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7 [1] Pixel-based effective soil hydraulic parameters are crucial inputs for large-scale
8 hydroclimatic modeling. In this paper, we extend/apply a genetic algorithm (GA) approach
9 for estimating these parameters at the scale of an airborne remote sensing (RS) footprint.
10 To estimate these parameters, we used a time series of near-surface RS soil moisture data
11 to invert a physically based soil-water-atmosphere-plant (SWAP) model with a
12 (multipopulated) modified-microGA. Uncertainties in the solutions were examined in two
13 ways: (1) by solving the inverse problem under various combinations of modeling
14 conditions in a respective way; and (2) the same as the first method but the inverse
15 solutions were determined in a collective way aimed at finding the robust solutions for all
16 the modeling conditions (ensembles). A cross validation of the derived soil hydraulic
17 parameters was done to check their effectiveness for all the modeling conditions used. For
18 our case studies, we considered three electronically scanned thinned array radiometer
19 (ESTAR) footprints in Oklahoma and four polarimetric scanning radiometer (PSR)
20 footprints in Iowa during the Southern Great Plains 1997 (SGP97) Hydrology Experiment
21 and Soil Moisture Experiment 2002 (SMEX02) campaigns, respectively. The results
22 clearly showed the promising potentials of near-surface RS soil moisture data combined
23 with inverse modeling for determining average soil hydrologic properties at the
24 footprint scale. Our cross validation showed that parameters derived by method 1 under
25 water table (bottom boundary) conditions are applicable also for free-draining conditions.
26 However, parameters derived under free-draining conditions generally produced too
27 wet near-surface soil moisture when applied under water table conditions. Method 2, on
28 the other hand, produced robust parameter sets applicable for all modeling conditions
29 used. These results were validated using distributed in situ soil moisture and soil hydraulic
30 properties measurements, and texture-based data from the UNSODA database. In this
31 study, we conclude that inverse modeling of RS soil moisture data is a promising approach
32 for parameter estimation at large measurement support scale. Nevertheless, the
33 derived effective soil hydraulic parameters are subject to the uncertainties of remotely
34 sensed soil moisture data and from the assumptions used in the soil-water-atmosphere-
35 plant modeling. Method 2 provides a flexible framework for accounting these sources of
36 uncertainties in the inverse estimation of large-scale soil hydraulic properties. We have
37 illustrated this flexibility by combining multiple data sources and various modeling
38 conditions in our large-scale inverse modeling.

40 Citation: Ines, A. V. M., and B. P. Mohanty (2008), Near-surface soil moisture assimilation for quantifying effective soil hydraulic

41 properties using genetic algorithms: 2. Using airborne remote sensing during SGP97 and SMEX02, Water Resour. Res., 44, XXXXXX,

42 doi:10.1029/2008WR007022.

44 1. Introduction

45 [2] In recent years, remote sensing (RS) has proved to be
46 a promising method for measuring soil moisture at the
47 regional or larger scale. Compared with carefully designed,

48large-scale in situ measurements, RS is by far the fastest and
49most effective way of conducting soil moisture measure-
50ments at such a spatial scale [Jackson, 1993; Njoku and
51Entekhabi, 1996; Schmugge, 1998; Schmugge et al., 2002].
52There are, however, some inherent limitations of remotely
53sensed soil moisture, including the relatively shallow ob-
54servation depths (�0–5 cm) [Jackson et al., 1995] and
55coarse spatial resolutions of satellite-based remote sensing
56[Njoku et al., 2003; Crow et al., 2005; Das and Mohanty,
572006]. Notwithstanding these limitations, a variety of meth-
58ods of integrating RS soil moisture data with dynamic soil-
59vegetation-atmosphere-transfer (SVAT) models have been
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60 proposed to advance the use of RS soil moisture in various
61 hydroclimatic applications [e.g., Jackson, 1993; Kostov and
62 Jackson, 1993; Entekhabi et al., 1994]. Most of the previous
63 studies were aimed at using near-surface RS soil moisture
64 data to retrieve root zone soil moisture required for initial-
65 izing SVAT applications [e.g.,Walker et al., 2001; Crow and
66 Wood, 2003; Dunne and Entekhabi, 2005].
67 [3] In recent literature, direct data assimilation and Kal-
68 man filtering of observed near-surface RS soil moisture data
69 have been used to condition/update (off-line) the simulated
70 soil moisture profiles in vadose zone modeling [e.g., Walker
71 et al., 2001; Reichle et al., 2001; Margulis et al., 2002;
72 Crow and Wood, 2003; Heathman et al., 2003; Das and
73 Mohanty, 2006]. The results of these soil moisture data
74 assimilation studies have been generally promising, but
75 when a significant disparity between the assimilated and
76 validation soil moisture data is apparent, the bias is often
77 attributed to uncertainties of the hydrological/constitutive
78 models, and the input data/parameters used, e.g., the soil
79 hydraulic parameters [Das and Mohanty, 2006]. Assuming
80 that the physically based models used are appropriate, then
81 the major issue boils down to the problem of scale-depen-
82 dent model parameters that are effective at that particular
83 spatial scale. The question is, What should be the appropri-
84 ate values of the soil hydraulic parameters on a particular
85 spatial scale, and how can they be determined [Mohanty and
86 Zhu, 2007]? In an RS pixel, we generally expect a mixture
87 of features, e.g., soil types, vegetation attributes, topographic
88 features, land management practices, etc., and the soil
89 moisture dynamics in this control volume is governed by
90 the interrelationships among these features and their
91 responses to different environmental and climatic forcings
92 [Mohanty et al., 2000; Mohanty and Skaggs, 2001]. In
93 large-scale hydrologic modeling, the concept of ‘‘effective
94 parameters’’ has been proposed to account for the hetero-
95 geneities in the pixel/grid scale [Feddes et al., 1993a,
96 1993b; Wood, 1994]. The effective soil hydraulic parame-
97 ters can be viewed as a representative set of parameters that
98 characterizes an equivalent homogenous land unit in lieu of
99 the real-world domain. Thus, when used in model applica-
100 tion it can approximate the mean of the ensemble flux at that
101 particular pixel derived from fully distributed/stochastic
102 simulations, or the mean flux from RS data in actual
103 measurements. Two methods are commonly used in defin-
104 ing these effective parameters: a bottom-up approach where
105 the point-scale soil hydraulic parameters are aggregated/
106 averaged into the scale of application, and a top-down
107 approach where the measurements of a state variable, e.g.,
108 near-surface soil moisture or evapotranspiration (ET) from
109 RS observations, at that particular scale are used as condi-
110 tioning criteria to define these parameters using inverse
111 modeling (IM). The bottom-up approach evolved from the
112 similar media scaling of Miller and Miller [1956]. Recent
113 studies of Zhu and Mohanty [2002, 2003, 2004], Zhu et al.
114 [2004], and Mohanty and Zhu [2007] (see also B. P.
115 Mohanty, unpublished data, 2006, http://vadosezone.
116 tamu.edu) attempted to establish guidelines for defining
117 these effective soil hydraulic parameters at various hydro-
118 logical conditions. The difficulty of the bottom-up approach
119 is the need for a large number of point scale soil hydraulic
120 parameters across a spatial domain, which are not always

121available and very expensive and time-consuming to estab-
122lish in real-world conditions. Furthermore, bottom-up
123approaches need appropriate aggregation techniques for
124averaging soil hydraulic parameters based on prevailing
125hydroclimatic conditions as shown in the previous studies.
126In contrast, the top-down approach is simpler and is a
127promising alternative for estimating large-scale soil hydro-
128logic properties, as the state variable is measured from a
129remote sensing platform, and hence it can encompass large
130areas (measurement support) for analysis. It is noteworthy
131that a priori knowledge of soil classes in the RS pixel is not
132a prerequisite for the top-down approach, as a wide range of
133soils can be prescribed as a global search space for the
134inverse analyses [Feddes et al., 1993a, 1993b]. However, if
135limited footprint soil moisture (temporal) data are available
136for inverse modeling, a priori information of the ranges of
137footprint soil hydraulic parameters may be advisable.
138[4] In this paper, following the work Ines and Mohanty
139[2008a] on inverse modeling of near-surface soil moisture
140with a genetic algorithm (GA) at the local scale, we present
141our study on large-scale inverse modeling of near-surface
142(airborne) remote sensing soil moisture data during the
143Southern Great Plains 1997 (SGP97) [Jackson et al.,
1441999] and Soil Moisture Experiment 2002 (SMEX02)
145[Cosh et al., 2004] hydrology campaigns in Oklahoma
146and Iowa, respectively. We also present a flexible frame-
147work for addressing sources of uncertainties (data/modeling
148errors) in the inverse modeling of large-scale near-surface
149soil moisture from a GA perspective.

1502. Materials and Methods

1512.1. Near-Surface Soil Moisture Assimilation

152[5] The main hypothesis used in this study is that near-
153surface RS soil moisture data contain useful information
154that can describe the effective hydrologic conditions of a
155pixel such that when appropriately inverted would provide a
156set of soil hydraulic parameters representative of that pixel.
157To derive these footprint effective parameters, we explored
158the top-down approach described by Ines and Mohanty
159[2008a] for quantifying effective soil hydraulic parameters
160in the soil profile, in which a multipopulated modified-
161micro genetic algorithm (GA) [Ines and Droogers, 2002a;
162Ines and Honda, 2005] (see also http://www.cuaerospace.-
163com/carroll/ga.html) is coupled with a physically based soil-
164water-atmosphere-plant (SWAP) model [Van Dam et al.,
1651997] and used in the inverse estimation of soil hydraulic
166parameters using mainly time series of near-surface soil
167moisture as conditioning data. A multipopulated modified-
168microGA uses multiple populations to explore the search
169space of the inverse problem [Ines and Mohanty, 2008a;
170Krishnakumar, 1989] (see also http://www.cuaerospace.-
171com/carroll/ga.html). The main contribution of this paper
172is the further improvements of the methodology [Ines and
173Mohanty, 2008a] for large-scale parameter estimation appli-
174cations using soil moisture data from airborne remote
175sensing.
176[6] SWAP is a 1-D variably saturated flow model that
177solves the Richards equation to simulate the soil moisture
178dynamics in a vertical soil column. The model uses the
179Mualem–Van Genuchten equations [Van Genuchten, 1980;
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180 Mualem, 1976] to define the hydraulic properties of soil in
181 the control volume:

Se ¼
qðhÞ � qres
qsat � qres

¼ 1

1þ jahjn
� �m

ð1Þ

KðhÞ ¼ KsatS
l
e 1� 1� S1=me

� �mh i2
: ð2Þ

186 [7] To evaluate equation (1) and (2), parameters a, n, qres,
187 qsat, Ksat, and l, which are soil specific, must be determined
188 beforehand. At the scale of the airborne remote sensing
189 footprint, they are more perceived as effective (resultant)
190 parameters accounting for horizontal and vertical heteroge-
191 neity in the soil hydrologic unit. The pore-scale definitions
192 of these parameters are given as follows: a(cm�1) is a shape
193 parameter equivalent to the inverse of the bubbling pres-
194 sure; n( ) is a shape parameter that accounts for the pore size
195 distribution; qres(cm

3 cm�3) and qsat(cm
3 cm�3) are the

196 residual and saturated soil moisture content respectively;
197 Ksat (cm d�1) is the saturated hydraulic conductivity; and
198 l ( ) is a shape parameter that accounts for tortuosity in the
199 soil. On average, l is assumed to have a value of 0.5
200 [Mualem, 1976]; Van Genuchten [1980] proposed m to be
201 equal to 1 � 1/n; Se ( ) is the relative saturation and h is the
202 pressure head (�cm).
203 [8] SWAP considers the time-dependent top boundary
204 conditions in terms of either a flux or given head, controlled
205 dynamically based on a given set of nested criteria [Van
206 Dam et al., 1997] related to the atmospheric forcings and
207 hydrologic conditions at the soil surface. The bottom
208 boundary condition can be imposed in various forms, e.g.,

209Dirichlet, Neumann, or Cauchy type. The model is an
210integrated water management tool containing irrigation
211and drainage modules as well as process-based crop growth
212models for simulating the impacts of weather, soil type,
213plant type, and water management practices on the growth
214and development of the crops [Van Dam, 2000].
215[9] The role of the genetic algorithm (GA) in inverse
216modeling is to search for the effective parameters at the
217footprint scale, while SWAP (parameterized at this scale) is
218used to evaluate the proposed parameter sets to test their
219suitability against a set criteria, e.g., reproducing the re-
220gional fluxes/near-surface soil moisture in the pixel. GAs
221are powerful techniques for solving complex problems in
222hydrological and water resources systems [e.g., Wang,
2231991; Cieniawski et al., 1995; Ritzel et al., 1994; Oliveira
224and Loucks, 1997; Wardlaw and Sharif, 1999; Chan-Hilton
225and Culver, 2000; Wu et al., 2006; Gwo, 2001; Vrugt et al.,
2262001; Ines and Droogers, 2002a, 2002b; Ines et al., 2006].
227A recent review of GA applications in hydrologic sciences
228is given by Savic and Khu [2005]. For completeness, we
229describe briefly the mechanics of GA in this section.
230Genetic algorithms combine the survival of the fittest
231mechanism with a structured but randomized information
232exchange to search for solutions of complex search/
233optimization problems [Holland, 1975; Goldberg, 1989].
234The search spaces of the unknown parameters, e.g., the soil
235hydraulic parameters, are discretized into finite lengths then
236coded as sets of binary (zeros and ones) substrings (in
237binary GA) laid out to form string structures called chro-
238mosomes. The arrangement of bits within a chromosome is
239a possible solution of the problem. First, a population of
240chromosomes is randomly generated as a starting position

Figure 1. Schematic diagram of the inverse modeling-based near-surface soil moisture assimilation
using a multipopulated genetic algorithm [Ines and Mohanty, 2008a, 2008b].
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241 for the search. The chromosomes are individually evaluated
242 (here SWAP is invoked) to determine their suitability based
243 on a prescribed fitness function. Then they undergo the
244 process of selection, crossover, and mutation. On the basis
245 of their fitness, they compete to be selected, mate, and
246 reproduce for the next generation. During selection, the
247 fitter chromosomes survive and the weaker die. The win-
248 ning chromosomes randomly mate to exchange genetic
249 information by the process of crossover (to produce off-
250 spring). The new chromosomes (offspring) are subjected to
251 mutation to infuse fresh genetic materials for the new
252 generations and to restore certain genetic characteristics that
253 were lost due to degeneracy. The processes of selection,
254 crossover, and mutation are repeated for many generations
255 until the best possible solution (fittest chromosome) is
256 achieved. Detailed descriptions of GA are given byGoldberg
257 [1989] and Michalewicz [1996]. Figure 1 shows a sche-
258 matic of the inverse modeling-based near-surface soil
259 moisture assimilation using a multipopulated GA, in which
260 the final solutions are derived from those chromosomes (in
261 each population) whose fitness is above the grand average
262 fitness of the all the chromosomes [see Ines and Mohanty,
263 2008a].
264 [10] As one of our goals is incorporating sources of
265 uncertainties (e.g., data and modeling errors) in our regional
266 inverse modeling, we implemented two major approaches to
267 address this issue:
268 [11] 1. We used a modified-microGA in solving multiple
269 modeling conditions (i.e., combinations of initial and bot-
270 tom boundary conditions), respectively. If we define k as a

271variable representing Mualem-Van Genucthen parameters
272and p as elements of k, then k = {p} where p = {a, n, qres,
273qsat, Ksat, l}. If l is fixed to a value of 0.5 [Mualem, 1976],
274then we can define k = {pi=1,. . .,m�1, l} where i is the index
275of parameter position in the GA chromosome and m is the
276total number of soil hydraulic parameters (here m = 6). The
277objective is to minimize the absolute difference Z(k)
278between the observed RS near-surface soil moisture q̂(t)
279and the simulated near-surface soil moisture q(k, t) across
280time t (equation (3)), where j is the index of modeling
281conditions, t is the running index for time, and N is the time
282duration.

MinimizefZðkÞg ¼ 1

N

XN
t¼1

����qðk; tÞ � q̂ðtÞ
����
j

8j: ð3Þ

[12] We define the fitness of the chromosome p’ (short for
286pi=1,. . .,m�1) in equation (4) which is used by GA to test the
287suitability of p’:

fitnessðp0Þj ¼
1

1

N

XN
t¼1

����qðk; tÞ � q̂ðtÞ
����
j

8j: ð4Þ

290[13] 2. We used a modified-microGA in solving multiple
291modeling conditions collectively analogous to how a noisy
292GA [Miller, 1997; Smalley et al., 2000; Wu et al., 2006]

Figure 2. Locations of the selected fields in (a) Southern Great Plains 1997 (SGP97) (Oklahoma) and
(b) Soil Moisture Experiment 2002 (SMEX02) (Iowa) sites.
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293 evolves a robust chromosome effective for many modeling
294 conditions. The objective is to minimize the overall absolute
295 difference Z(k) between the observed RS near-surface soil
296 moisture q̂(t) and the simulated near-surface soil moisture
297 q(k, t) across time t (equation (5)) for all the modeling

298conditions j; M is the total number of modeling conditions
299used.

MinimizefZðkÞg ¼ 1

M

XM
j¼1

1

N

XN
t¼1

����qðk; tÞ � q̂ðtÞ
����

" #
j

: ð5Þ

Figure 3. Airborne remote sensing (RS) soil moisture data: (a) Electronically Scanned Thin Array
Radiometer (ESTAR) (Little Washita (LW) fields) and (b) Polarimetric Scanning Radiometer (PSR)
(Walnut Creek (WC) fields).
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302 [14] We define the sampling fitness (Sfitness) of the
303 chromosome p’ in equation (6), which is used by GA to
304 measure the suitability of the chromosome in method 2:

Sfitnessðp0Þ ¼ 1

M

XM
j¼1

fitnessðp0Þj: ð6Þ

307 [15] The actual near-surface RS soil moisture data are
308 already corrupted with errors (e.g., sensor/calibration errors,
309 etc.), and hence the regional inverse modeling cannot
310 explicitly account for the data errors in the solution. To
311 demonstrate the capability of method 2 to account for data
312 errors more explicitly, we applied it using multiple sources
313 of data analogous to using various data sets from different
314 airborne sensors/replicates. In this part of the study, we used
315 airborne RS and regional in situ soil moisture data as our
316 sources of replicates. In reality, regional in situ soil moisture
317 data are not always available, but data from other airborne
318 RS sensors might be available for this purpose. We can also
319 perturb the available RS data based on its documented
320 accuracy. With multidata analysis, the chromosome suit-
321 ability is evaluated against the multiple data available in
322 addition to the ensemble of modeling conditions as de-
323 scribed above. In this paper, we call this approach method 2
324 with multidata analysis.
325 [16] The objective of method 2 with multidata analysis is
326 to minimize the overall absolute difference Z(k) between the
327 observed RS near-surface soil moisture q̂(t) and the
328 simulated near-surface soil moisture q(k, t) across time t
329 (equation (7)) for all modeling conditions j and for all data
330 sources r; R is the total number of data sources/replicates:

MinimizefZðkÞg ¼
XR
r¼1

1

M

XM
j¼1

1

N

XN
t¼1

����qðk; tÞ � q̂ðtÞ
����

" #
j

8<
:

9=
;

r

:

ð7Þ

333 [17] Here we define the sampling fitness (Sfitness) of the
334 chromosome p’ as in equation (8). Each data source r can be
335 weighted (deterministic/stochastic) with wr so that data with
336 lesser errors (higher quality) can be given more significance
337 in the inverse modeling, and vice versa (equation (8)). Here

338we used a deterministic approach to weighting the data
339sources in which both sources have equal weights or
340contributions to the sampling fitness:

Sfitnessðp0Þ ¼
XR
r¼1

wr �
1

M

XM
j¼1

fitnessðp0Þj

( )
r

: ð8Þ

343[18] The uncertainties of top boundary conditions (e.g.,
344precipitation forcing) are equally important to be included in
345the estimation of soil hydraulic properties at the footprint
346scale [e.g., Peters-Lidard et al., 2008]. Methods 1 and 2 are
347flexible to account for the uncertainties in rainfall measure-
348ments (e.g., using multiple station rainfall data and/or from
349radar measurements). In this study, we assumed that the
350observed rainfall data used are representative of the airbone
351RS footprints (see section 2.2.1). Furthermore, method 2
352(see equation (7)) can be generalized to include other
353sources of uncertainties in inputs, parameters (soil hydrau-
354lics/root water uptake), and model structures (e.g., using
355different soil constitutive and/or hydrological models).
356Considering all these sources of uncertainties, however,
357will compromise the efficiency (i.e., computational time) of
358the evolutionary process. Under this setup, the analysis of
359uncertainties should be done with care because they are not
360of Bayesian type.
361[19] A cross validation of the soil hydraulic parameters
362derived from methods 1 and 2 was performed to check if the
363parameters derived from one modeling condition (i.e.,
364initial/bottom boundary ensembles) are applicable to the
365other modeling conditions used.

3672.2. Data and Experiments

3682.2.1. Locations of the Study
369[20] Figure 2 shows the locations of the selected fields in
370the Southern Great Plains 1997 (SGP97) Hydrology Exper-
371iment and the Soil Moisture Experiment 2002 (SMEX02)
372regions used in this study. We selected these fields or
373airborne RS footprints because of the availability of
374ground-truth soil moisture and soil hydraulic properties data
375sets collected using spatially distributed sampling schemes
376during the field campaigns for in situ and laboratory
377measurements [Mohanty and Skaggs, 2001; Jacobs et al.,
3782004; Mohanty et al., 2002] (see also B. P. Mohanty,
379unpublished data, 2006, http://vadosezone.tamu.edu). These
380data sets can be used to validate the RS footprint-scale
381results based on the IM-based near-surface soil moisture
382assimilation experiments.

t1.1 Table 1. Representations of the Mualem-Van Genuchten Para-

meters in the Genetic Algorithma

Parameter

Search Space

Number of Bits (L) 2Lt1.2
Minimum
Values

Maximum
Valuest1.3

a (c m�1) 0.0060 0.0330 5 32t1.4
n ( ) 1.200 1.610 6 64t1.5

qres (cm
3 cm�3) 0.061 0.163 7 128t1.6

qsat (cm
3 cm�3) 0.37 0.55 5 32t1.7

Ksat (cm d�1) 1.84 55.7 10 1024t1.8

aFrom Ines and Mohanty [2008a]. Global search space = 32� 64� 128�
32 � 1024 = 8,589,934,592. Example of k = {a, n, qres, qsat, Ksat} =

{00101 110010 0001111 00001 0101000101}. Probability of crossover =

0.5; probability of creep mutation = 0.5; probability of intermittent jump

mutation = 0.05; population = 10 chromosomes; number of multipopulation

= 3; maximum generation = 500.t1.9

Table 2a. Derived Effective Soil Hydraulic Parameters for SGP97

Fields LW03, LW13, and LW21 Using Method 1 Under Ground-

water Conditions

Statistics
a

(cm�1)
n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

LW03 Mean 0.022 1.601 0.101 0.373 46.0
SD 0.006 0.012 0.005 0.005 6.1

LW13 Mean 0.023 1.570 0.062 0.391 30.3
SD 0.006 0.043 0.001 0.020 15.3

LW21 Mean 0.026 1.577 0.118 0.379 30.7
SD 0.006 0.027 0.008 0.010 14.9
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383 [21] The selected fields/RS footprints from SGP97 sites
384 in Oklahoma are composed of LW03, LW13, and LW21 of
385 Little Washita (LW) watershed (Figure 2a). The LW03 field
386 is characterized by a mixture of sandy loam and loam with
387 grass cover, while the LW13 field is characterized by a
388 mixture of silt loam and loam with grass cover. The LW21
389 field, on the other hand, is characterized by a mixture of silt
390 loam and loam with grass/wheat vegetation cover. Daily
391 weather data for the period of January–December 1997
392 were collected from different U.S. Department of Agricul-
393 ture Agricultural Research Service (USDA-ARS) micronet
394 sites, nearest to the selected fields. Here we used micronet
395 sites ARS124, ARS136, and ARS151 for LW03, LW13, and
396 LW21, respectively (http://grl.ars.usda.gov/micronet/).
397 More detailed descriptions of the selected SGP97 study
398 sites and ground soil moisture sampling protocols are given
399 by Mohanty and Skaggs [2001].
400 [22] The selected SMEX02 fields in Iowa are WC11,
401 WC12, WC13, and WC14 of the Walnut Creek (WC)
402 watershed (Figure 2b). The WC11 field consists of a
403 mixture of clay loam and loam, and a cropped area with
404 primarily corn and a patch of soybean. The WC12 field is
405 also characterized by a mixture of clay loam and loam and
406 planted to corn. The WC13 and WC14 fields have a mixture

407of clay loam, loam and silty clay loam, and planted to row-
408cropped (WC13) and broadcasted (WC14) soybean. Daily
409weather data from January–December 2002 were collected
410from a nearby Soil-Climate-Analysis-Network (SCAN) sta-
411tion at Ames, Iowa [Jackson, 2002] (see also http://
412www.wcc.nrcs.usda.gov/scan/). We used only one set of
413daily weather data for these four adjacent fields/RS
414footprints WC11, WC12, WC13, and WC14 in the model
415simulation and inverse analyses. Detailed descriptions of the
416selected SMEX02 field sites and ground soil moisture
417sampling protocols can also be found elsewhere [Jacobs et
418al., 2004].
4192.2.2. Airborne RS Near-Surface Soil Moisture Data
420[23] In Oklahoma, airborne L-band passive microwave
421remote sensor electronically scanned thinned array radiom-
422eter (ESTAR) soil moisture data sets [Jackson et al., 1999]
423from the SGP97 campaign database (http://disc.gsfc.nasa.
424gov/fieldexp/SGP97/estar.html), ranging from DOY 169–
425171, 176–178, 180–184, 192–195, and 197 (June–July
4261997), were processed with ENVI image processing
427software [Research Systems, Inc., 2003]. The 16 ESTAR
428soil moisture data were georeferenced and stacked as a
429series of map layers in an ascending order, based on the day
430of year (DOY) for easy retrieval of the time series of soil
431moisture data. The ESTAR footprints/pixels corresponding
432to the locations of LW03, LW13, and LW21 (Figure 2a)
433were determined and the time series of near-surface soil
434moisture data were extracted (Figure 3a) for the inverse
435analyses.
436[24] In Iowa, airborne C-band passive microwave remote
437sensor Polarimetric Scanning Radiometer (PSR) soil mois-
438ture data [Bindlish, 2004] from the SMEX02 campaign
439(http://nsidc.org/data/amsr_validation/soil_moisture/smex02/)
440were used for the inverse analyses. The data contained
441near-surface soil moisture measurements of DOY 176,
442178, 180, 182, 185, 189, and 190–193 (June–July 2002).
443The 10 PSR soil moisture images were georeferenced and

Table 2b. Derived Effective Soil Hydraulic Parameters for SGP97

Fields LW03, LW13, and LW21 Using Method 1 Under Free-

Drainage Conditions

Statistics
a

(cm�1)
n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

LW03 Mean 0.006 1.479 0.068 0.41 53.9
SD 0.001 0.053 0.014 0.02 1.4

LW13 Mean 0.007 1.595 0.063 0.538 36.221
SD 0.001 0.015 0.003 0.013 10.544

LW21 Mean 0.009 1.417 0.126 0.388 41.4
SD 0.008 0.098 0.010 0.023 12.7

Figure 4. Comparison of derived q(h) (Dassim) from method 1 under groundwater conditions,
UNSODA and observed (field average and spread) soil water retention curves for the selected fields at
SGP97 site: (a) LW03 (N = 20), (b) LW13 (N = 17), and (c) LW21 (N = 5). N indicates the number of
samples; L is loam, SL is sandy loam, and SiL is silt loam.
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444 stacked in the same manner as that of the ESTAR data.
445 Furthermore, we located the PSR footprints/pixels colo-
446 cated with the geographic locations of the WC11, WC12,
447 WC13, and WC14 fields (Figure 2b), and then we
448 extracted the time series of soil moisture data for the
449 inverse analyses (Figure 3b). Both PSR (SMEX02) and
450 ESTAR (SGP97) based remotely sensed soil moisture data
451 have 800 m � 800 m footprint/pixel resolutions. Both
452 PSR and ESTAR have soil moisture observation depths of
453 5 cm. Uncertainties associated with the data could mainly
454 come from the data processing and retrieval algorithm of
455 soil moisture from passive microwave based brightness
456 temperature, and associated within-pixel variability of soil
457 texture, topography, vegetation, and systemic errors from
458 the airborne sensors/aircraft operations.
459 2.2.3. Soil Hydraulic Properties Measurement
460 [25] For the SGP97 region, we collected soil cores from
461 different depths at representative (soil, topography, and
462 vegetation) sites based on a priori information from digital
463 maps (http://www.essc.psu.edu/nasa_lsh/) and site inspec-
464 tion. Although in the database we provided more detailed
465 and unbounded site classifications for future researchers,
466 various combinations of soil texture (12 USDA classes),
467 relative position (valley, hillslope, hilltop), and vegetation
468 type (grass, shrub, crop) were used as the primary groups
469 for our site selection protocol. A total of 157 surface soil
470 cores were collected from 46 quarter sections within the
471 Little Washita (LW), El Reno (ER), and Central Facility
472 (CF) intensive study areas. In addition to the surface cores,
473 four or five subsurface soil cores were collected at depths of
474 up to 1 m at selected sites (based on soil morphologic
475 characteristics) within the LW, ER, and CF areas. Soil cores
476 were analyzed in the laboratory for soil hydraulic properties
477 [Mohanty et al., 2002]. Similar soil core sampling protocols
478 were followed for the SMEX02 region. A total of 50 sets of
479 soil water retention and hydraulic conductivity observations
480 were made within the Walnut Creek watershed in Iowa

481(B. P. Mohanty, unpublished data, 2006, http://vadosezone.
482tamu.edu).
4832.2.4. Numerical Experiments
484[26] Considering a typical dynamic vadose zone of 2 m
485depth (from the soil surface), we conducted the numerical
486experiments for parameter estimation with the notion that
487our soil hydrologic modeling domains are effective in
488nature (i.e., reflecting the resultant behavior of hydrologic
489processes in the spatially heterogeneous porous medium).
490Hence we used pixel-representative (i.e., 800 m � 800 m)
491hydroclimatic forcings and validation data in the simula-
492tions, such as representative crop/vegetation, precipitation,
493and other meteorological variables and remotely sensed/
494regional in situ soil moisture data [Mohanty et al., 2002,
4952000; Mohanty and Skaggs, 2001; Jacobs et al., 2004]. The
496effective soil hydraulic properties that characterize the
497modeling domain were determined by the GA-based inverse
498modeling using the available time series of RS near-surface
499soil moisture data as conditioning criteria. A wide range of
500soils (from clay loam to sandy loam in terms of soil
501hydraulic parameter values) were used as search spaces
502during the inverse analyses matching the concept of
503effective parameters rather than any dominant soil texture
504within the study pixel (see Table 1).
505[27] For methods 1 and 2 (section 2.1) we considered two
506major bottom/lower boundary conditions. First, a lower
507boundary condition prescribed by a groundwater table
508and, second, a lower boundary prescribed under a free-
509drainage condition (i.e., @h/@z = 0). Under the groundwater
510condition, we used three modeling conditions (ensembles),
511namely, 100-, 150-, and 200-cm water table depths. For the
512free-drainage condition, three modeling conditions (ensem-
513bles) were considered as well, uniform soil profile initial
514conditions of �100-, �500-, and �1000-cm pressure heads,
515respectively. Under water table conditions the initial profile
516soil water pressures are in equilibrium with the groundwater
517table. In summary, the number of modeling conditions used

Figure 5. Comparison of derived q(h) (Dassim) from method 1 under free drainage conditions,
UNSODA and observed (field average and spread) soil water retention curves for the selected fields at
SGP97 site: (a) LW03 (N = 20), (b) LW13 (N = 17), and (c) LW21 (N = 5). N indicates the number of
samples; L is loam, SL is sandy loam, and SiL is silt loam.
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518 for method 1 are three for groundwater, and three for free-
519 drainage conditions, respectively (equation (3)), and in
520 method 2 there are six different modeling conditions used
521 (all groundwater and free-drainage conditions simulta-
522 neously; equations (5) and (7)).
523 [28] In SGP97 pixels, the simulation periods for fields
524 LW03 and LW13 included 1 January to 31 December 1997,
525 where SWAP models grass cover as an annual crop with a
526 365-d cycle. Nevertheless, we only considered the simulated
527 near-surface soil moisture data q(z = 0–5 cm, t)
528 corresponding to the DOYs when RS soil moisture data
529 were available for evaluating the fitness of a generated
530 combination of parameters p’. We used wheat crop as the
531 dominant vegetation cover for the LW21 field. Note,
532 however, that during the SGP97 campaign the wheat
533 crops were already harvested. To include the wheat
534 cropping season in the simulations and allow enough time
535 for model spinning/initialization prior to the growing season,
536 the SWAP model was run during 1 September 1996 to
537 31 August 1997.
538 [29] For SMEX02 pixels, we considered corn as the
539 dominant vegetation cover for the WC11 and WC12
540 fields, and the simulations covered the period from 1 May
541 to 31 October 2002. Similarly, the simulation periods for
542 fields WC13 and WC14 with predominantly soybean cover
543 also included from 1 May to 31 October 2002. All these
544 gently rolling fields/footprints in the SMEX02 and SGP97
545 regions were considered flat from the runoff and run-on
546 generation perspective, and thus the resultant water flow
547 was only in vertical direction at the model domain/airborne
548 RS footprint scale (800 m � 800 m). SWAP uses the root-
549 water uptake model of Feddes et al. [1978] to model the
550 root-soil moisture dynamics in the vadose zone. Here we
551 used measured rooting depths as inputs to the root-water
552 uptake model. A trapezoidal root density was assumed for
553 all the simulations in SMEX02 and SGP97 sites.
554 [30] For the multidata analysis (equation (7)), we used
555 airborne RS and regional in situ soil moisture data [Mohanty

556and Skaggs, 2001; Jacobs et al., 2004] as our sources of
557replicates. All inverse modeling runs performed in this
558study were applied within the multipopulated GA frame-
559work outlined by Ines and Mohanty [2008a].

5612.3. Cross Validation of Derived Effective q(h), K(h),
562and q(z,t)
563[31] From the inverse modeling based on methods 1 and
5642 described earlier, we compared the derived q(h) and K(h)
565with the (arithmetic) average soil hydraulic functions (1)

Figure 6. Comparison of derived q(h) (Dassim) from method 2 (i.e., under all groundwater and free
drainage conditions, collectively), UNSODA and observed (field average and spread) soil water retention
curves for the selected fields at SGP97 site: (a) LW03 (N = 20), (b) LW13 (N = 17), and (c) LW21 (N = 5).
N indicates the number of samples; L is loam, SL is sandy loam, and SiL is silt loam.

Figure 7. Comparison of derived q(h) (Dassim) from
method 2 under multidata analysis, UNSODA and observed
(field average and spread) soil water retention curves for the
LW13 (N = 17) field at SGP97 site. N indicates the number
of samples; L is loam, SL is sandy loam, and SiL is silt
loam.
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566 measured using the soil cores collected from the fields
567 [Mohanty et al., 2002] and (2) for the dominant soil textures
568 at the particular fields/RS footprints from the UNSODA
569 database [Leij et al., 1999].

570[32] We cross validated the estimated q(h) and K(h) by
571comparing the simulated near-surface soil moisture and the
572areal-average near-surface soil moisture measured by
573ground-based theta probes across the LW03, LW13, and

Figure 8. Simulated and cross-validated near-surface soil moisture (z = 0–5 cm) using method 1 under
groundwater conditions versus ESTAR and observed areal-average (with spread) soil moisture during
SGP97: (a) LW03 (N = 49), (b) LW13 (N = 49), and (c) LW21 (N = 49). N indicates the number of
samples. Top panels are applied to all groundwater conditions; bottom panels are applied to all free
drainage conditions.
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574 LW21 (SGP97) fields [Mohanty and Skaggs, 2001] and the
575 WC11, WC12, WC13, and WC14 (SMEX02) fields [Jacobs
576 et al., 2004]. The cross validation was performed by
577 applying the derived soil hydraulic functions across the
578 ensemble of modeling conditions (i.e., q(h) and K(h)
579 derived from groundwater boundary conditions were
580 applied to both groundwater and free-drainage conditions,
581 and vice versa). Mean, standard deviation, correlation
582 coefficient (R), mean bias error (MBE), and root mean
583 square error (RMSE) of modeled and measured values were
584 used to evaluate the performance of the GA-based inverse
585 modeling and near-surface soil moisture assimilation in
586 deriving the effective soil hydraulic properties at the
587 footprint of the airborne sensors.
588 [33] The average areal soil water retention and hydraulic
589 conductivity functions are derived using equations (9) and
590 (10), and the areal near-surface soil moisture was deter-
591 mined using equation (11), where �q(h) is the average soil
592 water retention at pressure head h; qi(h) is the soil water

593retention for soil sample i at pressure head h; �K(h) is the
594average unsatured/saturated hydraulic conductivity at pres-
595sure head h; Ki(h) is the unsaturated/saturated hydraulic
596conductivity of soil core sample i at pressure head h; N is
597the number of soil core samples for hydraulic property
598measurements or soil moisture sampling points; and �q(z,t) is
599the areal-average near-surface (z = 0–5 cm) soil moisture on
600day t.

�qðhÞ ¼ 1

N

XN
i¼1

qiðhÞ 8h ð9Þ

�KðhÞ ¼ 1

N

XN
i¼1

KiðhÞ 8h ð10Þ

Figure 9. Sample results of simulated and cross-validated
near-surface soil moisture (z = 0–5 cm) using method 1
under free drainage conditions versus ESTAR and observed
areal-average (with spread) soil moisture at LW03 (N = 49)
during SGP97: (a) applied to all free drainage conditions
and (b) applied to all groundwater conditions. N indicates
the number of samples.

Table 2c. Derived Effective Soil Hydraulic Parameters for SGP97

Fields LW03, LW13, and LW21 Using Method 2 (Under All

Groundwater and Free-Drainage Conditions, Collectively)

Statistics
a

(cm�1)
n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

LW03 Mean 0.032 1.601 0.113 0.374 44.735
SD 0.001 0.010 0.002 0.004 4.616

LW13 Mean 0.021 1.370 0.065 0.373 27.157
SD 0.010 0.048 0.004 0.004 14.684

LW21 Mean 0.032 1.602 0.129 0.373 12.409
SD 0.001 0.005 0.002 0.004 1.097

Figure 10. Sample results of simulated and cross-
validated near-surface soil moisture (z = 0–5 cm) using
method 2 (i.e., under all groundwater and free drainage
conditions, collectively) versus ESTAR and observed areal-
average (with spread) soil moisture at LW03 (N = 49)
during SGP97: (a) applied to all groundwater conditions and
(b) applied to all free drainage conditions. N indicates the
number of samples.

Table 2d. Derived Effective Soil Hydraulic Parameters Using

Method 2 Under Multidata Analysis

Statistics
a

(cm�1)
n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

SGP97
LW13 Mean 0.022 1.351 0.096 0.409 13.312

SD 0.009 0.102 0.029 0.023 9.705

SMEX02
WC12 Mean 0.031 1.581 0.128 0.376 53.148

SD 0.005 0.038 0.023 0.008 4.970
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�qðz; tÞ ¼ 1

N

XN
i¼1

qiðz; tÞ 8t: ð11Þ

608 3. Results and Discussions

609 3.1. SGP97 Sites, Oklahoma

610 3.1.1. Effective Soil Hydraulic Properties and Soil
611 Moisture for Selected SGP97 Fields
612 [34] Tables 2a and 2b show the derived effective soil
613 hydraulic parameters for each selected SGP97 fields (LW03,

614LW13, LW21) under groundwater and free-drainage con-
615ditions using method 1 (see section 2.1). In method 1, the
616soil hydraulic parameters are determined under different
617modeling conditions independently (under the multipopula-
618tion framework). Then the solutions from these individual
619conditions are aggregated to form the final solution of the
620inverse problem. In this part of the study, we made distinc-
621tions between groundwater and free-drainage conditions as
622lower boundary conditions to validate if those parameters
623derived under one condition are applicable or not to other
624modeling conditions. Apparently, the derived effective soil
625hydraulic parameters from groundwater conditions are not
626similar to those derived from free-drainage conditions
627(Tables 2a and 2b). It appears that the soil hydraulic param-
628eters derived from free-drainage conditions depict wetter soil
629hydraulic functions, i.e., higher saturated soil moisture con-
630tents and higher bubbling pressures (i.e., lesser a values)
631(see Figures 4 and 5; see also Figures 6 and 7). Interesting
632characteristics of these functions are more evident after we
633applied them in forward modeling.
634[35] In Figures 8a–8c, the responses of our SGP97
635modeling domains (LW03, LW13, LW21) from forward
636modeling are shown. These soil moisture dynamics were
637simulated using soil hydraulic parameters derived from
638method 1 under groundwater conditions (Table 2a). It is
639evident that the parameters used are applicable for both
640groundwater (Figures 8a–8c, top plots) and free drainage
641conditions (Figures 8a–8c, bottom plots), suggesting the
642robustness of the derived soil hydraulic parameters. The
643apparent variability of the simulated soil moisture contents

Figure 11. Sample results of simulated and cross-vali-
dated near-surface soil moisture (z = 0–5 cm) using method
2 under multidata analysis versus ESTAR and observed
areal-average (with spread) soil moisture at LW13 (N = 49)
during SGP97: (a) applied to all groundwater conditions and
(b) applied to all free drainage conditions. N indicates the
number of samples.

Table 3a. Performance of Method 1 Under Groundwater Condi-

tions at SGP97 Sitesa

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
LW03 0.81 0.035 0.046 0.84 0.040 0.032
LW13 0.86 �0.016 0.027 0.81 �0.073 0.080
LW21 0.73 0.025 0.044 0.47 0.026 0.044

Applied to All Free Drainage Conditions
LW03 0.74 �0.005 0.036 0.76 0.000 0.026
LW13 0.78 �0.045 0.053 0.71 �0.102 0.110
LW21 0.61 �0.017 0.048 0.48 �0.012 0.042

aR is correlation coefficient ( ); MBE is mean bias error (cm3 cm�3);
RMSE is root mean square error (cm3 cm�3).

Table 3b. Performance of Method 1 Under Free Drainage

Conditions at SGP97 Sites

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
LW03 0.65 0.193 0.195 0.58 0.203 0.195
LW13 0.79 0.241 0.244 0.76 0.192 0.187
LW21 0.66 0.005 0.040 0.51 0.008 0.040

Applied to All Free Drainage Conditions
LW03 0.81 0.003 0.030 0.85 0.006 0.019
LW13 0.86 �0.018 0.030 0.82 �0.075 0.082
LW21 0.65 0.109 0.118 0.51 0.110 0.112

Table 3c. Performance of Method 2 (Under All Groundwater and

Free Drainage Conditions, Collectively) at SGP97 Sites

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
LW03 0.78 0.011 0.038 0.81 0.015 0.019
LW13 0.90 �0.001 0.020 0.87 �0.059 0.065
LW21 0.72 0.006 0.037 0.49 0.007 0.041

Applied to All Free Drainage Conditions
LW03 0.75 0.006 0.037 0.77 0.011 0.022
LW13 0.81 �0.015 0.031 0.76 �0.071 0.081
LW21 0.65 0.001 0.041 0.52 0.005 0.039
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644 under groundwater conditions can be attributed to the vari-
645 able responses of the modeling domains using parameters
646 derived from one groundwater condition (see section 2.2.4)
647 and then applying them to the others in the forward
648 modeling, and vice versa. It also suggests that soil hydraulic
649 parameters derived from one groundwater condition are not
650 exactly the same from the parameters derived from the other
651 modeled groundwater conditions (see section 2.2.4). Further
652 analysis showed that parameters derived under a deeper
653 water table scenario have produced wetter near-surface soil
654 moisture contents when being applied at a shallower water
655 table condition (not shown).
656 [36] Figures 9a and 9b also shows a sample forward
657 modeling results (LW03 field) using soil hydraulic param-
658 eters derived by method 1 under free drainage conditions
659 (Table 2b). Apparently, the parameters performed well
660 under free drainage conditions (Figure 9b) with small
661 variability in the simulated near-surface soil moisture.
662 However, when applied under groundwater conditions, it
663 is evident that the simulated soil moisture contents are too
664 wet compared with the observed RS and in situ soil
665 moisture data. This was expected because of the wetter soil
666 hydraulic functions derived by method 1 under free drain-
667 age conditions (Table 2b; Figure 5). This behavior is
668 consistent with the other SGP97 fields.
669 [37] The preceding discussion suggests that the parame-
670 ters derived by method 1 are mostly applicable to the
671 modeling conditions they were subject from, with a small
672 exception for parameters derived under groundwater con-
673 ditions. The question remains then, How can we derive a set
674 of soil hydraulic parameters that are effective for all
675 modeling conditions? Method 2 was designed to address
676 this question in which the parameter search was evaluated
677 against all modeling conditions (groundwater and free
678 drainage) simultaneously (see section 2.1). Since we are
679 looking for sets of soil hydraulic parameters that are
680 effective for all modeling conditions, it is hypothesized that
681 these parameter sets are narrow in variability so that they
682 can satisfy all the modeling conditions used for replicating
683 the near-surface RS soil moisture. Table 2c shows the
684 effective soil hydraulic parameters derived for LW03,
685 LW13, and LW21 fields using method 2. At a glance, they
686 seem to correspond well with those parameters derived
687 under groundwater conditions in method 1, but Figure 6
688 shows that they are different. Aside from the narrower
689 variability of the derived soil hydraulic functions, some
690 significant improvements are observed especially for the
691 case of LW13 field (Figure 6b versus Figures 4b and 5b).
692 This result suggests that there could be variability in

693hydrologic conditions (at LW13) that were accounted for
694when we integrated together several modeling conditions in
695the inverse solutions, which were not accounted for by the
696earlier implementations of method 1 (Figures 4b and 5b). A
697sample performance of the derived soil hydraulic parame-
698ters in simulating the near-surface soil moisture when used
699in forward simulations is shown in Figures 10a and 10b (for
700LW03). It is evident that the derived parameters are ‘‘effec-
701tive’’ for all the modeling conditions used (groundwater
702(Figure 10a) and free drainage (Figure 10b)). Interesting to
703note is the narrower variability of the simulated soil mois-
704ture contents among the groundwater conditions in method 2
705compared with method 1 (Figure 8a, top plot). This small
706variability suggests that the derived parameters in method 2
707produced almost similar near-soil moisture contents across
708the spectrum of groundwater conditions used. This further
709supports the ‘‘effective’’ nature of the derived soil hydraulic
710parameters.
711[38] However, remote sensing data are always corrupted
712with certain (e.g., retrieval algorithm, sensor accuracy, geo-
713projection) errors. To illustrate the potential of method 2 in
714including data errors to the inverse analysis, we used the in
715situ regional (average) soil moisture as a replicate for the
716ESTAR data (see sections 2.1 and 2.2.4; equations (7) and
717(8)). Usually, this is done by introducing a white noise
718(based on RS accuracy) to the original RS data to produce
719stochastic replicates. In equation (8), we gave equal weights
720to both the ESTAR and regional in situ soil moisture data.
721Table 2d shows the derived soil hydraulic parameters
722(LW13) using method 2 under multidata analysis. LW13
723was chosen for further analysis because as shown in Figure 8c

Table 3d. Performance of Method 2 Under Multidata Analysis

Fields

Simulated Versus RS Simulated Versus Ground

RemarksR MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
LW13 0.90 0.064 0.067 0.87 0.004 0.022 SGP97
WC12 0.76 0.022 0.049 0.92 0.102 0.106 SMEX02

Applied to All Free Drainage Conditions
LW13 0.86 0.042 0.049 0.81 �0.016 0.032 SGP97
WC12 0.79 0.010 0.046 0.90 0.088 0.093 SMEX02

Table 4a. Derived Effective Soil Hydraulic Parameters for

SMEX02 Fields WC11, WC12, WC13, and WC14 Using Method

1 Under Groundwater Conditions

Statistics

a
(cm�1)

n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

WC11 Mean 0.024 1.599 0.137 0.373 33.3
SD 0.005 0.010 0.005 0.004 14.7

WC12 Mean 0.028 1.603 0.112 0.373 53.4
SD 0.004 0.007 0.038 0.006 4.0

WC13 Mean 0.026 1.605 0.098 0.373 55.4
SD 0.006 0.005 0.034 0.004 0.2

WC14 Mean 0.027 1.604 0.110 0.373 55.1
SD 0.005 0.007 0.039 0.004 0.7

Table 4b. Derived Effective Soil Hydraulic Parameters for

SMEX02 Fields WC11, WC12, WC13, and WC14 Using Method

1 Under Free Drainage Conditions

Statistics

a
(cm�1)

n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

WC11 Mean 0.014 1.600 0.138 0.370 47.63
SD 0.003 0.008 0.003 0.000 9.52

WC12 Mean 0.011 1.593 0.109 0.373 55.112
SD 0.004 0.024 0.031 0.004 0.610

WC13 Mean 0.008 1.554 0.088 0.373 55.409
SD 0.002 0.053 0.026 0.003 0.396

WC14 Mean 0.009 1.574 0.105 0.373 54.871
SD. 0.002 0.038 0.035 0.003 0.795
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724 it appears that the RS soil moisture underestimates the
725 regional in situ soil moisture. Hence the soil hydraulic
726 parameters derived earlier from method 2 only represent
727 the information contained from remote sensing data. By
728 including the regional soil moisture as additional condition-
729 ing criteria, we may be able to find a more robust soil
730 hydraulic parameter set for LW13. The performance of this
731 parameter set (Table 2d; Figure 7) is illustrated in Figures 11a
732 and 11b. It appears that the multidata analysis improved the
733 replication of the regional in situ soil moisture. The spreads
734 of the simulated soil moistures (Figures 11a and 11b)
735 have also increased because both the information contents
736 of the data (ESTAR and regional in situ) are being used
737 in conditioning the soil hydraulic parameters (compare
738 Table 2c and 2d; LW13). It also shows in Figure 7 that in
739 order to simulate better the regional in situ soil moisture, the
740 soil hydraulic function has to be slightly wetter (see
741 Figure 6b). Note, however, that under the combined mod-
742 eling conditions used, the regional in situ data were more
743 favored by method 2 than the remote sensing data in the
744 multidata analysis (Figures 11a and 11b). In operational
745 mode, Figures 11a and 11b are combined usually to produce

746consolidated simulation results that can account for both
747modeling and data errors.
7483.1.2. Validation
749[39] Methods 1 and 2, and the multidata variant of
750method 2, were validated using laboratory and field mea-
751sured soil hydraulic data from the SGP97 fields and by
752texture-based data from UNSODA database [Leij et al.,
7531999]. Figures 4–7 show the comparisons of the derived
754soil hydraulic functions with laboratory measurements and
755UNSODA. Tables 3a–3d, on the other hand, show the
756correlations (R), mean bias error (MBE), and root mean
757square error (RMSE) of the simulated and observed soil
758moisture contents (RS and regional in situ (defined as
759ground)). The simulated versus RS columns serve as our
760calibration (although in the forward modeling the parameter
761sets from one modeling condition were applied to all
762modeling conditions used, a keen to cross validation); while
763the simulated versus soil cores serve as full validation of the
764derived soil hydraulic parameters.
7653.1.2.1. Method 1 Under Groundwater Conditions
766[40] Except for LW13, the observed average (regional)
767soil water retention curves (see equation (9)) are well

Figure 12. Comparison of derived q(h) (Dassim) from method 1 under groundwater conditions,
UNSODA and observed (field average and spread) soil water retention curves for the selected fields at
SMEX02 site: (a) WC11 (N = 6), (b) WC12 (N = 4), (c) WC13 (N = 6), and (d) WC14 (N = 3). N
indicates the number of samples; L is loam, CL is clay loam, and SiCL is silty clay loam.
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768 represented by the inverse modeling estimates (Dassim).
769 Interesting to note is that the UNSODA data also repre-
770 sented well the observed values, suggesting that under the
771 current conditions (physical/hydroclimatic) of the SGP97
772 fields, texture-based soil hydraulic data could perhaps be
773 used to estimate the regional soil hydraulic properties of the
774 fields. The SGP97 fields are composed mostly of undis-
775 turbed soils since there were limited agricultural activities
776 (major land use is grassland) observed in the area. Ksat

777 values also correspond well within the UNSODA range (for
778 loam, silt loam, sandy loam) [Leij et al., 1999] and the
779 observed (regional) field data [Ines and Mohanty, 2008b]. In
780 Table 3a, the Rcalibration ranges from 0.73 to 0.86 while the
781 Rvalidation ranges from 0.47 to 0.84 when parameters derived
782 under groundwater conditions are applied under ground-
783 water conditions. The MBEvalidation (and RMSEvalidation) of
784 LW13 field showed an underestimation of the regional in
785 situ soil moisture contents. It is noteworthy that the
786 correlations decreased (both in calibration and validation
787 modes) when these (groundwater based) parameters were
788 applied under free drainage conditions. The bias is still
789 evident in the case of LW13 field.

7903.1.2.2. Method 1 Under Free Drainage Conditions
791[41] Evidently, based on our previous observations
792(section 3.1.1) the correlations and errors (see Table 3b)
793of the simulated and observed soil moisture contents (both
794in calibration and validation modes) are better when the
795parameters derived under free drainage conditions are
796applied under free drainage lower boundary conditions in
797the forward modeling with the exception of LW21, suggest-
798ing that in this field, groundwater lower boundary condi-
799tions might be better applied. Except for LW21, the
800parameters derived under free drainage conditions produced
801wetter soil moisture (see MBE in Table 3b) when they are
802applied under groundwater conditions. The derived soil
803hydraulic properties appear to have higher water holding
804capacity than expected (see Figure 5).
8053.1.2.3. Method 2 Under Both Groundwater and Free
806Drainage Conditions
807[42] Usually at the footprint scale, we do not know
808exactly what the appropriate modeling conditions to be
809used for our forward/inverse modeling. In method 2, this
810uncertainty is accounted for by including many initial and
811lower boundary conditions in the analysis simultaneously.

Figure 13. Comparison of derived q(h) (Dassim) from method 1 under free drainage conditions,
UNSODA and observed (field average and spread) soil water retention curves for the selected fields at
SMEX02 site: (a) WC11 (N = 6), (b) WC12 (N = 4), (c) WC13 (N = 6), and (d) WC14 (N = 3). N indicates
the number of samples; L is loam, CL is clay loam, and SiCL is silty clay loam.
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812 Table 3c shows the robustness of the derived soil hydraulic
813 parameters applied under groundwater and free drainage
814 conditions, respectively. Note the comparable correlations
815 and errors (MBE and RMSE) of the simulated and observed
816 soil moisture contents under calibration and validation
817 mode. These results appear also to be more robust than
818 those shown in Tables 3a–3b (see also Figures 4 and 6),
819 although the negative bias (validation) of the simulated soil
820 moisture is still apparent in LW13 field, suggesting that the
821 simulated values underpredict the regional in situ data.
822 3.1.2.4. Method 2 With Multidata Analysis
823 [43] If we consider both the ESTAR and regional in situ
824 soil moisture data in the parameter estimation, we can see
825 that the errors (MBE and RMSE) between simulated and
826 ground values were reduced considerably, suggesting that
827 the regional in situ data are now well represented. However,
828 the errors between the simulated and ESTAR values have
829 increased relatively (see Table 3d, LW13 and SGP97). Note
830 that both data sets were given the same weights in the
831 inverse modeling. The correlations remained strong in both
832 groundwater and free drainage conditions.

8343.2. SMEX02 Sites, Iowa

8353.2.1. Effective Soil Hydraulic Properties and Soil
836Moisture for Selected SMEX02 Fields
837[44] Tables 4a and 4b also show the derived soil hydraulic
838parameters for the selected SMEX02 fields WC11, WC12,
839WC13, and WC14 using method 1 under groundwater
840(Table 4a) and free drainage (Table 4b) conditions, respec-
841tively. The general trend that the soil hydraulic properties
842derived under free drainage conditions are wetter as com-
843pared with those derived under groundwater conditions is
844still evident (Tables 4a and 4b; Figures 12 and 13; see also
845Figures 14 and 15). Note, however, that it is only now the
846shape parameter a that contributed to this wetness. All the
847other soil hydraulic parameters are consistently comparable
848in both the free drainage and groundwater scenarios
849(Tables 4a and 4b). Figures 16a–16d also show the
850performance of the derived soil hydraulic parameters under
851groundwater conditions (method 1) in simulating the near-
852surface soil moisture dynamics of the selected SMEX02
853fields. It is generally observed that the soil hydraulic
854parameters derived under groundwater conditions are also
855applicable under free drainage conditions, consistent with

Figure 14. Comparison of derived q(h) (Dassim) from method 1 (i.e., under all groundwater and free
drainage conditions), UNSODA and observed (field average and spread) soil water retention curves for
the selected fields at SMEX02 site: (a) WC11 (N = 6), (b) WC12 (N = 4), (c) WC13 (N = 6), and (d) WC14
(N = 3). N indicates the number of samples; L is loam, CL is clay loam, and SiCL is silty clay loam.
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856 the observations made in SGP97 results. Except for WC12
857 and WC14 (to some extent) the derived parameters
858 consistently represented well the observed regional in situ
859 soil moisture data. Interesting to note is the spread of the
860 soil moisture simulated under free drainage conditions using
861 groundwater condition-derived parameters (Figures 16a–16d,
862 bottom plots), in which only WC11 has now the narrowest
863 soil moisture variability. This response is attributed to the
864 smaller variability of the derived residual soil moisture
865 contents in WC11 compared with WC12, WC13, and
866 WC14 (Table 4a; Figure 12). As in SGP97, the derived soil
867 hydraulic parameters in SMEX02 for method 1 with free
868 drainage conditions are generally applicable only to free
869 drainage lower boundary conditions (Figure 17b). They
870 produced wetter soil moisture contents when applied under
871 groundwater conditions (i.e., 100–200 cm from the soil
872 surface).
873 [45] Following the argument of deriving ‘‘effective’’
874 parameters applicable for all modeling conditions consid-
875 ered, we applied method 2 (section 2.1) to the selected
876 SMEX02 fields. Evidently, the variability of the derived soil
877 hydraulic parameters also decreased (Table 4c; Figure 14)
878 since we need to satisfy all the modeling conditions used.
879 As a result, the soil hydraulic parameters are all applicable
880 to both groundwater and free drainage conditions (Figure 18).
881 It is evident from both the study regions that if we consider
882 an ensemble of modeling conditions collectively in our
883 inverse modeling, we can arrive at a set of soil hydraulic
884 parameters that are robust and effective at the footprint scale
885 (see Figure 10 and Figure 18). (Figure 19).
886 [46] Furthermore, we also applied method 2 in its multi-
887 data variant to WC12 field (see Table 2d). The multidata

888variant accounts for multiple sources of information for the
889inverse modeling in addition to the common features of
890method 2. In this case, we used both the PSR and regional in
891situ soil moisture as conditioning data for the inverse
892modeling in which we gave equal weights to the data sets
893(see equations (7) and (8)). The derived parameters in Table
8942d are comparable with Table 4c, with only the variability
895being relatively increased because of the two sources of
896information used in the inverse analysis (Figure 15 versus
897Figure 14b). If we examine, though, how the derived
898parameters faired in both the PSR and regional in situ soil
899moisture data, we observe that under the combinations of
900modeling conditions used we could not replicate the region-
901al in situ soil moisture data. Evidently, the inverse modeling
902favored more the information content of the remote sensing
903data with the given ensemble of modeling conditions. There
904could be several possible reasons for this result: Either the
905remote sensing data better captured the regional dynamics
906of the pixel than the measured regional in situ data, or the
907combinations of modeling conditions and other model
908assumptions used in the inverse modeling are not adequate
909to represent well the dynamics of WC12 field. Note,
910however, that even though we replicated well the regional
911soil hydraulic properties (Figure 15) from the inversion of
912remote sensing data, the soil moisture dynamics is always
913dependent on the modeling conditions (initial/boundary
914conditions) used in the simulations as discussed above.
9153.2.2. Validation
916[47] We also validated the results of method 1 and
917method 2 (with its multidata variant) in SMEX02 region
918using measured soil hydraulic properties, soil moisture
919time series, and texture-based information from
920UNSODA. Tables 5a–5c shows the calibration-validation
921(see section 3.1.2) performances of the derived soil hydrau-
922lic parameters for WC11, C12, WC13, and WC14.
9233.2.2.1. Method 1 Under Groundwater Conditions
924[48] Except for WC12, the correlations and errors
925between the simulated and observed soil moisture contents
926under calibration and validation modes are reasonably good
927(Table 5a). The robustness of the derived parameters applied
928in free drainage conditions is also evident. In the validation
929mode, the simulated soil moisture in WC12 overestimates
930considerably the regional in situ soil moisture data.
931[49] Figure 12 shows the performance of the derived soil
932hydraulic parameters as regards to matching the observed
933regional soil hydraulic characteristics of the selected fields.
934It is interesting to note that the texture-based UNSODA
935curves are not even close to the measured regional soil
936hydraulic properties, whereas derived parameters by inverse
937modeling matched them reasonably well. Unlike in SGP97
938fields wherein the soils are generally undisturbed, SMEX02
939fields are agricultural areas and the soils were subject to
940agricultural activities. These results mainly underscore the
941importance of using actual field data to estimate the soil
942hydraulic properties of a study area. Also, because SMEX02
943region has a high level of agricultural activities, inducing
944greater surface macroporosity due to tillage, root decay, and
945earth worm activities, our estimates of Ksat (Table 4a) are
946much lower than the laboratory measured Ksat values (B. P.
947Mohanty, 2006, unpublished data, http://vadosezone.ta-
948mu.edu).

Figure 15. Comparison of derived q(h) (Dassim) from
method 2 under multidata analysis, UNSODA and observed
(field average and spread) soil water retention curves for the
WC12 (N = 4) field at SMEX02 site. N indicates the
number of samples; L is loam, SL is sandy loam, and SiL is
silt loam.
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949 3.2.2.2. Method 1 Under Free Drainage Conditions
950 [50] Table 5b shows the calibration-validation perfor-
951 mance of the derived soil hydraulic parameters under free

952drainage condition using method 1. The correlations and
953errors between observed and simulated soil moisture are all
954good when applied in free drainage lower boundary con-

Figure 16. Simulated and cross-validated near-surface soil moisture (z = 0–5 cm) using method 1 under
groundwater conditions versus polarimetric scanning radiometer (PSR) and observed areal-average (with
spread) soil moisture during SMEX02: (a) WC11 (N = 91), (b) WC12 (N = 132), (c) WC13 (N = 140),
and (d) WC14 (N = 94). N indicates the number of samples. Top panels are applied to all groundwater
conditions; bottom panels are applied to all free drainage conditions.
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955 ditions. Although the correlations of the simulated and
956 observed soil moisture (in calibration and validation modes)
957 are also good (acceptable) when they are applied under
958 groundwater conditions, the errors (MBE and RMSE) are
959 considerable especially under the validation mode. As
960 shown in Figure 13, the derived soil hydraulic functions
961 are generally wetter than expected.
962 3.2.2.3. Method 2 Under Both Groundwater and Free
963 Drainage Conditions
964 [51] The calibration-validation performance of the de-
965 rived soil hydraulic parameters under this method is given
966 in Table 5c. It is clear that the derived parameters are robust
967 among the modeling conditions used in both calibration and
968 validation mode. The correlations and errors between ob-
969 served and simulated soil moisture values are generally
970 good except for WC12 field. Figure 14 also shows that

971the variability of the derived soil hydraulic functions is
972small and well comparable with the observed regional soil
973hydraulic properties.
9743.2.2.4. Method 2 With Multidata Analysis
975[52] Under multidata analysis, we failed to replicate well
976the regional in situ soil moisture data in the validation mode
977for WC12. Table 3d shows that the correlations are good but
978the biases (errors) between the simulated and the ground
979data are considerable. Evidently, the simulated soil moisture
980overestimated the regional in situ soil moisture data but it
981follows well the dynamics of the PSR soil moisture data. As
982shown in Figure 15, the derived soil hydraulic parameters
983capture the observed regional hydrologic characteristics of
984the field. If we assume that the remote sensing data are
985adequate, then we hypothesized that the ensemble of mod-
986eling conditions and other modeling assumptions used in
987the inverse modeling may not be adequate to represent well
988the regional dynamics of soil moisture in this field. We
989should note, however, that all measured data, whether
990remote sensing or ground-based, are subject to errors, and
991hence we should not disregard the fact that there could be
992errors incurred in the ground-based soil moisture data in this
993particular field.
994

9954. Summary and Conclusions

996[53] In this paper, we presented the results of the newly
997developed inverse modeling-based near-surface soil mois-
998ture assimilation scheme [see Ines and Mohanty, 2008a] to
999quantify effective soil hydraulic parameters at the footprints
1000of two airborne RS passive microwave sensors, ESTAR and

Table 4c. Derived Effective Soil Hydraulic Parameters for

SMEX02 Fields WC11, WC12, WC13, and WC14 Using Method

2 (Under All Groundwater and Free Drainage Conditions,

Collectively)

Statistics

a
(cm�1)

n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

WC11 Mean 0.028 1.579 0.136 0.373 21.040
SD 0.003 0.031 0.003 0.003 8.548

WC12 Mean 0.032 1.605 0.145 0.370 51.902
SD 0.001 0.005 0.001 0.000 3.833

WC13 Mean 0.032 1.603 0.130 0.370 55.102
SD 0.001 0.006 0.005 0.001 0.789

WC14 Mean 0.032 1.604 0.144 0.371 55.423
SD 0.001 0.007 0.003 0.002 0.201

Figure 18. Sample results of simulated and cross-
validated near-surface soil moisture (z = 0–5 cm) using
method 2 (i.e., under all groundwater and free drainage
conditions, collectively) versus PSR and observed areal-
average (with spread) soil moisture at WC11 (N = 91)
during SMEX02: (a) applied to all groundwater conditions
and (b) applied to all free drainage conditions. N indicates
the number of samples.

Figure 17. Sample results of simulated and cross-
validated near-surface soil moisture (z = 0–5 cm) using
method 1 under free drainage conditions versus PSR and
observed areal-average (with spread) soil moisture at WC11
(N = 91) during SMEX02: (a) applied to all free drainage
conditions and (b) applied to all groundwater conditions. N
indicates the number of samples.
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1001 PSR. We conducted the experiments at three fields/RS
1002 footprints in Oklahoma and four in Iowa during the SGP97
1003 and SMEX02 campaigns, respectively. The near-surface soil
1004 moisture assimilation procedure includes the use of time
1005 series of near-surface soil moisture data to invert a 1-D
1006 physically based soil-water-atmosphere-plant model SWAP
1007 with a modified-microGA for estimating the effective soil
1008 hydraulic parameters of a footprint. Uncertainties in the
1009 solutions were examined in two ways: (1) by solving the
1010 inverse problem under various combinations of modeling
1011 conditions in a respective way; and (2) inverse solutions
1012 determined for modeling conditions in a collective way
1013 aimed at finding the robust solutions for all the ensembles.

1014A multidata variant of method 2 was presented to account
1015for both data and modeling errors in the inverse analysis.
1016We validated the soil hydraulic properties results using
1017intensive in situ/laboratory measurements conducted at the
1018respective fields, and data sets available from the literature
1019with similar soil textures (UNSODA database). The
1020performance of the derived effective soil hydraulic
1021parameters and simulated near-surface soil moisture in each
1022study pixel were also evaluated against RS and ground
1023based soil moisture data.
1024[54] The results clearly showed the promising potentials
1025of near-surface RS soil moisture data combined with inverse
1026modeling for determining average soil hydrologic properties
1027at the footprint scale. Our cross validation showed that
1028parameters derived by method 1 under groundwater con-
1029ditions are applicable also for free-draining conditions.
1030Parameters derived under free-draining conditions, howev-
1031er, generally produced too wet near-surface soil moisture
1032when applied under groundwater conditions. Method 2, on
1033the other hand, produced robust parameter sets applicable for
1034all modeling conditions used. In this study, we conclude that
1035inverse modeling of RS soil moisture data is a promising
1036approach for large-scale parameter estimation. Nevertheless,
1037the derived effective soil hydraulic parameters are subject to
1038the uncertainties of remotely sensed soil moisture data and
1039from the assumptions used in the soil-water-atmosphere-plant
1040modeling. Method 2 provided a flexible framework for

Table 5a. Performance of Method 1 Under Groundwater Condi-

tions at SMEX02 Sites

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
WC11 0.78 0.015 0.056 0.97 0.005 0.026
WC12 0.76 0.022 0.045 0.92 0.102 0.095
WC13 0.76 0.023 0.048 0.93 0.006 0.028
WC14 0.74 0.036 0.053 0.88 0.050 0.066

Applied to All Free Drainage Conditions
WC11 0.80 0.001 0.052 0.97 �0.012 0.026
WC12 0.79 �0.005 0.047 0.90 0.071 0.078
WC13 0.79 �0.001 0.051 0.93 �0.022 0.036
WC14 0.77 0.013 0.047 0.87 0.021 0.044

Table 5c. Performance of Method 2 (Under All Groundwater and

Free Drainage Conditions, Collectively) at SMEX02 Sites

Fields Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
WC11 0.79 0.009 0.054 0.98 �0.007 0.019
WC12 0.76 0.021 0.048 0.91 0.102 0.106
WC13 0.76 0.025 0.051 0.93 0.008 0.029
WC14 0.74 0.029 0.052 0.89 0.042 0.056

Applied to All Free Drainage Conditions
WC11 0.80 0.006 0.054 0.97 �0.010 0.022
WC12 0.78 0.016 0.046 0.90 0.097 0.101
WC13 0.78 0.019 0.049 0.92 0.002 0.029
WC14 0.76 0.024 0.050 0.87 0.035 0.053

Table 5b. Performance of Method 1 Under Free Drainage

Conditions at SMEX02 Sites

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
WC11 0.69 0.053 0.086 0.92 0.059 0.079
WC12 0.61 0.088 0.101 0.82 0.190 0.191
WC13 0.49 0.118 0.125 0.83 0.120 0.136
WC14 0.56 0.095 0.104 0.72 0.126 0.143

Applied to All Free Drainage Conditions
WC11 0.81 �0.003 0.051 0.96 �0.014 0.031
WC12 0.80 0.004 0.038 0.91 0.083 0.085
WC13 0.79 0.012 0.038 0.94 �0.008 0.030
WC14 0.79 0.013 0.041 0.87 0.021 0.047

Figure 19. Sample results of simulated and cross-
validated near-surface soil moisture (z = 0–5 cm) using
method 2 under multidata analysis versus PSR and observed
areal-average (with spread) soil moisture at WC12 (N =
132) during SMEX02: (a) applied to all groundwater
conditions and (b) applied to all free drainage conditions.
N indicates the number of samples.
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1041 accounting these sources of uncertainties in the inverse
1042 estimation of large-scale soil hydraulic properties.
1043 [55] There are some observed weaknesses of the near-
1044 surface soil moisture assimilation method used. Since it
1045 relies on the RS soil moisture products, any uncertainties in
1046 RS data because of retrieval/calibration/geoprojection can
1047 directly propagate to the derived soil hydraulic parameters
1048 at the pixel-scale. There is also an issue of the sensitivity of
1049 soil hydraulic parameters to the observed (temporal) RS
1050 data, and the fitness function used in the inverse analyses.
1051 The effectiveness of the derived soil hydraulic parameters
1052 is also affected by the uncertainties in the soil-water-
1053 atmosphere-plant model, and the inherent assumptions used
1054 in these simulations. Nevertheless, as this method defines
1055 the ‘‘effective’’ parameters, and as long as they reflect the
1056 large-scale dynamics, we can use them for large-scale
1057 hydrologic and climatic modeling efforts.

1058 [56] Acknowledgments. This research was funded by NASA-GAPP
1059 grant NNG04GM35G. We would like to acknowledge the partial support of
1060 LANL-SAHRA, NASA (JPL, GSFC, THP), and NSF (CMG/DMS) grants
1061 for this work. We acknowledge the use of the USDA-ARS micronet data
1062 and SCAN data in the SGP97 and SMEX02 sites.

1063 References
1064 Bindlish, R. (2004), SMEX02 Aircraft Polarimetric Scanning Radiometer
1065 (PSR) Tb data, digital media, Natl. Snow and Ice Data Cent., Boulder,
1066 Colo.
1067 Chan-Hilton, A. B., and T. B. Culver (2000), Constraint handling for
1068 genetic algorithms in optimal remediation design, J. Water Resour.
1069 Plann. Manage., 126, 128–137, doi:10.1061/(ASCE)0733-9496(2000)
1070 126:3(128).
1071 Cieniawski, S. E., J. W. Eheart, and S. Ranjithan (1995), Using genetic
1072 algorithms to solve a multiobjective groundwater monitoring problem,
1073 Water Resour. Res., 31(2), 399–409.
1074 Cosh, M. H., T. J. Jackson, R. Bindlish, and J. H. Prueger (2004), Wa-
1075 tershed scale temporal and spatial stability of soil moisture and its role in
1076 validating satellite estimates, Remote Sens. Environ., 92, 427–435,
1077 doi:10.1016/j.rse.2004.02.016.
1078 Crow, W. T., and E. F. Wood (2003), The assimilation of remotely sensed
1079 soil brightness temperature imagery into a land surface model using
1080 ensemble Kalman filtering: A case study based on ESTAR measurements
1081 during SGP97, Adv. Water Resour., 26, 137–149, doi:10.1016/S0309-
1082 1708(02)00088-X.
1083 Crow, W. T., D. Ryu, and J. S. Famiglietti (2005), Upscaling of field-scale
1084 soil moisture measurements using a distributed land surface model, Adv.
1085 Water Resour., 28, 1–14, doi:10.1016/j.advwatres.2004.10.004.
1086 Das, N. N., and B. P. Mohanty (2006), Root zone soil moisture assessment
1087 using remote sensing and vadose zone modeling, Vadose Zone J., 5,
1088 296–307, doi:10.2136/vzj2005.0033.
1089 Dunne, S., and D. Entekhabi (2005), An ensemble-based reanalysis ap-
1090 proach to land data assimilation, Water Resour. Res., 41, W02013,
1091 doi:10.1029/2004WR003449.
1092 Entekhabi, D., H. Nakamura, and E. G. Njoku (1994), Solving the inverse
1093 problem for soil moisture and temperature profiles by sequential assim-
1094 ilation of multifrequency remotely sensed observations, IEEE Trans.
1095 Geosci. Remote Sens., 32(2), 438–448, doi:10.1109/36.295058.
1096 Feddes, R. A., P. J. Kowalik, and H. Zarandy (1978), Simulation of Field
1097 Water Use and Crop Yield, Cent. for Agric. Publ., Wageningen,
1098 Netherlands.
1099 Feddes, R. A., G. H. De Rooij, J. C. Van Dam, P. Kabat, and P. Droogers
1100 (1993a), Estimation of regional effective soil hydraulic parameters by
1101 inverse modeling, in Water Flow and Solute Transport in Soils, Adv.
1102 Ser. Agric. Sci. Ser., vol. 20, edited by D. Russo and G. Dagan, pp. 211–
1103 233, Springer, Berlin.
1104 Feddes, R. A., M. Menenti, P. Kabat, and W. G. M. Bastiaanssen (1993b),
1105 Is large-scale inverse modeling of unsaturated flow with areal average
1106 evaporation and surface soil moisture as estimated by remote sensing
1107 feasible?, J. Hydrol. Amsterdam, 143, 125–152, doi:10.1016/0022-
1108 1694(93)90092-N.
1109 Goldberg, D. E. (1989), Genetic Algorithms in Search and Optimization
1110 and Machine Learning, Addison-Wesley, Boston, Mass.

1111Gwo, J.-P. (2001), In search of preferential flow paths in structured porous
1112media using simple genetic algorithm, Water Resour. Res., 37(6), 1589–
11131601, doi:10.1029/2000WR900384.
1114Heathman, G. C., P. J. Starks, L. R. Ahuja, and T. J. Jackson (2003),
1115Assimilation of surface soil moisture to estimate soil water content,
1116J.Hydrol. Amsterdam, 279, 1–17, doi:10.1016/S0022-1694(03)00088-X.
1117Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, Univ.
1118of Mich. Press, Ann Arbor.
1119Ines, A. V. M., and P. Droogers (2002a), Inverse modelling in estimating
1120soil hydraulic functions: A genetic algorithm approach, Hydrol. Earth
1121Syst. Sci., 6, 49–65.
1122Ines, A. V. M., and P. Droogers (2002b), Inverse modeling to quantify
1123irrigation system characteristics and operational management, Irrig.
1124Drain. Syst., 16, 233–252, doi:10.1023/A:1021231132727.
1125Ines, A. V. M., and K. Honda (2005), On quantifying agricultural and water
1126management practices from low spatial resolution RS data using genetic
1127algorithms: A numerical study for mixed pixel environment, Adv. Water
1128Resour., 28, 856–870, doi:10.1016/j.advwatres.2004.11.015.
1129Ines, A. V. M., and B. P. Mohanty (2008a), Near-surface soil moisture
1130assimilation for quantifying effective soil hydraulic properties using ge-
1131netic algorithm: 1. Conceptual modeling, Water Resour. Res., 44,
1132W06422, doi:10.1029/2007WR005990.
1133Ines, A. V. M., and B. P. Mohanty (2008b), Near-surface soil moisture
1134assimilation for quantifying effective soil hydraulic properties under dif-
1135ferent hydro-climatic conditions, Vadose Zone J., 7, 39 – 52,
1136doi:10.2136/vzj2007.0048.
1137Ines, A. V. M., K. Honda, A. D. Gupta, P. Droogers, and R. S. Clemente
1138(2006), Combining remote sensing-simulation modeling and genetic al-
1139gorithm optimization to explore water management options in irrigated
1140agriculture, Agric. Water Manage., 83, 221–232, doi:10.1016/j.agwat.
11412005.12.006.
1142Jackson, T. J. (1993), Measuring surface soil moisture using passive micro-
1143wave remote sensing, Hydrol. Processes, 7, 139–152, doi:10.1002/
1144hyp.3360070205.
1145Jackson, T. J. (2002), SMEX02 Soil Climate Analysis Network (SCAN)
1146station 2031, Ames, Iowa, digital media, Natl. Snow and Ice Data Cent.,
1147Boulder, Colo.
1148Jackson, T. J., D. M. Le Vine, C. T. Swift, T. J. Schmugge, and F. R.
1149Schiebe (1995), Large scale mapping of soil moisture using the ESTAR
1150passive microwave radiometer in Washita ’92, Remote Sens. Environ.,
115154, 27–37, doi:10.1016/0034-4257(95)00084-E.
1152Jackson, T. J., D. M. Le Vine, A. Y. Hsu, A. Oldak, P. J. Starks, C. T. Swift,
1153J. D. Isham, and M. Hakan (1999), Soil moisture mapping at regional
1154scales using microwave radiometry: The Southern Great Plains hydrol-
1155ogy experiment, IEEE Trans. Geosci. Remote Sens., 37, 2136–2151,
1156doi:10.1109/36.789610.
1157Jacobs, J. M., B. P. Mohanty, E. C. Hsu, and D. Miller (2004), SMEX02:
1158Field scale variability, time stability and similarity of soil moisture, Re-
1159mote Sens. Environ., 92, 436–446.
1160Kostov, K. G., and T. J. Jackson (1993), Estimating profile soil moisture
1161from surface layer measurement: A review, Proc. SPIE Int. Soc. Opt.
1162Eng., 1941, 125–136, doi:10.1117/12.154681.
1163Krishnakumar, K. (1989), Microgenetic algorithms for stationary and non-
1164stationary function optimization, SPIE Intell. Control Adapt. Syst., 1196,
1165289–296.
1166Leij, F. J., W. J. Alves, M. T. Van Genuchten, and J. R. Williams (1999),
1167The UNSODA unsaturated soil hydraulic database, in Characterization
1168and Measurement of the Hydraulic Properties of Unsaturated Porous
1169Media, edited by M. T. Van Genuchten et al., pp. 1269–1281, Univ.
1170of Calif., Riverside.
1171Margulis, S., D. McLaughlin, D. Enthekabi, and S. Dunne (2002), Land
1172data assimilation and estimation of soil moisture using experiments from
1173the Southern Great Plains 1997 Field Experiment, Water Resour. Res.,
117438(12), 1299, doi:10.1029/2001WR001114.
1175Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = Evolution
1176Programs, 3rd ed., Springer, New York.
1177Miller, B. L. (1997), Noise, sampling and efficient genetic algorithms,
1178IlliGAL Rep. 97001, Ill. Genetic Algorithms Lab., Urbana-Champagne,
1179Ill., May.
1180Miller, E. E., and R. D. Miller (1956), Physical theory of capillary flow
1181phenomena, J. Appl. Phys., 27, 324–332, doi:10.1063/1.1722370.
1182Mohanty, B. P., and T. H. Skaggs (2001), Spatio-temporal evolution and
1183time-stable characteristics of soil moisture within remote sensing foot-
1184prints with varying soil, slope and vegetation, Adv. Water Resour., 24,
11851051–1067, doi:10.1016/S0309-1708(01)00034-3.
1186Mohanty, B. P., and J. Zhu (2007), Effective soil hydraulic parameters in
1187horizontally and vertically heterogeneous soils for steady-state land at-

XXXXXX INES AND MOHANTY: EFFECTIVE SOIL HYDRAULIC PROPERTIES, 2

21 of 22

XXXXXX



1188 mosphere interaction, J. Hydrometeorol., 8(4), 715–729, doi:10.1175/
1189 JHM606.1.
1190 Mohanty, B. P., J. S. Famiglietti, and T. H. Skaggs (2000), Evolution of soil
1191 moisture spatial structure in a mixed vegetation pixel during the Southern
1192 Great Plains 1997 (SGP97) Hydrology Experiment, Water Resour. Res.,
1193 36, 3675–3686, doi:10.1029/2000WR900258.
1194 Mohanty, B. P., P. J. Shouse, D. A. Miller, and M. T. Van Genuchten
1195 (2002), Soil property database: Southern Great Plains 1997 Hydrology
1196 Experiment, Water Resour. Res., 38(5), 1047, doi:10.1029/
1197 2000WR000076.
1198 Mualem, Y. (1976), A new model for predicting the hydraulic conductivity
1199 of unsaturated porous media, Water Resour. Res., 12, 513–522,
1200 doi:10.1029/WR012i003p00513.
1201 Njoku, E. G., and D. Entekhabi (1996), Passive remote sensing of soil
1202 moisture, J. Hydrol. Amsterdam, 184(1–2), 101–130, doi:10.1016/
1203 0022-1694(95)02970-2.
1204 Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chan, and S. V. Nghiem
1205 (2003), Soil moisture retrieval from AMSR-E, IEEE Trans. Geosci. Re-
1206 mote Sens., 41, 215–229, doi:10.1109/TGRS.2002.808243.
1207 Oliveira, R., and D. P. Loucks (1997), Operating rules for multi reservoir
1208 systems, Water Resour. Res., 33, 839–852, doi:10.1029/96WR03745.
1209 Peters-Lidard, C. D., D. M. Mocko, M. Garcia, J. A. Santanello, M. A.
1210 Tischler, M. S. Moran, and Y. Wu (2008), Role of precipitation uncer-
1211 tainty in the estimation of hydrologic soil properties using remotely
1212 sensed soil moisture in a semiarid environment, Water Resour. Res.,
1213 44, W05S18, doi:10.1029/2007WR005884.
1214 Reichle, R., D. B. McLaughlin, and D. Entekhabi (2001), Variational data
1215 assimilation of microwave radio brightness observations for land surface
1216 hydrologic applications, IEEE Trans. Geosci. Remote Sens., 39, 1708–
1217 1718, doi:10.1109/36.942549.
1218 Ritzel, B., J. W. Eheart, and S. Ranjithan (1994), Using genetic algorithms
1219 to solve a multiobjective groundwater pollution containment problem,
1220 Water Resour. Res., 30, 1589–1603, doi:10.1029/93WR03511.
1221 Research Systems, Inc. (RSI) (2003), ENVI Version 3.6: The Environment
1222 for Visualizing Images, Boulder, Colo.
1223 Savic, D., and S.-T. Khu (2005), Evolutionary computing in hydrological
1224 sciences, in Encyclopedia of Hydrological Sciences, vol. 2, Hydroinfor-
1225 matics, edited by M. G. Anderson, John Wiley, Hoboken, N. J.
1226 Schmugge, T. J. (1998), Applications of passive microwave observations of
1227 surface soil moisture, J. Hydrol. Amsterdam, 212–213, 188–197,
1228 doi:10.1016/S0022-1694(98)00209-1.
1229 Schmugge, T. J., W. P. Kustas, J. C. Ritchie, T. J. Jackson, and A. Rango
1230 (2002), Remote sensing in hydrology, Adv. Water Resour., 25, 1367–
1231 1385, doi:10.1016/S0309-1708(02)00065-9.
1232 Smalley, J. B., B. S. Minsker, and D. E. Goldberg (2000), Risk-based in situ
1233 bioremediation design using a noisy genetic algorithm, Water Resour.
1234 Res., 36, 3043–3052, doi:10.1029/2000WR900191.
1235 Van Dam, J. C. (2000), Field-scale water flow and solute transport: SWAP
1236 model concepts, parameter estimation and case studies, Ph.D. thesis,
1237 Wageningen Univ., Wageningen, Netherlands.

1238Van Dam, J. C., J. Huygen, J. G. Wesseling, R. A. Feddes, P. Kabat, P. E. V.
1239Van Waslum, P. Groenendjik, and C. A. Van Diepen (1997), Theory of
1240SWAP version 2.0: Simulation of water flow and plant growth in the soil-
1241water-atmosphere-plant environment, Tech. Doc. 45, Wageningen Agric.
1242Univ., Wageningen, Netherlands.
1243Van Genuchten, M. T. (1980), A closed-form equation foe predicting the
1244hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44,
1245892–898.
1246Vrugt, J. A., J. W. Hopmans, and J. Šimůnek (2001), Calibration of a two-
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