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[1] Artificial neural networks (ANN) have been used for some time now to estimate soil
hydraulic parameters from other available or more easily measurable soil properties.
However, most such uses of ANNs as pedotransfer functions (PTFs) have been at
matching spatial scales (1:1) of inputs and outputs. This approach assumes that the outputs
are only required at the same scale as the input data. Unfortunately, this is rarely true.
Different hydrologic, hydroclimatic, and contaminant transport models require soil
hydraulic parameter data at different spatial scales, depending upon their grid sizes. While
conventional (deterministic) ANNs have been traditionally used in these studies, the use of
Bayesian training of ANNs is a more recent development. In this paper, we develop a
Bayesian framework to derive soil water retention function including its uncertainty at the
point or local scale using PTFs trained with coarser-scale Soil Survey Geographic
(SSURGO)-based soil data. The approach includes an ANN trained with Bayesian
techniques as a PTF tool with training and validation data collected across spatial extents
(scales) in two different regions in the United States. The two study areas include the Las
Cruces Trench site in the Rio Grande basin of New Mexico, and the Southern Great Plains
1997 (SGP97) hydrology experimental region in Oklahoma. Each region-specific
Bayesian ANN is trained using soil texture and bulk density data from the SSURGO
database (scale 1:24,000), and predictions of the soil water contents at different pressure
heads with point scale data (1:1) inputs are made. The resulting outputs are corrected for
bias using both linear and nonlinear correction techniques. The results show good
agreement between the soil water content values measured at the point scale and those
predicted by the Bayesian ANN-based PTFs for both the study sites. Overall, Bayesian
ANNs coupled with nonlinear bias correction are found to be very suitable tools for
deriving soil hydraulic parameters at the local/fine scale from soil physical properties at
coarser-scale and across different spatial extents. This approach could potentially be used
for soil hydraulic properties estimation and downscaling.
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1. Introduction

[2] Point and nonpoint source contaminant transport
models as well as global- and regional-scale circulation
models for hydrologic and climate forecasting use soil
hydrologic models. The prediction accuracy of these models
depends largely on the quality of the input parameters,
along with the accurate depiction of field realities such as
boundary conditions. However, collection of these required
soil hydraulic parameters by direct measurement at any
model grid scale is expensive and time consuming. Addi-
tionally, in order to capture the variability of these spatially
distributed parameters, a large number of samples need to
be collected. All these factors make the direct measurement

of the soil hydraulic parameters matching to the model grids
highly impractical.
[3] The use of pedotransfer functions (PTFs) to obtain the

required soil hydraulic parameters from other available or
easily measurable soil properties has been advocated in the
last two decades. A number of studies have been carried out
in the recent past to develop such transfer functions and test
them against available soil properties databases [e.g., Rawls
et al., 1991; van Genuchten and Leij, 1992; Schaap et al.,
1998; Pachepsky et al., 1999; Wösten et al., 2001; Sharma
et al., 2006, Jana et al., 2007]. Soil texture (sand, silt, and
clay percentages), organic carbon, and bulk density have
been used to a large extent for prediction of soil hydraulic
properties. Schaap et al. [1998] showed that the use of
detailed particle-size distributions could increase the accu-
racy of soil hydraulic parameters predictions as compared
with the predictions using soil textural class alone as inputs
[Clapp and Hornberger, 1978]. However, such detailed
particle-size data are not easily available in all cases.
Additional parameters, such as topographic features and
vegetation, have rarely been used in developing PTFs
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[Wösten et al., 2001]. Recently, Pachepsky et al. [2001],
Leij et al. [2004] and Sharma et al. [2006] included certain
available topographical and vegetation attributes in addition
to soil physical parameters for developing PTFs. While the
inclusion of more input parameters for the PTFs showed
some improvement in the performance of the transfer
function models, it was also seen that the basic soil
properties had the maximum influence on the soil hydraulic
properties predictions. Increasing the number of model
input parameters also means increasing the complexity of
the model including the inherent uncertainties associated
with the input data.
[4] Artificial neural networks (ANNs) have been used as

PTF tools for parameter estimation in hydrology. Pachepsky
et al. [1996], Schaap and Bouten [1996], Schaap and Leij
[1998], Schaap et al. [1998], Sharma et al. [2006], and
Jana et al. [2007] are a few examples. However, one of the
major drawbacks of using a conventional ANN approach is
the lack of uncertainty estimates. This, in turn, brings to
question the quality of the ANN predictions. Schaap and
Leij [1998] used bootstrapping to generate uncertainty
estimates for ANN predictions of water retention parameters
(and subsequently the water retention curve) and Ksat.
However, these are a posteriori estimates of uncertainty.
Owing to the nature of conventional ANNs, this knowledge
of the uncertainty in predictions is not explicitly available
from the ANNs. Conventional training of ANN weights is
done by adjusting the values over multiple iterations till a
single ‘‘optimal’’ set is obtained. Further, the ANN is not
based on any physical processes underlying the hydrology.
Hence the training of the weights in ANNs is totally
dependent on the inputs. Different sets of training data
would give rise to different sets of weights. This is espe-
cially true in hydrology because most hydrologic systems
are inherently stochastic [Kingston et al., 2005]. Thus the
idea of an ‘‘optimal’’ set of weights would appear to be
inappropriate. If a sufficiently large training data set is
available, then it may be assumed that the ‘‘optimal’’ set
of weights obtained is representative of the entire popula-
tion. However, this is very rarely the case. Overtraining is
also a matter of concern in conventional ANNs.
[5] Bayesian training of neural networks (NNs), on the

other hand, obtains a range of weights. This, in turn, gives a
distribution of predicted values, rather than a single value,
thus explicitly accounting for the uncertainty in the predic-
tions. Use of Markov chain Monte Carlo (MCMC) simula-
tion techniques further reduces the possibility of the training
becoming stuck in local minima. Bayesian training also
prevents overtraining of the ANN. As such, Bayesian ANNs
incorporate the advantages of conventional ANNs while
eliminating some of the drawbacks. In this regard, Bayesian
ANNs may be considered as the next evolution of ANNs.
[6] Bayesian ANNs have been used in related water

resources modeling fields such as forecasting river salinity
[Kingston et al., 2005] and rainfall-runoff modeling [Khan
and Coulibaly, 2006]. However, not much is done in this
aspect toward soil hydraulic parameter estimation in the
vadose zone. Moreover, most previous PTF studies derive
and adopt soil hydraulic parameters at matching spatial
scale of input and target data. The primary objective of this
study is to develop and test a methodology to derive soil
water content values (at saturation, q0bar; field capacity,

q0.3bar,; wilting point, q15bar) and van Genuchten soil water
retention function at point/local (1:1) scale using Bayesian
neural networks based PTFs trained with coarse-scale
(1:24,000) Soil Survey Geographic (SSURGO) soil textural
data.

2. Bayesian Neural Networks

[7] Artificial neural networks, used in previous PTF
developments, do not account for the physical processes
governing the variations in soil hydraulic properties at
different spatial scales. However, the basis for their utility
comes from the relationship between the inputs and the
targets developed during the ANN training. Let y be the
target and let x be the input data, and then the relation
between x and y can be described as

y ¼ f xjwð Þ þ E; ð1Þ

where f (xjw) is the functional approximation (described by
the ANN) of the relationship between the input and the
target, w is the vector of weights and biases for the layers of
ANN neurons, and E is the error term. Conventional
(standard/deterministic) ANN methodology attempts to find
a single set of weights w such that given the training inputs
x, the network reproduces the training targets y with
minimal error E.
[8] Bayesian ANNs, however, generate a probability

distribution of the layer weights which is dependent on
the given input data. From Bayes’ theorem,

P wjY ;Xð Þ ¼ P Y jw;Xð ÞP wð Þ
P Y jXð Þ ; ð2Þ

where X is the input vector (x1, x2, . . . xn), Y is the target
vector (y1, y2, . . . yn), P(YjX) =

R
P(Yjw, X)P(w)dw is the

marginal distribution of y, P(w) is the prior distribution of
weights, and P(Yjw,X) is the likelihood function [Gelman et
al., 1995]. The marginal distribution, also known as the
normalizing constant, is a constant of proportionality. The
prior distribution of weights is our knowledge of the weight
values before being introduced to the data. A noninforma-
tive prior (with arbitrary values) can be assumed here. As
described by Kingston et al. [2005], the predictive
distribution of yn+1 is given by

P ynþ1jxnþ1; Y ;Xð Þ ¼
Z

P ynþ1jxnþ1;wð ÞP wjY ;Xð Þdw: ð3Þ

The subscript ‘‘n+1’’ denotes a new set of input and output
variables that are not a part of X and Y. Evaluation of this
integral is generally considered to be virtually impossible
using conventional analytical or numerical integration
methods. This integral can be solved by numerical
integration using Markov chain Monte Carlo (MCMC)
methods [Neal, 1992].
[9] MCMC methods aim to generate multiple samples

from a continuous target density [Bates and Campbell,
2001]. The posterior weight distribution in multilayered
ANNs is generally complex. Since it is difficult to sample
directly from the complex posterior distribution, a simpler
symmetrical distribution is used to generate the weight
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vectors. This is called the ‘‘proposal’’ distribution and is
considered to be locally Gaussian. In a ‘‘random walk’’
implementation of the Markov chain, the proposal distribu-
tion depends only upon the previous weights. Starting with
the arbitrary values of w from the prior distribution, a series
of values w* are proposed by the Markov chain. These
proposed values are accepted with a probability

a ¼ min

1

P yjX ;w*ð ÞP w*ð Þ
P yjX ;wprev

� �
P wprev

� �
8><
>:

9>=
>;: ð4Þ

Here wprev is the previous weight value. If w* is accepted,
the value of wprev is replaced by w* and the procedure is
iterated over again. An acceptance rate between 30% and
70% is considered to be optimal [Bates and Campbell,
2001]. Using a sufficiently large number of iterations
ensures that the Markov chain converges to a stationary
distribution. At that point, the weight vectors are considered
to have been generated from the posterior distribution itself.
A more detailed description and discussion of the
Metropolis algorithm for the MCMC method used in this
study is given by Gelman et al. [1995] and Kingston et al.
[2005]. In our study, we generated 15,000 iterations for the
Markov chain and discarded the first 5000 iterations as
burn-in. This is done to allow the network suitable time to
‘‘understand’’ the relationship between the inputs and the
outputs, and to attain stability.
[10] ANNs with one input layer, one hidden layer of four

neurons, and one output layer were used in this study. The
tangent hyperbolic transfer function was used between all
neuron layers.

3. Numerical Study

[11] Spatially correlated Gaussian random fields for all
input and target parameters were generated using the
‘‘Hydro_Gen’’ program [Bellin and Rubin, 1996]. One
hundred fine-scale values were generated in a 10 � 10 grid
for input (sand, silt, clay, and bulk density) and target (q0bar,
q0.3bar, and q15bar) parameters. A grid spacing of 10 units
was used along with a correlation length of 20 units in both
the x and y directions. These parameters are then individ-
ually averaged to form one coarse scale pixel of dimension
100 � 100 square units for each parameter. One thousand
such coarse-scale pixels were generated per parameter.
Arithmetic, harmonic, and geometric averaging methods
were used in the coarsening procedure. However, it was
observed that there was no significant difference between
the three mean values. Hence the arithmetically averaged
values were used as the coarse-scale training data in our
study. Sample coarse-scale pixels are shown in Figure 1.
One thousand fine-scale values were randomly selected
from within the coarse-scale pixels to serve as the fine-
scale testing data. Statistics of the coarse and fine scale data
are given in Table 1.
[12] The Bayesian ANN was trained with the generated

coarse-scale data and then shown the fine-scale inputs. The
ANN outputs (q0bar, q0.3bar, and q15bar) are then compared
with the corresponding generated values. Figure 2 shows
plots of the generated and ANN predicted q values, and
their comparative statistics are given in Table 2. It can be

Figure 1. Samples of randomly generated coarse-scale
parameter fields. One coarse pixel = 10 � 10 fine scale
pixels.
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seen that the ANN predicted values, while being highly
correlated with the generated values, are higher than the
generated values for all three parameters. There is a sys-
tematic shift in the values.
[13] Schaap and Leij [1998] observed that significant

differences exist between the mean values of similar param-
eters obtained from different databases (RAWLS, AHUJA,
and UNSODA). This could be due to differences in mea-
suring techniques or instrumental and/or human errors.

Other theories attribute bias to differences in soil types or
presence of heterogeneities. In our numerical study, how-
ever, these causes can be discounted. Since all parameters
are synthetically generated, the issues of differing measure-
ment techniques and instrument error are eliminated. Gen-
erating parametric values from Gaussian distributions also
ensures that heterogeneities are not found in any of the
coarse-scale pixels, unless intentionally introduced. As seen
in Table 2, there is no significant difference between the
mean and variability statistics of the training and testing
data. Hence the only difference between the training and
testing data sets is the scale. Since the training of the neural
network is done by coarse-scale data, the model developed
by the ANN is a coarse-scale model. When fine-scale inputs
are fed to this model, the predictions obtained for the soil
water contents are still at the coarser scale. This means that
a bias exists between the ANN predicted values and the
measured values at the point scale. This bias is attributed to
the support-scale disparity in the model and the data.
Different governing hydrologic processes dictate the soil
water contents at different spatial scales. However, as
previously mentioned, the ANN is not based on the physical
processes underlying the hydrology. Hence a suitable bias
correction technique needs to be applied to the predicted
water content values.

4. Field Study

[14] We tested the Bayesian training methodology for
deriving soil water retention at the local/fine scale from
ANNs trained at a coarser scale in two different regions in
the United States. The first site is in the Rio Grande basin of
New Mexico, and the second site is the Southern Great
Plain Experiment 1997 (SGP97) hydrology experiment
region in Oklahoma.

4.1. Rio Grande Basin

[15] A soil properties database for the Rio Grande basin
in New Mexico [Jana et al., 2005] was used in this study.
Point-scale (1:1) soil physical and hydraulic properties
measured at the Las Cruces Trench site [Wierenga et al.,

Table 1. Statistics of Synthetically Generated Parameter Values (Numerical Study)

Sand, % Silt, % Clay, % BD, g/cm3 q0bar, % q0.3bar, % q15bar, %

Coarse scale Mean 69.586 9.839 20.575 1.584 34.816 11.870 7.870
SD 1.237 0.478 1.715 0.048 0.554 0.392 0.392

Fine scale Mean 69.480 9.800 20.720 1.580 34.768 11.836 7.836
SD 4.757 1.842 6.599 0.184 2.127 1.504 1.504

Figure 2. Graphs of target and artificial neural network
(ANN) predicted water content values. Theta indicates soil
water content.

Table 2. Comparative Statistics of Target and Predicted Water

Content Values (Numerical Study)

q0bar q0.3bar q15bar

Target Predicted Target Predicted Target Predicted

n 1000 1000 1000 1000 1000 1000
Mean 0.348 0.556 0.118 0.300 0.078 0.106
SD 0.021 0.063 0.015 0.066 0.015 0.015
CV 0.061 0.113 0.127 0.220 0.192 0.140
R 0.985 0.984 0.980
R2 0.970 0.968 0.961
RMSE 0.213 0.199 0.028
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1989] situated within the Rio-Grande-Mimbres subwa-
tershed region (Figure 3) were used as the model inputs at
local/point scale. The Las Cruces Trench (Figure 3) is
located on the New Mexico State University ranch, roughly
40 miles northeast of the city of Las Cruces. The trench is
located in undisturbed soil on a basin slope of Mount
Summerford, near the northern end of the Dona Ana

Mountains. The trench is 26.4 m long, 4.5 m wide, and
6m deep [Wierenga et al., 1991]. Using in situ and laboratory
methods,Wierenga et al. [1989] developed a comprehensive
database of fine-scale (1:1) soil properties using 594 dis-
turbed soil samples and 594 associated soil cores taken from
nine distinct soil layers identified on the north wall of the
trench. Samples were also taken from three vertical transects
on this wall. The data set included saturated hydraulic
conductivity, soil water retention function, particle size
distribution, and bulk density for each layer. Since the data
for the coarser scale are from the topsoil layer (0–6 cm), we
use only the 59 sites from the top 6-cm layer of the Las Cruces
Trench site database in this study.

4.2. Southern Great Plains

[16] A soil property database of the Southern Great Plains
1997 (SGP97) hydrology experiment area [Mohanty et al.,
2002] was used in the second case study. Figure 4 shows the
experimental region of approximately 40 km � 250 km
(10,000 km2) in the central part of the U.S. Great Plains in
the subhumid environment of Oklahoma. Data measured in
the Little Washita Watershed area within this region was
used for this study. The region has a moderately rolling
topography. Rangeland and pasture dominate the land use
with patches of winter wheat and other crops [Allen and
Naney, 1991].
[17] At both the sites, the coarse-resolution (1:24,000)

soil properties data were derived from the U.S. Department
of Agriculture/Natural Resources Conservation Service Soil
Survey Geographic (SSURGO) database http://soildatamart.
nrcs.usda.gov). SSURGO is a public domain database
containing georeferenced spatial and attribute data for soils.
Since these surveys cover large spatial extents, soil property
data are based on the soil type rather than the spatial
location. The SSURGO database was created by field
methods, using observations along soil delineation bound-
aries and traverses, and determining map unit composition

Figure 3. Rio Grande Basin study area, New Mexico.

Figure 4. Southern Great Plains study area, Oklahoma.
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by field transects [Natural Resources Conservation Service,
2007]. Aerial photographs are interpreted and used as the
field map base. Multiple readings are taken for each
property within each map unit. The number of readings
taken differs between map units based on factors such as the
size of the soil polygon, the variation in topography, and
change in vegetation, among others. Low, high, and repre-
sentative values for the observed readings are included in
the database for a particular soil type/map unit. These soil
maps are made at scales ranging from 1:12,000 to 1:31,680
(http://www.nrcs.usda.gov/technical/soils/soilfact.html). In
this study, we have used the representative value for the

soil physical and hydraulic parameters from 1:24,000 reso-
lution soil maps.
[18] As in the numerical study, the soil physical proper-

ties used are the % sand, % silt, % clay, and the oven-dry
bulk density. The hydraulic parameters are the water content
at satiation (q0bar), the water content at a pressure of 1/3 bar
(q0.3bar), and the water content at 15 bar (q15bar).
[19] From the SSURGO data for each region, we trained

the ANNs for estimating the saturation, field capacity, and
wilting point soil water contents (q0bar, q0.3bar, and q15bar,
respectively). One thousand random sets of data values were
selected for the ANN training from this data pool by a

Figure 5. Target and predicted soil water content values. Theta indicates soil water content; RGB, Rio
Grande Basin; SGP, Southern Great Plains.
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bootstrapping process. Each data set consists of training
inputs (% sand, % silt, % clay, and oven-dry bulk density)
and the corresponding target outputs (q0bar, q0.3bar, and
q15bar). It was observed by conducting several replicated
model runs that further increase in the size of the training
data set (>1000 and within the available data pool) did not
provide any further improvement in the training. Moreover,
a low ratio of selected to available data sets ensured
randomness of the bootstrapped selections. Finally, using
the trained ANNs with the SSURGO-based coarse-resolu-
tion data sets, predictions of soil water contents (q0bar,
q0.3bar, q15bar) were made at the point resolution for the
corresponding point-scale data sets of % sand, % silt, and %
clay, and oven-dry bulk density.

5. Nonlinear Bias Correction

[20] Linear bias correction, as applied by Hansen and
Ines [2005] and Jana et al. [2007], provides a proportional
shifting effect to the ANN-predicted curve and brings the
mean of the ANN-predicted values closer to that of the
target values. However, this is a first-moment correction
only. Only the mean of the predictions is brought closer to
that of the target by this method, while no correction is
applied to the second moment (spread) of the values.
Moreover, parametric scaling is a nonlinear process. Ap-
plying a linear bias correction to approximate this process
can be successful only to a certain degree. Hence a
nonlinear technique needs to be adopted for the bias
correction.
[21] Matching of cumulative distribution functions

(CDFs) is a technique that has been used to correct for
nonlinear bias [Calheiros and Zawadzki, 1987; Atlas et al.,
1990; Anagnostou et al., 1999; Wood et al., 2002; Reichle
and Koster, 2004; Ines and Hansen, 2006; Baigorria et al.,
2007; Hashino et al., 2007]. The technique is based on the
idea to obtain the predicted parameter values corresponding
to the probability of occurrence of values on the CDF of the
target parameter. Statistical tests are conducted to test for the

type of distribution (e.g., normal, lognormal, gamma) of the
parameters. CDFs are then obtained for the target and
predicted values for each parameter based on the type of
distribution they follow. For a particular predicted soil water
content value, there exists a particular probability of occur-
rence. Similarly, for a particular probability of occurrence,
there exists a corresponding target soil water content value.
CDF matching is achieved by forcing the predicted soil
water content value with a particular occurrence probability
toward the corresponding target soil water content value.

6. Results and Discussions

[22] Figure 5 shows the targets and the outputs with the
uncertainty band predicted by the Bayesian ANNs for the
three soil water retention (q0bar, q0.3bar, q15bar) parameters in
the two different regions. The error bars are obtained from
the Markov chain Monte Carlo simulations and represent
the uncertainty in the neural network predictions. Bayesian
neural networks, as mentioned earlier, use a range of weight
sets instead of a single set. The uncertainty band (error bars)
show the limits to which the predictions could have varied
based on the weight set used. The final predicted soil water
content value is the average of all such simulations. In the
Rio Grande Basin (RGB), we have 50 point-scale inputs/
outputs for each of the three parameters. In the Southern
Great Plains (SGP), we have 70 point-scale measured values
for q15bar and q0.3bar. However, we used only 68 point-scale
values for q0bar since two values were discarded as outliers.
Table 3 gives the target and predicted means and standard
deviations for the three parameters at the two sites.
[23] It is observed that the Bayesian ANN approximates

the water contents slightly better for the SGP case, as
compared with the RGB. This fact is attributed to the
difference in the site conditions. The RGB point-scale data
were collected from a single 26.4-m-long, 4.5-m-wide
trench near the city of Las Cruces, New Mexico. The soil
type shows little variation over this area, as can be inferred
from Table 4. The SGP data, on the other hand, were

Table 3. Descriptive Statistics for q Values (Field Studies)a

q0bar q0.3bar q15bar

Target Pred LBC NLBC Target Pred LBC NLBC Target Pred LBC NLBC

RGB
N 50 50 50 50 50 50 50 50 50 50 50 50
Mean 0.342 0.357 0.340 0.342 0.127 0.131 0.126 0.127 0.080 0.074 0.078 0.080
SD 0.023 0.004 0.002 0.023 0.013 0.006 0.003 0.013 0.011 0.003 0.003 0.010
SGP
N 68 68 68 68 70 70 70 70 70 70 70 70
Mean 0.393 0.312 0.391 0.393 0.209 0.175 0.196 0.208 0.093 0.082 0.094 0.093
SD 0.027 0.051 0.010 0.027 0.065 0.072 0.038 0.063 0.042 0.020 0.023 0.041

aAbbreviations are RGB, Rio Grande Basin; SGP, Southern Great Plains; N, number of data values; Pred, ANN-predicted; LBC, linear bias corrected;
NLBC, nonlinear bias corrected.

Table 4. Soil Physical Properties at Coarse and Fine Scale for the RGB Region (Field Study)

Sand Silt Clay Bulk Density

Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%) Mean (g/cm3) SD (g/cm3)

SSURGO Data 49.43 21.49 29.20 19.39 21.37 10.87 1.60 0.12
Point Data 81.46 1.67 9.76 1.17 8.78 1.20 1.66 0.05
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collected at points covering an area of approximately
10,000 km2 in the state of Oklahoma. Large variations in
soil type can occur across this big area (Table 5), as
compared with the Las Cruses trench in RGB. While the

SSURGO data have comparable statistics for the four input
soil physical properties, the point-scale data are vastly
different in the two cases (Tables 4 and 5). The standard
deviation, the measure of variability in the texture, is very

Table 5. Soil Physical Properties at Coarse and Fine Scale for SGP Region (Field Study)

Sand Silt Clay Bulk Density

Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%) Mean (g/cm3) SD (g/cm3)

SSURGO Data 43.31 21.82 37.74 17.31 19.17 8.80 1.78 0.42
Point Data 51.91 21.11 33.61 16.41 14.48 6.04 1.40 0.10

Figure 6. Graph of target, predicted, and linear bias corrected (LBC) soil water content values. Theta
indicates soil water content; RGB, Rio Grande Basin; SGP, Southern Great Plains.
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low for the RGB data. The corresponding statistics for the
SGP region show that the Bayesian ANN is trained using a
larger variety of soil types from the SGP data and hence is
able to capture a larger variability in soil water content
values. The ANN trained with the RGB data has only
limited variation and is thus restricted in its scope. This
argument is supported by the tightness of the uncertainty
band for all parameters for the RGB case. The band for the
predictions does not encompass the target values in most
cases. On the contrary, the uncertainty band for the pre-

dicted q for the SGP region mostly includes the target
values. This observation supports the notion for collecting
more point-scale data from larger spatial extents. Having
data from a larger extent ensures that the Bayesian ANN can
train itself with a wider range of water content values and
hence result in better predictions.
[24] A discussion on the usage of bootstrapping and

MCMC techniques is necessary here. The bootstrapping
process is used independent of the ANN in our study. It is
used as a random selection method to extract the 1000 data

Figure 7. Histograms for target and ANN-predicted q values for the RGB area.
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values from the data pool. While any random selection
algorithm would have sufficed for the current data, the
bootstrapping process was chosen bearing in mind the
utility of this method when such a large data pool is not
available. Schaap and Leij [1998] use the bootstrapping
method to generate multiple replicates for the ANN cali-
bration and validation sets. These replicates were used to
generate predictions of water retention parameters and Ks.
Confidence intervals were then computed using the gener-
ated predictions’ standard deviations. Uncertainty of the
ANN is assessed in our study using the MCMC method,
which is a part of the Bayesian framework for ANNs.

MCMC evaluates the ANN’s predictions with respect to
the expected targets from the training and provides feedback
to the ANN to enable it to modify the weights structure in
order to obtain better predictions. Only those predictions
that exceed a certain given probability of being similar to
the required distribution are accepted. The range of these
accepted values provides the uncertainty estimates.
[25] There is a significant difference in the means and

standard deviations of the target and the predicted soil water
content values (Table 3). As shown in the numerical study,
this deviation of the prediction from the target can be
attributed to the scale/extent effect. We have trained the

Figure 8. Histograms for target and ANN-predicted q values for SGP area.
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neural network at a coarse scale using SSURGO soil
properties data. This means that the model for the relation-
ship between the inputs and outputs in the network’s
memory is a coarse-resolution model. Despite our simula-
tion inputs being at the point scale, the predictions are
technically at the coarse scale. Hence we observe the
difference in the target and predicted values. Application
of a bias correction technique is necessary to minimize the
difference between the target and predicted values.
[26] A linear bias correction, as used by Hansen and Ines

[2005] and Jana et al. [2007], was applied to the predicted
water content values (q0bar, q0.3bar, q15bar). As mentioned
earlier, this technique only corrects for the mean of the
distribution, and not for the spread. Figure 6 shows the
mean-corrected values of the water content after linear bias
correction for the RGB and the SGP regions. It is observed
that because only the systematic error is accounted for in
this technique, there is a smoothing effect on the soil water
content (q0bar, q0.3bar, q15bar) distribution. This smoothing
further decreases the standard deviation of the predicted soil
water content values. With such a bias correction technique,
we obtain a good estimate for the mean of the entire data set
(i.e., we have a good estimate for the effective soil water
content values at the field scale). At the point scale,
however, the estimation is not as effective.
[27] The CDF mapping method, which provides correc-

tions to the first four moments of the distribution, is used for
nonlinear bias correction. The three soil water contents
(q0bar, q0.3bar, q15bar) are hypothesized to be normally distrib-
uted. Histograms are plotted for each parameter, target and
predicted, for both the RGB and SGP regions in Figures 7
and 8. In addition to the visual examination, we conducted
the Kolmogorov-Smirnov test to check for normality. Table 6
shows the normal distribution at a confidence level of 0.05
for all the three soil water contents.
[28] Normal CDFs are plotted for the target and pre-

dicted q values for both the regions (Figure 9). The CDF
for a normal distribution is given by

CDF qi;m;sð Þ ¼
Zqi
�1

1ffiffiffiffiffiffiffiffi
2ps

p exp � qi � mð Þ2

2s2

 ! !
; ð5Þ

where qi is the value at which the CDF is calculated, and
m is the mean and s is the standard deviation of the soil
water content values. It can be seen that the CDFs of the
model predicted soil water content values and those of the
measured (target) values do not match for either region.
[29] The Bayesian ANN-predicted q values are randomly

split into two halves: one for the model calibration and the
other for the validation of the bias correction scheme. The
cumulative probabilities for each point value are computed
using the mean and standard deviation of the calibration
data set. In order to effectively scale the model predicted
values to the measured data set, we now find qi

pred such that

CDF qpredi

� �
¼ CDF qtargeti

� �
: ð6Þ

This is achieved by computing the inverse of the cumulative
probability values for the calibration data set, but with the
mean and standard deviation values of the target distribu-
tion. The inverse is the value of the soil water content that
corresponds to a particular probability. This procedure
effectively scales the distribution of the neural network
predicted calibration data set to approximate that of the
target values. The calibrated (bias corrected) soil water
content CDF values are plotted (Figure 9). It can be seen
that the calibrated CDF follows the target CDF closely.
[30] To test the calibration scheme, the remaining half of

the neural network predicted soil water content values (the
validation data set) are used. The calibration scheme is
found to be correct as the validation data plot on top of the
target (Figure 9). Results from two-sample Kolmogorov-
Smirnov tests comparing the calibrated/validated data with
the target data are given in Table 7. The test results confirm
that the null hypothesis cannot be rejected at the 5%
significance level, and hence the calibrated/validated data
are not significantly different from the target data. This
means that our bias correction scheme for the predicted q
values approximates the target values well.
[31] Probability density functions (PDFs) are plotted for

the target, predicted, calibrated, and validated q values for
both the regions (Figure 10). The difference in the location
(mean) and scale (spread) of the target and predicted
distributions is apparent here. In concurrence with the
CDFs, the PDFs of the calibrated and validated data sets
plot on top of the target PDF.
[32] Figure 11 shows the target, Bayesian ANN-

predicted, and nonlinear bias-corrected q values. It can be
readily seen that the variability of the target values is largely
approximated by the corrected q values. The point-to-point
matching, however, still appears to be lacking. It must be
noted here that the bias-corrected and target q values are
being sampled from normal distributions that are close to
one another. They are, however, being sampled at different
probabilities, and hence there is apparent mismatch in the
point values. If we select values from the normal distribu-
tion of the bias-corrected values for the exact probabilities
as those of the target values, we would expect a very good
match at each point.
[33] There are always uncertainties in the observations of

any point-scale data because of measurement errors and
operator errors. There are also other factors influencing the
soil water content values that have not been considered
here, such as the presence of macropores or roots debris.

Table 6. One-Sample Kolmogorov-Smirnov Normality Test

Resultsa

q0bar q0.3bar q15bar

Target Predicted Target Predicted Target Predicted

RGB
N 50 50 50 50 50 50
Mean 0.342 0.357 0.127 0.131 0.080 0.074
SD 0.023 0.004 0.013 0.006 0.011 0.004
Kolmogorov-Smirnov Z 0.776 0.950 0.659 0.662 0.664 0.620
Asymptotic sigma
(two-tailed)

0.584 0.327 0.779 0.773 0.802 0.837

SGP
N 68 68 70 70 70 70
Mean 0.393 0.312 0.210 0.177 0.093 0.082
SD 0.027 0.051 0.064 0.072 0.041 0.020
Kolmogorov-Smirnov Z 1.156 0.995 0.803 0.825 0.668 0.941
Asymptotic sigma
(two-tailed)

0.138 0.276 0.540 0.504 0.764 0.339

aAbbreviations are RGB, Rio Grande Basin; SGP, Southern Great Plains;
N, number of data values.
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These factors make the approximation of the particular point
values a near-impossible task, given the current inputs.
Note, however, that this approach provides us q values for
any probability whereas the linear bias correction technique
could not give us this capability. Matching of the distribu-
tions ensures that the above mentioned uncertainties are
incorporated into the estimation scheme. In other words, the

approach is better for field-scale mean parameter estimation
as compared with matching particular point values.
[34] Other limitations of the proposed method warrant

some discussion. PTFs based on ANNs are inherently site-
specific as they need to be trained to recognize the patterns
particular to that site. Also, a few measurements are
necessary at the fine scale for the bias correction procedure.
This correction gives us the estimate of the amount of

Figure 9. Normal cumulative density function plots of target, predicted, and nonlinear bias corrected
calibration and validation soil water content values. Theta indicates soil water content; RGB, Rio Grande
Basin; SGP, Southern Great Plains.
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correction to be applied, which can then be extrapolated to
the entire extent of interest.
[35] Field experts may question the suitability of using

values from the NRCS-SSURGO database as the coarse-
scale data. These reservations are based on the fact that the
SSURGO data are also measured at the point scale and
hence have a measurement ‘‘support’’ similar to that of the
RGB or SGP point-scale data. However, it must be noted
that while the initial measurements are point measurements,
the values in the database are averaged values across the soil
type or map boundaries. Averaging several representative
point scale values is, in itself, a simple form of upscaling.
Hence the SSURGO database gives us upscaled (coarse
resolution, 5 m) values for the soil water function param-
eters. Second, the term scale consists of three components:
support, extent, and spacing [Blöschl and Sivapalan, 1995].
For the initial measurements, two components of the scale
triplet, extent and spacing, are much larger for the SSURGO
data, as compared with either the RGB or the SGP data.
According to Western et al. [2002], scaling often involves
changing more than one component of the scale triplet at a
time. On the basis of the above arguments, it is suitable to
consider the SSURGO data as upscaled or coarse-resolution
values as compared with either the RGB or the SGP data.
[36] Further, it may be argued that the bias between the

target and ANN predicted water content values are due to
the point-scale data being measured in a patch of heteroge-
neous material within the soil map unit. Such heterogeneous
values would be smoothed out in the averaging process to
obtain the coarse-scale SSURGO values. In the numerical
study, we can see that the training and testing data sets have
similar statistics, showing that the testing data set is not
from a heterogeneous region within the coarse-scale pixel.
In our opinion, this question has been answered by applying
the methodology to the two diverse test beds. While patchy
heterogeneity may be an argument in case of the RGB data,
the same cannot be argued for in case of the SGP data. The
SGP data have been collected over a much larger extent,
and the possibility of hitting heterogeneous patches most of

the time is low. At the RGB site, the point-scale measure-
ments were in reasonable agreement with the SSURGO
values for the corresponding soil map units. For example,
data from SSURGO show that the soil map units covering
the Las Cruces trench site have sand contents of 84.3% and
68.1%, providing an average of 76.2%. The point-scale
measured data at the location have an average of 81.46%
sand. This means that the point measurements were not
from a heterogeneous patch within the soil map unit, and a
comparable set of coarse-scale inputs were available in the
data pool for training.

7. Conclusions

[37] Using coarse-scale soil properties data from the
SSURGO database and point-scale measured soil properties
data, we have shown that a Bayesian neural network can be
applied across spatial scales to approximate fine-scale soil
hydraulic properties. The study was conducted for two
different study regions (SGP, RGB) that differed greatly in
soil, topography, vegetation, and climate and in the spatial
extent from which the point data was collected. It has been
shown that the Bayesian ANN predictions are superior
when the data are from a larger region. This is due to the
variety encompassed in the training process. The Bayesian
ANN-predicted q values were further corrected for bias.
While a linear bias correction scheme can only correct for
the difference in the means between the target and predicted
value, a nonlinear correction scheme also corrects for the
spread of the predicted distribution. The CDF matching
technique was used to obtain the nonlinear bias correction.
Applying a Bayesian ANN to this task also gives us an
estimate of the uncertainty involved in the prediction
scheme, which is an improvement over traditional ANN
methods. Overall, the Bayesian ANN, coupled with a
nonlinear bias correction scheme, appears to work well
for estimation of soil hydraulic properties at a fine scale
from data at coarser scales.

Table 7. Two-Sample Kolmogorov-Smirnov Test Results for Similarity of Distributionsa

Data Number of Points Minimum Maximum Mean SD p Value

RGB

q0bar Target 50 0.288 0.397 0.342 0.023
Calibrated 25 0.300 0.396 0.342 0.023 0.954b

Validated 25 0.287 0.387 0.342 0.023 0.759b

q0.3bar Target 50 0.099 0.155 0.127 0.013
Calibrated 25 0.101 0.145 0.127 0.013 0.864b

Validated 25 0.105 0.149 0.127 0.013 0.870b

q15bar Target 50 0.052 0.098 0.080 0.011
Calibrated 25 0.061 0.103 0.080 0.011 0.740b

Validated 25 0.059 0.098 0.080 0.011 0.992b

SGP

q0bar Target 68 0.320 0.440 0.393 0.027
Calibrated 34 0.328 0.440 0.393 0.027 0.071b

Validated 34 0.328 0.428 0.393 0.027 0.157b

q0.3bar Target 70 0.049 0.328 0.210 0.064
Calibrated 35 0.071 0.320 0.210 0.064 0.966b

Validated 35 0.080 0.300 0.210 0.064 0.810b

q15bar Target 70 0.001 0.200 0.093 0.041
Calibrated 35 0.000 0.183 0.093 0.041 0.384b

Validated 35 0.013 0.194 0.093 0.041 0.714b

aAbbreviations are RGB, Rio Grande Basin; SGP, Southern Great Plains; p-value, KS test statistic.
bSignificant at the 0.05 level.
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Figure 10. Normal probability density function plots of target, predicted, and nonlinear bias corrected
calibration and validation soil water content values. Theta indicates soil water content; RGB, Rio Grande
Basin; SGP, Southern Great Plains.
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Figure 11. Graph of target, predicted, and nonlinear bias corrected soil water content values. NLBC,
nonlinear bias corrected values; theta indicates soil water content; RGB, Rio Grande Basin; SGP,
Southern Great Plains.
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