional characteristics, including precipitation. Correlation
analysis will help investigate the effect of the various geo-
physical factors on the spatial EOF structures.

4.2.4. Correlation Analysis

[35] Now that we have decomposed the soil moisture
patterns into a small number of orthogonal spatial patterns
that together explain a large portion of the total soil moisture
variability, we further try to investigate the relationship
between these underlying patterns and the regional char-
acteristics that might influence soil moisture. For this, we
conducted a correlation analysis between the EOFs and
several regional attributes such as; DEM, slope, percent sand,
percent clay, VWC and NDVI (Figure 2) at both the water-
shed and regional scales. All data have been normalized
using the respective mean and standard deviation for the
correlation analysis, results of which are given in Table 3. To
examine the effect of precipitation, we performed the EOF
analysis using the NEXRAD precipitation data (Figure 3)
and correlated the primary EOF (EOF1) of rainfall with the
EOF patterns generated from the PSR soil moisture esti-
mates. At the watershed scale, EOF1 obtained from rainfall
data explained 97% of the variability, whereas at the regional
scale, it explained about 88% of the total variance. At the
watershed scale, the primary EOF (EOF1) of soil moisture is
moderately correlated with percent clay and rainfall. This
shows that some of the variability of the EOF1 pattern is
related to both rainfall and soil texture. The secondary EOF
(EOF2) shows a strong correlation with elevation, followed
by rainfall, percent clay, percent sand, and slope, while with
VWC it has a moderate correlation. Correlation results for
the wet, average, and dry days show that the primary EOF of
average and dry days has strong correlations with elevation,
rainfall, percent sand, and percent clay, whereas with slope
and VWG, the correlation is moderate. The primary EOF for
the wet days has moderate correlation with all the six geo-
physical parameters (i.e., elevation, slope, rainfall, percent
sand, percent clay, and VWC). Based on these findings, we
suggest that the soil moisture variability within the watershed
is jointly controlled by topography, rainfall, and soil texture,
and to a limited extent by the vegetation parameters.

[36] At the regional scale, Table 3 shows that EOF1 of
soil moisture is moderately correlated with elevation, slope,
percent sand, but has a higher correlation with percent clay.
This implies that some of the variability of the EOF1 pat-
tern is related to both topography and soil texture. EOF2
shows a moderate correlation with rainfall, elevation, and
soil texture. The primary EOF of both average and dry days
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Figure 14. Soil moisture evolution map estimated from PSR remote sensing data within the SMEX02

regional site in Iowa.

is moderately correlated with slope (and/or elevation), soil
texture, and rainfall. The primary EOF for the wet days also
has a moderate correlation with topography (elevation and
slope) and soil texture (percent sand and percent clay),
though the correlation is better compared to the average and
dry days. However, with rainfall, the correlation is poor.
With vegetation parameters (VWC and/or NDVI), all the
EOFs for the complete data set as well as the primary EOF
of wet, average, and dry days have a poor correlation. The
correlation analysis results at the regional scale are compa-
rable to those at the watershed scale. We infer that some of
the variability of the EOF patterns is related to topography,
soil texture, and rainfall at both the watershed and regional
scales. The effect of rainfall on the soil moisture variability
is greater at the watershed scale compared to the regional
scale. On the other hand, results generally reflect a low
correlation at the watershed scale (with few exceptions), and
a poor correlation at the regional scale, with respect to the
vegetation parameters (VWC, NDVI).

[37] Thus, geostatistics and EOF approach can be used
jointly to examine the evolution of the spatiotemporal var-
iability of near-surface soil moisture measured at different
support with varying spatial extents. Geostatistics enables us
to determine the spatial correlation structure of the soil
moisture content under different moisture conditions (i.e.,
wet, average, and dry days). The spatial correlation lengths
obtained can be effectively used for kriging purposes to get
an interpolated soil moisture map of the entire study area
encompassing the unsampled locations as well. The
behavior of the fitted theoretical semivariogram model
(especially near the origin and sill) not only gives us an idea

about the changing correlation structure of soil moisture
during the wetting/drying sequence, but also allows us to
speculate the individual or combined effects of various
physical controls (e.g., precipitation, topography, soil tex-
ture, and vegetation parameters) on soil moisture variability.
For example, Ryu and Famiglietti [2006] observed two
different correlation lengths in their study using the SGP97
ESTAR data in a 50 km x 250 km region. Based on their
analysis, they concluded that the smaller-scale correlation
(10 ~ 30 km) is governed by soil texture and vegetation, and
the larger-scale correlation (60 ~>100 km) by precipitation.
In another study using 30 cm deep TDR moisture readings,
Western et al. [1998] noticed the effects of topography on
seasonal evolution of soil moisture with lower correlation
lengths during wet winter and longer correlation lengths
during dry summer periods in the Tarrawarra catchment,
Australia. In our case, based on the geostatistical results, we
speculated that other geophysical parameters are also
responsible in controlling the soil moisture variability at
different spatial scales (field, watershed, and regional scales)
in addition to precipitation.

[38] Once, we get a fair/rough idea about the correlation
structure and the effects of the physical controls on soil
moisture variability, we can employ the EOF technique to
breakdown a more dynamic time series of soil moisture in to
a lesser number of orthogonal spatial EOF patterns (that are
invariant in time) and the corresponding PC components
(that are invariant in space). This greatly simplifies our task
as we have to deal with only a few spatial EOF structures
instead of the whole data set. Usually, the higher-order
EOFs are discarded depending on the amount of the total
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variance explained by them. The associated PC components
show the variation in the influence of the EOFs during the
wetting/drying phases. The EOF patterns can be further
correlated to the geophysical characteristics of the region,
such as, precipitation, topography (elevation/slope), soil
texture (percent sand/percent clay), landuse/landcover,
vegetation parameters, porosity, surface roughness, bulk
density, etc. to determine the dominant physical control/s.
But the correlations will vary with changing time periods.
For example Jawson and Niemann [2007] in their study
(conducted in the SGP region) found that the primary EOF
of soil moisture generated from wet and dry days had the
highest correlation with percent sand and percent clay,
respectively. They concluded that the highest correlation of
the primary EOF with percent sand on wet days is due to the
fact that percent sand indicates the ability of a soil to drain
faster. Percent clay, on the other hand, indicates the retain-
ing ability of a soil, and consequently, exhibited the highest

correlation with the primary EOF on dry days. From our
analyses, we inferred that some of the variability of the EOF
patterns (generated from soil moisture) is related to topog-
raphy, soil texture, and rainfall at both the watershed and
regional scales in Iowa. But, the impact of rainfall on the
soil moisture variability is higher at the watershed scale
compared to the regional scale. Furthermore, there is a low
correlation at the watershed scale (with few exceptions), and
a poor correlation at the regional scale, with respect to the
vegetation parameters (VWC, NDVI).

5. Conclusions

[39] We studied the spatiotemporal variability of near-
surface soil moisture using both the theta probe measured
point-scale soil moisture contents and the remotely sensed
pixel-averaged soil moisture fields (~800 m x 800 m)
obtained during the Soil Moisture Experiment (SMEXO02)
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Table 3. Correlations Between the EOFs of Spatial Soil Moisture Anomalies and the Regional Characteristics for the WC Watershed and

the SMEX02 Regional Domain in lowa During SMEX02

Sites EOFs Elevation Slope % Sand % Clay VWC NDVI RAIN (EOF1)
WC Watershed (Complete Data Set) ~ EOF1 -0.185 0.023 0.187 -0.215*  0.031 0.056 0.238°
EOF2 0.745° -0.525°  -0.541°  0.559° -0.338°  0.096 -0.696°
EOF3 0.151 -0.091 -0.313°  0.267° 0.104 0.249° 0.156
EOF4 -0.240°  0.261° 0.214 -0.200 0.200 -0.145 -0.073
EOF5 0.414° -0.196 -0.265"  0.296° 0.062 0.291° -0.020
SMEX02 Regional Site EOF1 0.359" 0313  —0274°>  0.420° -0.034>  —0.073° —0.085°
(Complete Data Set) EOF2 0.198° -0.060°  —0.115°>  0.270° -0.030®  —0.032° 0.301°
EOF3 -0.030°  -0.055°  -0.055°  -0.027°  -0.027*  —0.028° 0.038°
EOF4 0.596° —-0.085°  0.041° -0.147°  -0.035°  —0.028° -0.071°
EOF5 0.216° -0.009 -0.070°>  0.112° -0.012 -0.045° 0.199°
EOF6 0.054° -0.096°  —0.051°  0.065° -0.046°  0.013 -0.064°
EOF7 0.186° -0.062°  —0.175°  0.028° -0.021 0.086° 0.017
WC Watershed EOF1 (wet) 0.379° -0.344>  -0237*  0.229° -0.188*  0.105 -0.305°
(Wet, Average, and Dry Days) EOFI (average)  —0.625°  0.364° 0.469° -0.506°  0.253° 0.001 0.679°
EOF1 (dry) 0.512° -0.276  —0.439°  0.469° -0.196*  0.014 -0.451°
SMEX02 Regional Site EOF1 (wet) 0.383° -0.321°  —0.289°  0.445° -0.014 -0.079° -0.037°
(Wet, Average, and Dry Days) EOFI (average)  —0.093°  0.198° 0.156° -0.161°  0.013 0.037° 0.208°
EOF1 (dry) 0.228° -0.192°  —0.146*  0.257° -0.012 -0.029° —0.183°

Correlation is significant at the 0.05 significance level.
®Correlation is significant at the 0.01 significance level.

conducted in Towa in 2002, at three different spatial scales:
field, watershed and region. At the field scale, theta probe
measurements, whereas at the watershed and regional scales,
the PSR-derived soil moisture patterns were used for the
analyses. However, the volume of surface soil moisture
sensed by the C and X band channels of the PSR sensor is
smaller compared to the theta probe estimates (~6 cm). A
geostatistical analysis (using isotropic semivariograms) was
conducted to investigate the evolution of spatial structure
and correlation lengths of daily soil moisture fields at dif-
ferent spatial scales. At the field scale (spherical: spatial
correlation length ~78-307 m), watershed scale (Gaussian:
2044-11,882 m), and regional scale (exponential: 19,500—
118,500 m) model provided a good fit. The correlation
lengths increased with decreasing soil moisture content at
the field scale as well as within the WC watershed. This may
be because of the evolution of different interwinded land
surface hydrologic processes and associated dominant geo-
physical parameters (soil and/or topography) during the dry
down sequence. At the SMEXO02 regional scale, the trend is
opposite with correlation lengths being higher on wet days
compared to the dry days. This is because when the soil
moisture content is higher following a large storm event, the
CV decreases. Some of the previous studies show that with
the increase in the soil moisture content, the CV decreases
[Archer et al., 1999; Moran et al., 2004]. The decrease in
CV due to increasing moisture content may have resulted in
higher correlation lengths at the regional study site. The
nugget variance is higher at the field scale due to the ex-
isting microheterogeneity recorded by the point-scale theta
probe measurements. On the other hand, the nugget value is
low at the watershed and regional scales for the airborne
PSR estimated soil moisture. This may be either due to the
measurement/calibration errors, or due to the smoothening
of subpixel variability during the soil moisture retrieval
process.

[40] Furthermore, the EOF approach was employed to
examine the underlying geophysical patterns for determin-
ing the different modes of soil moisture variability and the

portion of variance explained by each of the mode. At the
field scale, it took four EOFs to explain about 81% of the
total variability, although the primary EOF (or EOF1) was
dominant throughout the observation period compared to the
rest of the EOF patterns. At the watershed scale, both EOF1
and EOF2 were dominant, whereas at the regional scale,
EOF1 itself explained more than 70% of the variability.
Thus, the complicated dynamics of near-surface soil mois-
ture fields can be explained by a few underlying orthogonal
spatial structures related to the geophysical attributes of the
region. Finally, the relationship between various regional
characteristics (rainfall, topography, soil texture, and vege-
tation) and the EOF patterns was examined to determine the
dominant control/s on the soil moisture variability patterns
at the watershed and regional scales. EOF analysis was
performed on the rainfall data as well, to correlate it with the
spatial EOFs generated from soil moisture. Rainfall related
primary EOF explained 97% and 88% of the total variance
at the watershed and regional scales, respectively. The pri-
mary EOFs thus obtained were then correlated with the soil
moisture based EOF structures. Results of the correlation
analysis showed that rainfall, topography and soil texture
have mixed effects on the variability explained by the
dominant soil moisture EOFs, at both the watershed and
regional scales, while vegetation parameters have limited
influence at both spatial scales. The correlation with soil
texture may be due to the fact that the dielectric mixing
model [Wang and Schmugge, 1980] used in the soil mois-
ture retrieval algorithm to estimate the volumetric soil
moisture content at each PSR footprint, is based on domi-
nant soil texture information of the footprint. In addition, the
reduced effects of vegetation may be due to the use of
uniform values of vegetation parameter and single scattering
albedo in the retrieval algorithm for all corn and soybean
fields, irrespective of their growth stage during the SMEX02
period. The mixed land cover at the PSR footprints may also
have contributed toward some of the error in the soil
moisture estimates [Bindlish et al., 2006]. Finally, it is
evident that rainfall has a higher impact on the soil moisture
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variability at the watershed scale compared to the regional
scale in Towa.
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