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This paper concerns efficient uncertainty quantification techniques in inverse problems for Richards’
equation which use coarse-scale simulation models. We consider the problem of determining saturated
hydraulic conductivity fields conditioned to some integrated response. We use a stochastic parameteri-
zation of the saturated hydraulic conductivity and sample using Markov chain Monte Carlo methods

(MCMC). The main advantage of the method presented in this paper is the use of multiscale methods

Keywords:

Uncertainty Quantification
MCMC

Langevin

Multiscale

Richards’ equation

Sparse grid collocation
KLE

Hydraulic conductivity

within an MCMC method based on Langevin diffusion. Additionally, we discuss techniques to combine
multiscale methods with stochastic solution techniques, specifically sparse grid collocation methods.
We show that the proposed algorithms dramatically reduce the computational cost associated with tra-
ditional Langevin MCMC methods while providing similar sampling performance.
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1. Introduction

We consider efficient uncertainty quantification techniques in
inverse problems for Richards’ equation, which describes the infil-
tration of water into a porous media whose pore space is filled with
air and water. These problems are motivated by applications to soil
moisture predictions. Soil moisture conditions are important in
determining the amount of infiltration and ground water recharge.
Soil moisture is controlled by factors such as soil type, topography,
vegetation, and climate. Soil moisture is typically measured at dif-
ferent scales varying from point scale (in-situ) to remote sensing
scale (of order several kilometers). The objective is to predict the
soil moisture at different resolutions via prediction of the saturated
hydraulic conductivity field.

The uncertainty quantification problem considered in this paper
consists of the prediction of the saturated hydraulic conductivity
fields conditioned to some average dynamic data (e.g., average
flux). In a probabilistic context, this problem can be regarded as
conditioning the saturated conductivity fields, K, to the dynamic
data, F, with measurement errors. One would like to sample from
the conditional distribution P(K|F). Using the Bayes formula we
can write P(K;|F) «< P(F|Ks)P(Ks), where P(K;) is the unconditioned
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(prior) distribution of the conductivity field. We denote the sam-
pling target distribution as m(K;) = P(K;|F).

Sampling from this distribution is difficult since the process of
predicting soil moisture is nonlinear. Instead, it is possible to esti-
mate the probability distribution from the outcomes of predictions
for numerous realizations of the field. To compute a realization of
the conductivity field, one needs a computation on a scale fine en-
ough to determine the dynamic data fields accurately. Markov
chain Monte Carlo (MCMC) methods have been used previously
in this context (e.g., [24,3]), but the need for fine-scale computa-
tions at each step of the MCMC algorithm makes these methods
very expensive. Some attempts to propose MCMC methods with
high acceptance rates have been made. One such example is the
randomized maximum likelihood method [27,28]. This approach
uses unconditional realizations of the dynamic and conductivity
data and solves a deterministic gradient-based inverse problem.
The solution of this minimization problem is taken as a proposal,
and is accepted with probability one, because the rigorous accep-
tance probability is very difficult to estimate. In addition to solving
a gradient-based inverse problem, this method may not properly
sample the posterior distribution. Developing efficient rigorous
MCMC calculations with high acceptance rate remains a challeng-
ing problem. We note that the approaches considered in this paper
are not sequential. Various sequential approaches for soil moisture
assimilation are studied in the literature (e.g., [25,20]). In general,
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sequential approaches based Ensemble Kalman Filter techniques
[10,16,22] can be used for hydraulic conductivity predictions;
however, these approaches may not sample multi-modal probabil-
ity distributions correctly and various treatments are needed.

In this paper, sampling is performed using MCMC methods with
Langevin instrumental probability distribution. Langevin algo-
rithms generally provide high acceptance rates for MCMC prob-
lems, but they require one to compute the gradient of the target
distribution. This cannot be calculated analytically; thus one must
perform a realization in each stochastic dimension to determine
this gradient. For large stochastic dimensions, this can be prohibi-
tively expensive. We employ inexpensive coarse-scale simulations
for the computations of the gradients of the posterior distribution.
We note that Glimm and Sharp employed error models between
coarse- and fine-scale simulations to quantify the uncertainty in
a pioneering work [14]. Using coarse-scale simulations, the
approximation for the gradient of the target distribution is com-
puted. These coarse-scale gradients may not be very accurate,
and for this reason, the computed results are first tested with
coarse-scale distributions within a two-stage MCMC [5]. If the re-
sult is accepted at the first stage, then a fine-scale simulation is
performed at the second stage to determine the acceptance
probability.

To speed up the computations further, the approximation of
the target distribution is computed based on few realizations
of the permeability field. Using these realizations and coarse-
scale simulations, we compute a few observation points on the
posterior response surface. Furthermore, using sparse interpola-
tion techniques, we approximate this response surface. In this
approach, the gradient computations are analytical, and the
entire sampling procedure can be implemented with little
computational effort. We note that approaches which combine
sparse collocation techniques and multiscale methods are not
new. In a recent paper [11], the authors propose an
approach which uses variational multiscale method as well as
multiscale finite element methods to solve a stochastic parabolic
equation.

Numerical results for sampling saturated conductivity fields
are presented. Using the Karhunen-Loéve expansion (KLE)
[35,23], the high-dimensional conductivity field can be repre-
sented by a small number of parameters. The number of param-
eters are related to the decay in the spectrum of the covariance
matrix. Samples of log-permeability can be written as a linear
combination of eigenvectors of the covariance matrix times the
square root of the eigenvalues. We refer to [38] (see also [36])
where more detailed discussions on KLE including some analyti-
cal results are discussed. Static data (the values of the conductiv-
ity fields at some sparse locations) are incorporated into the KLE
to further reduce the dimension of the parameter space. The pro-
posed Langevin algorithms are tested for both isotropic and
anisotropic hydraulic conductivity fields. The isotropic field re-
sults in a very small dimensional parameter space, while the
anisotropic field results in a significantly higher dimensional
parameter space. Anisotropic fields are often more applicable to
real world data and simulation, while the isotropic field allows
us to better analyze the numerical methods. Numerical results
are presented for Richards’ equation for a single typical isotropic
field and another typical anisotropic field. We show that the pre-
conditioned coarse-scale Langevin algorithm and its interpolated
variant provide similar performance to the fine-scale Langevin
algorithm while using significantly less CPU time for these typical
cases.

The paper is organized as follows. In the next section, we pres-
ent fine-and coarse-scale equations. Section 3 is devoted to the
problem setting and methodology. In Section 4, we present the
numerical implementation and results.

2. Fine- and coarse-scale simulation models

In this section the fine- and coarse-scale models for Richards’
equation are introduced. The formula describing Richards’ equa-
tion under some assumptions is given by
) _ aiv(ictx.p) V(0 + 1)) = 0
where 0(y) is volumetric water content and y is the pressure head.

The following are assumed ([29]) for Eq. (2.1): (1) the porous
medium and water are incompressible; (2) the temporal variation
of the water saturation is significantly larger than the temporal
variation of the water pressure; (3) air phase is infinitely mobile
so that the air pressure remains constant; in this case it is atmo-
spheric pressure which equals zero and (4) the source/sink terms
are neglected.

Constitutive relations between 0 and y and between K and y are
developed appropriately, which consequently gives nonlinearity
behavior in Eq. (2.1). The relation between the water content and
pressure is referred to as the moisture retention function. The
equation written in Eq. (2.1) is called the coupled-form of Richards’
equation. In other literature this equation is also called the mixed
form of Richards’ equation, due to the fact that there are two vari-
ables involved in it, namely, the water content 6 and the pressure
head . Taking advantage of the differentiability of the soil reten-
tion function, one may rewrite Eq. (2.1) as follows:

dy
dt
where C(u) = df/dy is the specific moisture capacity. This version is
referred to as the head-form (h-form) of Richards’ equation. Another
formulation of the Richards’ equation is based on the water content
0
@—divD(x e)vefﬁzo in Q (2.3)
dt ’ 0X3 ’ ’
where D(0) = K(0)/(d0/dy) defines the diffusivity. This form is
called the 0-form of Richards’ equation. The sources of nonlinearity
of Richards’ equation come from the moisture retention and relative
hydraulic conductivity functions, 0(y) and K(x, /), respectively.
Perhaps the most widely used empirical constitutive relations
for the moisture content and hydraulic conductivity are due to
the work of van Genuchten [32]. He proposed a method of deter-
mining the functional relation of relative hydraulic conductivity
to the pressure head by using the field observation knowledge of
the moisture retention. In turn, the procedure would require
curve-fitting to the proposed moisture retention function with
the experimental/observational data to establish certain parame-
ters inherent to the resulting hydraulic conductivity model. There
are several widely known constitutive relations such as the Hav-
erkamp model [17] and the Exponential model [33]. In this work,
we focus on the Exponential model, given by

0(p) = 0s eP. K(x, ) = K(x) e™. (2.4)

The variable K; in the above model is known as the saturated
hydraulic conductivity. It has been observed that the hydraulic
conductivity has a broad range of values which, together with
the functional forms presented above, confirm the nonlinear
behavior of the process. Furthermore, the water content and
hydraulic conductivity approach zero as the pressure head goes
to very large negative values. Because we are interested in mass
conservative schemes, a finite volume formulation of the global
problem will be used. We ignore gravity terms and impose it
via pressure drop boundary conditions. The implementation of
gravity effects within multiscale methods is currently under
investigation.

in Q, 2.1)

Cu) 2 — div(K(x, )V () +X3)) =0 in Q, (2.2)
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The fine-scale model is simply defined as the finite volume for-
mulation of the Richards’ equation on a fine-scale mesh. For the
coarse-scale model a multiscale finite volume element method
(MsFVEM) introduced in [8], is used. MSFVEM can be applied to
Richards’ equation in the general form as it was shown in [8]; how-
ever, MsFVEM offers a great advantage when the nonlinearity and
heterogeneity of K(x,) are separable, i.e.

K(x %) = K0k (). (2.5)

In this case, the local basis functions become linear, and the cor-
responding space V’; is a linear space. Next, we briefly describe
the method. Let .#" denote the collection of coarse elements/rect-
angles K. Consider a coarse element K, and let & be its center.
The element K is divided into four rectangles of equal area by
connecting ¢, to the midpoints of the element’s edges. We denote
these quadrilaterals by K:, where ¢ € Z,(K) are the vertices of K.
Also, we denote Z, = J,Zn(K) and Zﬁ C Zy, the vertices which
do not lie on the Dirichlet boundary of Q. The control volume
V: is defined as the union of the quadrilaterals K sharing the
vertex ¢.

The key idea of the method is the construction of basis functions
on the coarse grids such that these basis functions capture the
small-scale information on each of these coarse grids. The method
that we use follows its finite element counterpart presented in
[18]. The basis functions are constructed from the solution of the
leading order homogeneous elliptic equation on each coarse ele-
ment with some specified boundary conditions. Thus, if we con-
sider a coarse element K that has d vertices, the local basis

functions ¢;,i=1,...,d are set to satisfy the following elliptic
problem:
-V (k-V¢;)=0 inK

(k-Vg)=0 i 26)
¢;=g; on oK

for some function g; defined on the boundary of the coarse element
K. Hou et al. [18] have demonstrated that a careful choice of bound-
ary conditions would improve the accuracy of the method. In previ-
ous findings, the function g; for each i is chosen to vary linearly
along 0K or to be the solution of the local one-dimensional prob-
lems [19]. Similarly the solution of the problem in a slightly larger
domain has also been chosen to define the boundary conditions in
the past. The boundary conditions for the basis functions that are
used in this paper will be discussed later. We will require
¢:(x;) = 9;. Finally, a nodal basis function associated with the vertex
x; in the domain Q is constructed from the combination of the local
basis functions that share this x; and are zero elsewhere. We would
like to note that one can use an approximate solution of Eq. (2.6)
whenever possible. For example, in the case of periodic or scale sep-
aration cases, the basis functions can be approximated using
homogenization expansion (see [8]). This type of simplification is
not applicable for problems considered in this paper.

Now, we may formulate the finite dimensional problem. We
want to find a y, € V" with y, = szﬁl//szi with z being nodal
points such that

Ko(x)ke (17" Vi, -1 dl = 0 (2.7)

v,

/ ' Oy — 0" Vydx — At
V2

for every control volume V, C Q. Here, #/» is the average of v,
over the coarse block K and 6™ is the value of 6(%n) evaluated
at time step n — 1. To this equation we can directly apply a linear-
ization procedure, as described in [12]. The details are omitted
here.

One can generalize MsFVEM to problems when there is no sep-
aration of nonlinearities and spatial scales (see Eq. (2.5)). In this
case, we find y, € S", where S" is a standard finite dimensional
space (e.g., piecewise linear functions) such that

/ Oy — 0" Ndx — At | Kx,7") Vo -ndl=0 VYzeZl,

z v,

(28)

where 1 is the average of y,, over the coarse block K, 0"! is the va-
lue of 0('n) evaluated at time step n — 1, and v, is the solution of
the local problem in K

—div(K(x, ") Vi)oea) =0 in K € S",
l//local = ‘/’h on oK.
In this paper, we will consider only separable case given by the rela-

tion Eq. (2.5). We note that one can also use upscaling or multiscale
techniques (e.g., [6,7,34,3,37,39,40]) in uncertainty quantification.

(2.9)

3. Uncertainty quantification methods

In this section, the methods used for uncertainty quantification
are presented. First, the Karhunen-Loéve expansion (KLE) is intro-
duced as a method to parameterize our uncertain saturated con-
ductivity field K;. Next, a traditional MCMC algorithm, along with
the Langevin variant are presented. Lastly, the modifications using
coarse-scale models and collocation are shown.

3.1. KLE

Since problem under consideration consists of sampling the sat-
urated conductivity field, K, given some dynamic data, we need
some type of parameterization. We use the KLE [23,35] to expand
the saturated conductivity field in terms of an optimal L? basis. By
truncating the expansion we can represent the conductivity matrix
by a small number of random parameters. First, we briefly recall
the facts of the KLE. Denote Y(x, w) = log[K(x, ®)], where the ran-
dom element w is included to remind us that K; is a random field.
For simplicity, we assume that E[Y(x, w)] = 0. Suppose Y(x,w) is a
second order stochastic process with E [, Y?(x, w)dx < oo, where
E is the expectation operator. Given an orthonormal basis {¢,} in
L*(Q), we can expand Y (x, w) as a general Fourier series

S

Ym@:E)ummw7Ymm:LW&mmwm. 31)

k=1

We are interested in the special L* basis {¢,} which makes the
random variables Y, uncorrelated. That is, E(Y;Y;) = O for all i#j.
Denote the covariance function of Y as R(x,y) = E[Y(x)Y(y)]. Then
such basis functions {¢;} satisfy

EYiY) = [ 6i00dx | Rocy)ydy =0, i (32)

Since {¢,} is a complete basis in [*(Q), it follows that ¢,(x) are
eigenfunctions of R(x,y):

[ ROy = a0, k=1.2..... (33)

where /4 = E[YZ] > 0. Furthermore, we have

RxY) = cdi(X)uy): (3.4)
k=1

Denote y, = Yi/v/%, then y, satisfy E(y,) = 0 and E(y;y;) = 9. It fol-
lows that

Yt 0) = 3 Vi @), (3.5)
k=1

where ¢, and /, satisfy Eq. (3.3). We assume that the eigenvalues A
are ordered as 4; > 4, > .... The expansion Eq. (3.5) is called the
Karhunen-Loéve expansion. In the KLE Eq. (3.5), the L? basis func-
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tions ¢, (x) are deterministic and resolve the spatial dependence of
the permeability field. The randomness is represented by the scalar
random variables y,. After we discretize the domain Q by a rectan-
gular mesh, the continuous KLE Eq. (3.5) is reduced to finite terms.
Generally, we only need to keep the leading order terms (quantified
by the magnitude of /;) and still capture most of the energy of the
stochastic process Y(x,w). For an N-term KLE approximation
Yy = ZL V)P define the energy ratio of the approximation as

N
2 Z’lk
e(N) L= (3.6)
2 00
EIYI® s
k=1

If /,k=1,2,..., decay very fast, then the truncated KLE would be a
good approximation of the stochastic process in the L, sense. An
example is the conductivity field K,(x,w) which is a log-normal
homogeneous stochastic process. Then Y(x, ) is a Gaussian process
with the covariance kernel

|2

2 X1 — ¥y X2 — ol
R(x,y) = 0” exp ( 212 212 > (3.7
and y, are independent standard Gaussian random variables. In the
previous formula, L; and L, are the correlation lengths in each
dimension, and 2 = E(Y?) is a constant.

For implementation, we first solve the eigenvalue problem Eq.
(3.3) numerically on a rectangular mesh corresponding to the
fine-scale model and obtain the eigenpairs {4, ¢,}. The fine-scale
mesh is chosen such that there are at least five points per correla-
tion lengths. This introduces a discretization error which will be ig-
nored in our simulations. Since the eigenvalues decay fast for our
examples, the truncated KLE approximates the stochastic process
Y(x, ) fairly well in the L* sense. Therefore, we can sample
Y(x, w) from the truncated KLE Eq. (3.5) by generating Gaussian
random variables y,. For all of the experiments in this paper, the
KLE is truncated when approximately 95% of the energy e(N) is
captured. We note that the sum of eigenvalues is ¢? for our test
examples. Once we have a truncated KLE, the hard constraints
(the values of the conductivity at prescribed locations) are imple-
mented. This is done by solving a simple linear system resulting
in a linear subspace of our parameter space (a hyperplane) which
yields the corresponding values of the conductivity field. For exam-
ple, if the KLE consists of 20 terms after truncation, the saturated
conductivity is known at 11 locations, then the resulting stochastic
space would be nine dimensions. In general, one needs to choose 9
of y, randomly and solve the system of 11 equations for 11 un-
knowns. There are multiple choices for these 11 variables. In our
simulations, we search all 11 x 11 matrices in 11 x 20 matrix with
the lowest condition number. This can be easily done using QR
decomposition.

3.2. Description of dynamic data

The dynamic data under consideration is given by the average
fluxes at given locations and times, which is denoted by F(x,t),
with x being the location where the average flux is measured and
t is the time. This can be thought of as an average soil moisture
measurement which is measured in practice. Note that this meth-
od is not limited to this type of measurement, and various mea-
surements can be used in a straightforward way within the
proposed techniques. For example, hydraulic head data can be
used instead. In our simulations, average fluxes are used because
it is more difficult for multiscale methods to accurately capture
the average fluxes than the hydraulic head. The latter is due to
the fact that the fluxes are less smooth compared to the hydraulic
head. Typically, the prior information about the saturated conduc-

tivity field consists of its covariance matrix and the values of the
saturated conductivity at some sparse locations. Since the average
flux values provide an integrated response, the map from the sat-
urated conductivity field to the fluxes is not one-to-one. Hence this
problem is ill-posed in the sense that there exist many different
realizations for the given data.

3.3. MCMC methods

From the probabilistic point of view, our problem can be re-
garded as conditioning the saturated conductivity fields to the flux
data with measurement errors. Consequently, our goal is to sample
from the conditional distribution P(K;|F), where K; is the fine-scale
conductivity field and F is the average flux data. Using the Bayes
formula we can write

P(K|F) oc P(F|K5)P(Ks), (38)

where P(K;) is the unconditioned (prior) distribution of the conduc-
tivity field. In practice, the measured fluxes contain measurement
errors. In this paper, we assume that the measurement error satis-
fies a Gaussian distribution; thus, the likelihood function P(F|K;)
takes the form

2
P(F|K,) o« exp (- ”Faff) (3.9)
where F consists of the reference fluxes, Fi, consists of the average
fluxes for conductivity field K, and oy is the measurement preci-
sion. In practice, Fy, is computed by solving Eq. (2.1) and recording
the desired fluxes for the given K; on the fine-grid. Since both F and
Fy, are functions of time and space (denoted by x and t), the norm
|F — F,||* is defined as the L, norm

X T
IF=Fel? = [ [ IFou0) ~ Fi (.0t (3.10)
0 0
Denote the sampling target distribution as
2
7(Ks) = P(K;|F) x exp ( F()_ff’“') P(Ks). (3.11)

Since different conductivity fields may produce the same average
flux response, the distribution 7(Kj) is a function of K; with multi-
ple local maxima. Sampling from the distribution 7(K;) can be
accomplished by the MCMC method. For a given proposal distribu-
tion q(y|x), the Metropolis—Hastings MCMC algorithm (see, e.g., [30,
p. 233]) consists of the following steps:

Algorithm 1. (Metropolis-Hastings MCMC, Robert and Casella
(30])

e Step 1. At K, generate Y from q(Y|Ks,)-
e Step 2. Accept Y as a sample with probability

(3.12)

p(Ksn, Y) = min (1 9K V)7(Y) )

"q(Y|Ksn)Tt(Ksn)

i.e. take K, = Y with probability p(Ks,,Y), and Kj,,; = K,, with
probability 1 — p(Ks,, Y).

The MCMC algorithm generates a Markov chain {K,} whose
stationary distribution is 7(K;). A remaining question is how to
choose an efficient proposal distribution q(Y|Ks).

An important type of proposal distribution can be derived from
the Langevin diffusion, as proposed by Grenander and Miller [15].
Following from [5] the proposal distribution q(Y|Ks,) in Algorithm
1 is chosen as
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Y = Ky + 5 Vlog(Ki) + VAT, (3.13)

Since €, are independent Gaussian vectors, the transition distribu-
tion of the proposal generator Eq. (3.13) is

Y_Ksn—M 1 Ksn 2
4(Y[Ker) o exp <_ “ 4V log (K| )

2AT
(3.14)

IKsn — Y — 4 Viog m(Y)|*
q(Ken|Y) o< exp ( o :

The scheme Eq. (3.13) can be regarded as a problem-adapted ran-
dom walk since gradient information of the target distribution is in-
cluded to enforce a biased random walk.

3.3.1. Preconditioned Langevin MCMC algorithm

The major computational costs of Algorithm 1 come in the com-
putation of the target distribution m(Ks;) and the gradient,
Vlog n(Ks). Since the map between the saturated conductivity
and the average flux is governed by the solution to Richards’ equa-
tion, there is no explicit formula for the target distribution 7(Kj).
To compute the function 7(Ks), a solution to Richards’ equation
on the fine-scale for the given K; is needed. For the same reason,
we need to compute the gradient of log 7(K;) in Eq. (3.13) numer-
ically (by finite differences), which involves solving Richards’ equa-
tion multiple times. To compute the acceptance probability Eq.
(3.12), Richards’ equation needs to be solved one more time. While
one advantage of Langevin algorithms is their higher acceptance
rates, the number of simulations need for a single sample makes
the direct (full) MCMC simulations with Langevin samples prohib-
itively expensive.

To bypass the above difficulties, we consider a coarse-grid
Langevin MCMC algorithm where most of the fine-scale computa-
tions are replaced by coarse-scale computations. Based on a
coarse-grid model of the stationary distribution, samples are gen-
erated from Eq. (3.13) using the coarse-scale gradient. The propos-
als are further filtered by an additional Metropolis acceptance-
rejection test on the coarse-grid. If the sample does not pass the
coarse-grid test, the sample is rejected, and no further fine-scale
test is necessary. The argument for this procedure is that if a pro-
posal is not accepted by the coarse-grid test, then it is unlikely to
be accepted by the fine-scale test either. By eliminating most of
the “unlikely” proposals with inexpensive coarse-scale tests, we
can avoid wasting CPU time simulating the rejected samples on
the fine-scale.

To model 7t(K;) on the coarse-scale, we define a coarse-grid map
F, between the saturated conductivity field K; and the average
flux F. The map F* is determined by coarse-scale solutions. Conse-
quently, the target distribution 7(K;) can be approximated by

. IF - Fy I
T (Ks) oc exp | — = | P(Ky), (3.15)

c

where o is the measurement precision for the coarse-grid distribu-
tion and usually taken to be of the same order as o;. Note that one
can perform apriori simulations and determine the relation between
coarse- and fine-scale flux errors. This can be done by choosing a
number of independent hydraulic conductivity realizations from
the prior distribution and modeling the relation between ||F — Fy ||
and |F — Fg,|| via  non-parametric  approaches, ie.,
|IF — Fi, |l = G(||F — Fg.l|), where the function G is estimated apriori.
Furthermore, this relation can be used for determining =*. This is
particularly important if the coarse-scale models are not accurate.
We have used this idea in petroleum applications in [9].

Then the Langevin samples are generated from Eq. (3.13) using
the coarse-grid gradient of the target distribution

Y =K, +%Vlog T (Ksn) + VATE,. (3.16)

The transition distribution of the coarse-grid proposal Eq. (3.16) is

: 1Y = Kon — 5 V1o 7 (K
q (Y|K5n) x exp <— 2AT ’

- YA;Vlogn*(Y)|2>

2AT (317)

q° (Ksn|Y) o exp <— [Kon

By replacing the fine-scale gradient with the coarse-scale gradi-
ent, we can reduce the computational cost dramatically but still di-
rect the proposals to regions with larger probabilities.

Because of the high dimension of the problem and the discret-
ization errors, most proposals generated by the Langevin algo-
rithms (both Egs. (3.13 and 3.16)) will be rejected by the
Metropolis acceptance-rejection test Eq. (3.12). To avoid wasting
expensive fine-scale computations on unlikely acceptable samples,
we further filter the Langevin proposals by the coarse-scale accep-
tance criteria

(3.18)

gk ¥) = min (1, 20T L0)

"q*(Y|Ksn) 7 (Ksn)

Combining all the discussion above, we have the following revised
MCMC algorithm.

Algorithm
algorithm)

2. (Preconditioned coarse-gradient Langevin

e Step 1. At K, generate a trial proposal Y from Eq. (3.16).
e Step 2. Take the proposal K; as
K. — { Y with probabilityg(Ks,, Y),

* 7 | Ky with probabilityl — g(K, Y),

where

2(Ksn,Y) = min (1 q (K |Y) 7 (Y) )

"q* (Y|Ksn) 70+ (Ksn)

Therefore, the proposal K; is generated from the effective instru-
mental distribution
Q(K;|Ksn) = g(Ksn, Ks)q* (Ks|Ksn)

+ <1 - /g(Km,Ks)q*(KS|KS,,)dKS> Ok (Ks). (3.19)
e Step 3. Accept K; as a sample with probability
: Q(Ksn|Ks)1(Ks) >
K, Ks) =min [ 1, ="~ |, 3.20
pKan, Ks) ( QK [Kon) 1 (Kon) (3-20)

i.e,, Ksn 1 = K, with probability p(k,, k), and K, 1 = K5, with proba-
bility 1 — p(Kn, Ks).

Step 2 screens the trial proposal Y by the coarse-grid distribu-
tion before passing it to the fine-scale test. The filtering process
changes the proposal distribution of the algorithm from g*(Y|Ks,)
to Q(K;|Ksn) and serves as a preconditioner to the MCMC method.
This is why it is called the preconditioned coarse-gradient Langevin
algorithm. We note that testing proposals by approximate target
distributions is not a very new idea. Similar strategies have been
developed previously in [21,2].

Note that there is no need to compute Q (K|Ks,) and Q (K| K;) in
Eq. (3.20) by formula Eq. (3.19). The acceptance probability Eq.
(3.20) can be simplified as

ST ()}

TR0 () 3:21)

Pp(Ksn, Ks) = min <1
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In fact, this is obviously true for K; = K, since p(Ks,Ksm) = 1. For
Ks#Kg,

Q(KnlKs) = g(Ks, Ksn)q(Ksn|Ks)
1 . .
= ey min (q(Ksa[Ks) 70" (Ks), g (K [Ksn) T (Ksn))

7 (Ks)
_ q(Ks[Ksn) 7" (Ksn) - (Kan)
- Wg(mn,lg) = (K. Q(K|Ksn).-

Substituting the above formula into Eq. (3.20), we immediately get
Eq. (3.21).

3.3.2. Collocation methods

Instead of using a coarse-scale model in Algorithm 2, we pro-
pose using collocation methods based on the coarse-scale models.
Suppose we wish to approximate functions f : [-1,1]" — R using
only the known values of f at some locations in [-1,1]". Here N re-
fers to the stochastic dimension. One may consider two different
problems in this situation: the first where the known values are gi-
ven by scattered data in [-1,1]" and the other where the approx-
imation is based on values at previously chosen points (gridded
data). Only the latter problem will be considered since interpola-
tion from scattered data in high dimensions remains a challenging
problem. For simplicity, we consider approximation via Lagrange
interpolation in high dimensions.

Suppose one dimensional Lagrange interpolation for each
dimension is defined by i = 1,...,N by

Uihon =>_f (X})L}(X), (3.22)
=

where the L; are traditional Lagrange basis functions and M; is the
number of nodes in the ith dimension. Then the interpolant of f in

multiple dimensions can be written as

M, M, ‘ 4
Uy - @U) () => > (2 1)
=1

in=1
.(L{I; ®--~®L§g>.

If N=10 and M =4 then we have 4'°=1,048,576 terms in Eq.
(3.23). Each of our function values is generated by a solution to a
PDE system; thus full tensor product interpolation is prohibitively
expensive. Sparse grid collocation methods, more specifically the
Smolyak algorithm [31], can be used to alleviate this problem.

The Smolyak algorithm is a linear combination of product for-
mulas chosen so that an interpolation property for N =1 is pre-
served for N>1. We make |ij=i;+---+iy for iec NV, The
Smolyak algorithm is defined by

Z (—1)T i <N_ ! > Uy ®---®Uy).  (3.24)

g-N+1<lil<q q- i

(3.23)

A(q,N) =

Note that one must evaluate f at only sparse values given by

HaN) = |J (©; x...x6y), (3.25)

q-N+1<lijl<q

iy

where ©; = {6},...,6), } are the set of points used by U;. This leads
us ton(k+ N,N) ~ % -N* nodes used by A(N + k, N). Here the k term
determines how many nodes will be used. For a fixed N, we define
A(N + k,N) as kth order Smolyak interpolation.

As suggested by numerous sources [26,41,1], Smolyak formulas
that are based on the extrema of Chebyshev polynomials are con-
sidered. We choose

X}:—cos%., i=1,...M; (3.26)
1

and define y, =0 for M;=1. We also choose M;=1 and
M; = 27" +1 fori > 1. This has the benefit of making our nodal sets
nested; thus H(q,N) c H(q + 1,N).

Using the Smolyak formulas and Lagrange interpolation,
A(N +k,N) is exact for all polynomials of degree k. Using tech-
niques described in [1], the one dimensional error estimate is given
by

If = Ui(F)ll.e < Ema(F) - (1+ Awm,),

where Ey; is the error of the best approximation by polynomials
peP(M,1) and Ay is the Lebesgue constant for the Chebyshev
polynomials. We have the estimate

(3.27)

Ay < % logM -1)+1 (3.28)
for M > 2. Estimates are also obtained in multiple dimensions
[1,41,26]. One can also use collocation methods to determine the
weights in chaos expansion as it is often done in the literature. In
our numerical simulations, we will restrict ourselves to a bounded
compact set in the uncertainty space.

3.3.3. Preconditioned interpolated Langevin MCMC algorithm

We now consider the modification of the preconditioned
coarse-gradient Langevin MCMC (Algorithm 2) in which the
coarse-scale response is replaced by a response obtained by collo-
cation. To model the target distribution 7(K;) using coarse-scale
collocation, we define an interpolated coarse-grid map 7*(K;) be-
tween the saturated conductivity field K; and the target distribu-
tion 7*. The map 7* is determined by coarse-scale collocation.
Similarly, the Langevin samples are generated using the interpo-
lated coarse-grid gradient of the target distribution

At -

Y =Ko+~ Viog ' (Ken) + VAte, (3.29)

and the transition distribution of the coarse-scale collocation pro-
posal is defined by

_ IY — Kon — 4 Vlog & (Kon)|I
G (Y|Ksn) o exp ( 2AT ’

) (3.30)
[ Kon — Y A;Vlogn*mz)

q"(Ksn|Y) o< exp (— SAT

We again further filter the Langevin proposals by the coarse-scale
collocation acceptance criteria

q"(Ksn|Y) 7" (Y) )

"7 (YIKsn) T (Ken) ) (3.31)

g(Ksn,Y) = min (l
Combining all the discussion above, we now have the revised
Langevin MCMC algorithm based on coarse-scale collocation [4].
Algorithm 3. (Preconditioned interpolated coarse-gradient Lange-
vin algorithm)
e Step 1. At K, generate a trial proposal Y from Eq. (3.29).
e Step 2. Take the proposal K; as
K. — { Y with probabilityg(Ks,, Y),

* 7 | Ksn with probability1 — g(K,, Y),”

Therefore, the proposal K; is generated from the effective instru-
mental distribution

Q(Ks‘Ksn) = g(Ksm Ks)q* (Ks|Ksn)
+ <1 — /g(Ksn,KS)EI*(K5|KSH)dK5> Ok, (Ks). (3.32)

e Step 3. Accept K as a sample with probability
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(3.33)

p(Ksn, K5) = min <1 Q(’<s"|KS)”(’<S)>

"Q (K| Ksn) (Ksn)

4. Numerical results

In this section the numerical results for the preceding algo-
rithms will be presented. The saturated conductivity, K(x), is as-
sumed to be defined on the unit square Q = [0, 1]? and is known
at some sparse locations in Q. Additionally, we assume the covari-
ance of log(K;) is known. We discretize Q with a rectangular mesh
and represent K as a matrix. The goal in these numerical results is
to show the proposed algorithms (Algorithms 2 and 3) have similar
sampling performance to the traditional Langevin MCMC (Algo-
rithm 1) with significantly less computational cost.

For the uncertainty quantification problems considered in this
paper, we assume that the discrete integrated response function,
F, contains the average flux on the uppermost boundary of the
fine-grid domain for a given set of times. Let us suppose that for
each time in a given set of k times, the flux is found across the en-
tire upper cell boundary at n equally spaced intervals. We denote
these times as ty, ..., t;. The response is then given by the average
flux at each of the n intervals, and each of these k times, in order. In
other words,

F = (Fluxapg(X1,t1),. .., FluXqpg (Xn, t1), FluXqug (X1, t2), . . ., FluXapg (Xn, i)
(4.1)

As noted previously, we use the MsFVEM for our coarse-scale
model. Note, when using the MsFVEM, we can reconstruct the
fine-scale flux using the multiscale basis functions. Thus, the aver-
aging used for F will always be over the fine-grid domain regard-
less of whether we are using a fine-scale or coarse-scale model.
Additionally, the discrete average flux response surfaces are scaled
down by a factor of 10. This makes the average flux values to be, on
average, between 0 and 1. This does not change the overall results
and the only purpose of the scaling is to keep gy and o, values at
approximately the same magnitude as in our previous MCMC
investigation for multiphase immiscible flow [5].

Numerical results for the exponential constitutive relation with
(dimensionless) « = 0.01, 8 = 0.01, and 0; = 0.5 are presented. The
initial pressure head is assumed to be yy = —10. Dirichlet boundary

2
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e O 0.85
=1 0.8
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=) 5] 2
el
T - 1st order
2
0.95
5
0.9
e g 0.85
=3 08
-2 0.75

conditions are given by ¢ = 0 on the bottom of Q, [0,1] x 0, and
Y = —10 on the portion of the top boundary between x = 0.3 and
x=0.7, [0.3,0.7] x 1. We assume Neumann boundary conditions
otherwise. We choose these particular boundary conditions, as op-
posed to no flow on the sides and given pressure heads on the top
and bottom, so that we can see more variations in the pressure
head profiles.

4.1. KLE using normal covariance

In the first numerical results, to represent the discrete saturated
conductivity field, we generate a KLE using normal covariance and
correlation lengths L; = 0.3 and L, = 0.3. Only 15 terms are kept in
the KLE since the eigenvalues decay very rapidly. Additionally, it is
assumed that the saturated conductivity is known at eight sparse
locations. This leaves us with 7 stochastic dimensions to sample
from. We restrict ourselves to the hypercube [-2.5,2.5) in sto-
chastic space. The reason for this restriction is due to the sparse
grid collocation. For each simulation we test 5000 samples in the
MCMC. A 49 x 49 fine-scale model and a 5 x 5 coarse-scale model
are used. Note that these methods are vertex-based. Thus the num-
ber of cells are 48 x 48 and 4 x 4 in the fine-scale and coarse-scale
model, respectively. The time step At of the Langevin MCMC algo-
rithm is denoted by 4.

First, comparisons between the fine-scale target distribution 7,
coarse-scale distribution 7*, and interpolated coarse-scale distri-
bution 7t* are presented. We plot the restriction of the target distri-
butions to a 2D hyperplane by fixing the value at 5 of the 7
stochastic dimensions. We plot the first two dimensions, 6; and
0,, restricted to [-2.5,2.5]°.

In Fig. 1 it can be seen that the coarse-scale surface captures
many of the large features of the fine-scale surface. This is ex-
pected, as one would not expect the small features to be captured
using the coarse-scale method. The last two plots correspond to the
interpolated coarse-scale surface for Smolyak order 1 and 3,
respectively. In this case of N = 7 stochastic dimensions, 1st order
has 15 nodes, 2nd order has 113 nodes, and 3rd order has 589
nodes. While the values in the interpolated surfaces do not corre-
spond exactly, it appears the 1st order surface captures some very
large scale features of the coarse-scale surface. The 3rd order meth-
od captures many more features but requires more computations
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Fig. 1. Fine-scale response surface 7, coarse-scale response surface 7*, and two interpolated coarse-scale response surfaces 7* (of order 1 and 3) restricted to a 2D hyperplane.

Here 6; and 0, correspond to the first two stochastic dimensions.
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Fig. 2. Comparison between preconditioned coarse Langevin (Algorithm 2), preconditioned interpolated coarse Langevin (Algorithm 3), and fine-scale Langevin (Algorithm 1)
for various o, values with o‘fz = 0.003 and ¢ = 0.05. Left: acceptance rate. Right: natural log of CPU time (seconds).

for large stochastic dimensions. For this reason, we consider only
first order interpolation for the remainder of the paper.

Next, the acceptance rates of each algorithm are compared. In
the left portion of Fig. 2, the acceptance rates with different
coarse-scale precision g, are compared. Recall the acceptance rate
is the ratio between the number of accepted saturated conductivi-
ties and the number of fine-scale acceptance-rejection tests. Since
Algorithm 1 does not have a coarse-scale test, it is constant for all
0., and its acceptance rate is simply the number of accepted satu-
rated conductivities divided by the total number of samples. In
Fig. 2, it can be seen that Algorithms 2 and 3 have a higher accep-
tance rate for some values ¢, than Algorithm 1. This is due to the
preconditioning step, which filters proposals that are not likely to
be accepted by the fine-scale test. In the right portion of Fig. 2,
we compare the CPU time for each of the algorithms on a natural
log scale. First, there is a significant savings in CPU time when using
Algorithm 2 rather than Algorithm 1. This is primarily due to the
fact that Algorithm 2 uses a coarse-scale gradient, V log 7* (k), while
Algorithm 1 uses a fine-scale gradient V log m(k). Since m(k) and
n*(k) are functions determined by simulations, these gradients
are computed using finite differences. Thus we must run a simula-
tion in each of the 7 stochastic dimensions and our CPU savings is
partly due to 7 coarse-scale simulations per sample as opposed to
7 fine-scale simulations. Additionally, the preconditioning step in
Algorithm 2 helps filter the samples, resulting in less fine-scale
acceptance-rejection tests. Looking at Algorithm 3, there is an even
more remarkable savings in CPU time. This is clearly due to fact that
the target distribution, 7*(k), and the interpolated gradient,
V log 7t*(k), can be computed analytically.

It is worth noting that, even for 3rd order, the computational cost
in computing the Smolyak nodes is still small compared to the
coarse-gradient Langevin MCMC. For example if we are to sample
in 7 dimensions using coarse-gradient Langevin, then we must run
8 forward simulations for each sample. After approximately 75 sam-
ples, we have already run the coarse-scale simulations more times
than if we had generated nodes for 3rd order Smolyak interpolation.

We now compare the average flux errors for each algorithms in
Fig. 3. The purpose of this is to demonstrate that the mixing time
(the number of samples for which it takes to converge to steady
state) of each algorithm is approximately the same. At steady state
we are only accepting samples that are below the measurement er-

0.2

— Interpolated Langevin
- <~ Preconditioned Langevin
Fine Scale Langevin

Avg Flux error

Accepted Trials

Fig. 3. Average flux errors for each algorithm.

ror in the target distribution. It is clear from this figure, that Algo-
rithms 2 and 3 converge to steady state in slightly more iterations
than Algorithm 1. Considering that Algorithm 2 is over four times
faster than Algorithm 1, it seems the increased mixing time is neg-
ligible. The formal convergence diagnosis can be performed using a
multiple chains method based convergence diagnosis [13]. In this
paper, our goal is to compare the modified Langevin algorithm
with the direct Langevin algorithm; thus we restrict ourselves to
only showing errors versus the number of iterations. We note that
the convergence diagnostics has nothing to do with the rate of con-
vergence, which depends on the second largest eigenvalue of the
transition matrix of the Markov chain. For the complex chains, cal-
culation of these eigenvalues is not simple.

Lastly, we present some saturated conductivity realizations
sampled from the posterior distribution. In Fig. 4 the exact K; is
shown in the upper left, while three accepted conductivities from
Algorithm 3 are showing in the remaining three plots. Note that
due to the fact that the proposals are correlated, there is a correla-
tion between the samples. One can use an independent sampler as
an instrumental probability distribution or independent chains in
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Fig. 4. Exact K, (upper left) and three different accepted conductivities for preconditioned interpolated coarse Langevin (Algorithm 3).

order to avoid this. It can be seen that the samples capture many
features of the reference saturated conductivity quite well. Note
that these accepted saturated conductivity fields correspond to
those with errors in Fig. 3; thus they give nearly the same average
flux responses, so they are all eligible samples.

4.2. KLE using exponential covariance

We now introduce a set of numerical results which use the pro-
posed algorithms for a conductivity generated using the KLE with
exponential covariance instead of normal covariance. The expo-
nential covariance kernel is given by

R(x,y) = 6% exp (— w - ‘XZL;Z}H) . (4.2)

The KLE with exponential covariance contains many more terms in
the expansion. Moreover, the conductivity fields for exponential
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covariance have more fine-scale features. Our goal to show the re-
sults using the proposed algorithms in the context of exponential
covariance are similar to the previous results which used normal
covariance.

We generate a truncated KLE using exponential covariance with
correlation lengths L; = 0.5 and L, = 0.4. 100 terms are kept, and it
is assumed the conductivity field is known at 15 distinct points.
Thus we have 85 stochastic dimensions. Again, we restrict our-
selves to the hypercube [-2.5,2.5]*® in stochastic space, consider
a 49 x 49 fine grid, and a 5 x 5 coarse grid. Since the gradient of
the target distribution must be computed for each of the 85 dimen-
sions, Algorithm 1 would require 85 fine-scale solutions for each
proposal. This is not computationally feasible in our setting. Thus
only Algorithms 2 and 3 will be compared. Additionally, only 1st
order interpolation is considered, since 2nd order would require
14,621 values. Only a brief set of numerical results are presented,
since many of the same ideas have been discussed previously.

In Fig. 5, m, m* and 7* are compared. As in the previous case, the
coarse-scale surface matches many large features of the fine-scale
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Fig. 5. Fine-scale response surface 7, coarse-scale response surface 7*, and interpolated coarse-scale response surfaces 7* restricted to a 2D hyperplane.
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Fig. 6. Comparison between preconditioned coarse Langevin (Algorithm 2) and preconditioned interpolated coarse Langevin (Algorithm 3) for various ¢, values. We use
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Fig. 7. Average flux errors for preconditioned interpolated coarse Langevin
(Algorithm 3) compared to preconditioned coarse Langevin (Algorithm 2).

x

surface. Additionally, the interpolated surface matches some gen-
eral features of the coarse-scale surface. In Fig. 6 the acceptance
rate (left) and CPU time (right) for Algorithms 2 and 3 are shown.
We find that the two algorithms have similar acceptance rates,
while Algorithm 3 is over ten times faster than Algorithm 2. This
vast improvement in CPU time is clearly due to the use of interpo-
lated gradients in Algorithm 3, as opposed to coarse-scale gradi-
ents in Algorithm 2.

In Fig. 7 it is demonstrated that Algorithm 3 converges to steady
state at a similar rate to Algorithm 2. In Fig. 8 we compare the ref-
erence saturated conductivity (upper left) with three different ac-
cepted conductivities found by Algorithm 3. Since the features of
the conductivities in the case of the exponential covariance are less
smooth, it is much harder to see the correspondence of the ac-
cepted conductivities to the reference.

As we can see from the preceding results, exponential covari-
ance produces results very similar to normal covariance for Rich-
ards’ equation. We find that Algorithm 3 provides an acceptance
rate similar to Algorithm 3 while providing a dramatic savings in
CPU time.

0.5
=

Fig. 8. Exact K; (upper left) and three different accepted conductivities.
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We note that the efficiency of the proposed approaches depends
on the accuracy of the interpolation. In particular, the proposed ap-
proaches become more effective as the approximation of response
surface is more accurate. Otherwise, the proposed approaches may
not give any CPU saving; however, they still provide a rigorous sam-
pling of the posterior distribution. For realistic cases considered in
this paper, it is difficult to obtain analytical convergence estimates.
One can perform convergence analysis for simplified cases in the
limit of scale separation. This is currently under investigation. One
can improve the efficiency of the proposed approaches by perform-
ing more accurate approximation of the response surfaces. For
example, using adaptive interpolation techniques, one can achieve
higher efficiency of the proposed MCMC. This will be explored in
future.

5. Concluding remarks

In this paper, efficient uncertainty quantification techniques in
inverse problems for Richards’ equation using coarse-scale simula-
tion models are proposed. The problem under consideration con-
sists of sampling hydraulic conductivity given dynamic measure
data, such as average boundary fluxes. Our goal is to use inexpen-
sive coarse-scale simulations in the context of Langevin MCMC and
compare modified Langevin MCMC algorithms to the traditional
fine-scale Langevin MCMC algorithm. A preconditioned coarse-gra-
dient Langevin MCMC algorithm is considered, where the propos-
als are made based on coarse-scale simulations and tested with
inexpensive coarse-scale runs in order to increase the acceptance
rate. Coarse-scale simulations are performed using multiscale fi-
nite volume element methods. Additionally, sparse grid collocation
techniques are employed to approximate the coarse-scale simula-
tions and an interpolated variant of the preconditioned coarse-gra-
dient Langevin algorithm is introduced.

Each algorithm is applied to the uncertainty quantification
problem for both small and large stochastic spaces. For the
small-dimensional stochastic spaces, the numerical results verify
that the proposed algorithms are efficient and give similar perfor-
mance as the fine-scale Langevin algorithms. For large-dimen-
sional stochastic spaces, where a fine-scale Langevin algorithm
may not be computationally feasible, it is shown that both pro-
posed algorithms can be used as an alternative to the fine-scale
Langevin algorithm. In our numerical simulations, we consider
hydraulic conductivity fields described using two-point correlation
functions. In future work, we plan to test the proposed approaches
with more complex heterogeneities.
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