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[1] We used a genetic algorithm (GA) to identify soil water retention q(h) and
hydraulic conductivity K(h) functions by inverting a soil-water-atmosphere-plant (SWAP)
model using observed near-surface soil moisture (0-5 cm) as search criterion.
Uncertainties of parameter estimates were estimated using multipopulations in GA and
considering data and modeling errors. Three hydrologic cases were considered: (1)
homogenous free-draining soil column, (2) homogenous soil column with shallow water
table, and (3) heterogeneous soil column under free-drainage condition, considering three
different rainfall patterns in northern Texas. Results (cases 1 and 2) showed the
identifiability of soil hydraulic parameters improving at coarse and fine scales of the soil
textural class. Medium-textured soils posed identifiability problems when the soil is
dry. Nonlinearity in q(h) and K(h) is greater at drier conditions, and some parameters are
less sensitive for estimation. Flow regimes controlled by upward fluxes were found
less successful, as the information content of observed near-surface data may no longer
influence the hydrologic processes in the subsurface. The identifiability of soil
hydraulic parameters was found better when the soil profile is predominantly draining.
In case 3, top soil layer hydraulic properties were defined using near-surface data
alone as criterion. Adding evapotranspiration (ET) improved identification of the second
soil layer, although not all parameters were identifiable. Under uncertainties, q(h) was
found to be well defined while K(h) is more uncertain. Finally, we applied the method to a
validation site in Little Washita watershed, Oklahoma, where derived effective soil
hydraulic properties closely matched the measured ones at the field site.
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1. Introduction

[2] As remotely sensed soil moisture data become widely
available [Kerr et al., 2001; Njoku et al., 2003; Entekhabi et
al., 2004], the prospects of identifying pixel-based effective
soil hydraulic parameters across the globe become more
imminent in the future. Pixel-based soil hydraulic parame-
ters are essential inputs to large-scale hydrologic and
hydroclimatic models, e.g., soil-vegetation-atmosphere-
transpiration (SVAT) models. Most of their subsurface flow
modules are based on the Darcian flow equation that requires
closed-form equations of the soil hydraulic functions (i.e., the
soil water retention q(h) and hydraulic conductivity K(h)
functions, where h is the pressure head) for modeling the
responses of the soil to store, release, and transmit water
under different hydrologic conditions [Demarty et al., 2005].
These soil hydraulic functions, on the other hand, require
parameters that are distinct among soil types. At larger spatial
scales, they are considered as effective parameters, as they are

used to describe the heterogeneity of the landscape contained
inside the pixel [Kabat et al., 1997; Feddes et al., 1993a,
1993b; Zhu and Mohanty, 2003; Mohanty and Zhu, 2007].
Developing robust approaches or algorithms to quantify such
effective soil hydraulic parameters is of paramount impor-
tance for large-scale hydrologic and hydroclimatic model
applications.
[3] Soil moisture derived from remote sensing platforms

accounts only for the near-surface soil layers. The passive
microwave L-band (1.4 GHz) sensor, for example, has a
maximum penetration depth of 5 cm from the soil surface
under minimal vegetation cover [Jackson et al., 1995].
Since the root zone (�0–100 cm for grass and croplands)
soil moisture is an important variable in partitioning the
surface energy budget, a lot of effort have been made in
using near-surface soil moisture information to retrieve soil
moisture profiles in the unsaturated zone [e.g., Entekhabi et
al., 1994; Galantowicz et al., 1999; Walker et al., 2001;
Crow and Wood, 2003; Walker and Houser, 2004; Dunne
and Entekhabi, 2005]. Apparently, these studies are dedi-
cated only to the retrieval of profile soil moisture and not for
determining profile soil hydraulic properties because they
are assumed to be known beforehand. Vrugt et al. [2005]
argued that hydrologic system parameters are often
not available in real-world conditions and that model
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parameters should be estimated based on observed hydro-
logical data to account for uncertainties involved in model
conceptualization, e.g., those caused by spatial and process
aggregation.
[4] Several studies on quantifying soil hydraulic param-

eters using near-surface soil moisture information have
been reported in the literature, but their scope was limited
for defining the hydraulic properties and processes beyond
the near-surface soil layers. Mattikalli et al. [1998] devised
regression equations to quantify effective saturated hydrau-
lic conductivities (Ksat) of the Little Washita watershed in
Oklahoma using temporal changes of brightness tempera-
ture and near-surface soil moisture derived from the
ESTAR passive microwave sensor during the Washita’92
campaign [Jackson et al., 1995]. Burke et al. [1997, 1998]
coupled a microwave emission model with a soil-water-
energy and transpiration model to quantify soil hydraulic
properties by calibrating the Campbell soil hydraulic
parameters [Campbell, 1974] until the cumulative error
between the observed and simulated brightness temper-
atures is minimized. The derived soil hydraulic parameters
were validated by comparing the near-surface soil moisture
simulated by their coupled model and observed near-
surface soil moisture data derived from a truck-mounted
passive microwave radiometer. Chang and Islam [2000]

also used artificial neural networks to estimate near-surface
textural characteristics of the soil surface. Note, however,
that the proper determination of soil hydraulic parameters
in the unsaturated zone is vital for modeling profile soil
moisture dynamics since they significantly affect the par-
titioning of the water balance, and hence the surface energy
budget [Xevi et al., 1996; Antonopoulos, 2000]. Feddes et
al. [1993a, 1993b] postulated that regional inverse model-
ing could be feasible to derive vadose zone effective soil
hydraulic parameters using evapotranspiration (ET) and
surface soil moisture from remote sensing.
[5] In this paper, we present a near-surface soil moisture

assimilation scheme for quantifying effective soil hydraulic
properties of the vadose zone. First, we opted to conduct
numerical experiments at the field scale to account for
various hydrologic scenarios that may be encountered in
the field, and to explore the strengths and limitations of the
proposed method. Our numerical experiments generally
aimed at addressing two major research questions: (1) Can
we quantify effective soil hydraulic parameters of the root
zone (0–100 cm) using only near-surface (0–5 cm) soil
moisture data? (2) How robust are the derived soil hydraulic
parameters, and can they closely describe the hydrologic
processes in the subsurface soil layers? In our numerical
experiments, we also present the effects of using evapo-

Figure 1. Schematic diagram of the genetic algorithm-based near-surface soil moisture assimilation by
inverse modeling [see Ines and Mohanty, 2008]. Note that k = {pj = 1, m�1, l} if l of the Mualem-Van
Genuchten functions is fixed; pj = 1, m�1 = {a, n, qres, qsat, Ksat} (see section 2.1.2).
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transpiration (ET) in tandem with near-surface soil moisture
data as conditioning criteria for determining the effective
soil hydraulic parameters. We also studied the combined
effects of data and modeling errors in the parameter esti-
mation. Then we applied the near-surface soil moisture
assimilation scheme to a validation site within Little
Washita watershed in Oklahoma to estimate the local-scale
effective soil hydraulic properties. Amajor assumption of our
study is that the flow in the soil system is considered to be
primarily vertical. Hence the net surface run-on/runoff in the
modeling domain is assumed to be zero approximating a flat
land surface.

2. Materials and Methods

2.1. Near-Surface Soil Moisture Assimilation

2.1.1. Background
[6] Figure 1 shows a schematic of the near-surface soil

moisture assimilation scheme. Here we used the near-surface
soil moisture data q(t) to determine q(h) and K(h) functions
simultaneously by tuning the soil hydrologic model using a
genetic algorithm (see section 2.1.2). This approach is analo-
gous to inverse modeling since it requires a physically based
soil hydrologic model to run recursively until the solutions of
q(h) and K(h) have converged [e.g., Kool and Parker, 1988;
Van Dam et al., 1992, 1994; Abbaspour et al., 1997; Jhorar et
al., 2002; Ines andDroogers, 2002]. The distinct feature of this
approach is the type of conditioning criteria being used, which
are derived from the near-surface soil layers (0–5 cm). This
near-surface information is used to determine the effective soil
hydraulic parameters for the entire root zone. Evidently, the
success of this approach depends greatly on the assumption
that a correlation between the near-surface and subsurface soil
moisture exists, and thus any perturbations (e.g., those caused
by plant activities) occurring in the soil surface could propa-
gate downward, influencing the hydrologic processes under-
neath. Exploiting this dependency between the near-surface and
subsurface processes would allow the determination of soil
hydraulic properties in the root zone [Abbaspour et al., 2001;
Ines and Droogers, 2002]. This so-called codependency is the
fundamental assumption used in near-surface data assimilation
studies [e.g.,Walker et al., 2001]. The questions are as follows:
(1) How far do the signatures of near-surface soil hydrologic
processes propagate into the soil profile? (2) Will the assump-
tion still hold if the processes in the subsurface layers are
predominantly governed by the bottom boundary condition,
e.g., by major upward fluxes from a shallow water table?
[7] The inverse problem of unsaturated flows in the

vadose zone can be defined simply as estimating the soil
hydrologic parameters k (equation (1)) by solving the
physically based soil water flow equation (Richards equa-
tion) conditioned on a given time series of soil moisture data
q̂i(t) derived from in situ measurements or from remote
sensing observations (equation (2)) [Kool and Parker, 1988;
Van Dam et al., 1992, 1994; Feddes et al., 1993a, 1993b]:

k ¼ pj¼1;m

n o
ð1Þ

Minimize Z kð Þf g ¼ 1

N

1

M

XN
t¼1

XM
i¼1

qi k; tð Þ � q̂i tð Þ
��� ���: ð2Þ

[8] For our near-surface soil moisture assimilation stud-
ies, q̂i(t) corresponds to the near-surface soil moisture data
and qi(k, t) corresponds to the simulated near-surface soil
moisture given k, where Z is the objective function, N is the
time domain, M is the number of soil layers considered in
the soil profile, j is an index of parameter position, m is the
maximum number of parameters, p corresponds to the soil
hydraulic parameters, e.g., the Mualem-Van Genuchten
parameters [Mualem, 1976; Van Genuchten, 1980], and i
and t are running indices for soil layers and time.
[9] If other information is available e.g., ET data, equa-

tion (2) can be expanded as a weighted multicriteria
function (equation (3a)), where f and (1 – f) are the weights
associated with soil moisture and ET, respectively, ET(k, t)
corresponds to the simulated ET given k, and ÊT(t) corre-
sponds to the observed evapotranspiration at time t. The
weights f and (1 – f) signify the importance of near-surface
soil moisture and ET during the parameter estimation. These
weights can be assigned probabilistically or by a priori
information based on field observation of (vertical) soil
heterogeneity. Equation (3a) can be further extended into a q
and T (transpiration)-based function (equation (3b)) that
could account for the contributions of soil moistures and
root water extractions from different soil layers to the soil
hydraulic parameter estimation [see Feddes et al., 1993a;
Kabat et al., 1997; Jhorar et al., 2002; Ines and Droogers,
2002]. Note that when including more than one condition-
ing variable (e.g., q, ET, T) in equations (3a) and (3b),
normalized variables instead of actual values are used to
account for unit differences.
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[10] The overall success of this approach lies on the
robustness of the derived soil hydraulic parameters. Robust
search algorithms, not easily trapped to local solutions, are a
prerequisite for its successful implementation. In the fol-
lowing sections we discuss the search algorithm, hydrologic
model, and parameter uncertainty analysis used in this
study.
2.1.2. Genetic Algorithms
[11] Genetic algorithms (GAs) have been applied to solve

complex problems in water resources systems [e.g., Wang,
1991; Cieniawski et al., 1995; Ritzel at al., 1994; Oliveira
and Loucks, 1997; Wardlaw and Sharif, 1999; Chan-Hilton
and Culver, 2000; Wu et al., 2006] and to unsaturated flows
in porous media [e.g., Gwo, 2001; Vrugt et al., 2001; Ines
and Droogers, 2002]. A comprehensive review of GA
applications in hydrologic sciences is given by Savic and
Khu [2005]. For completeness we briefly describe the
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algorithm in this section. GAs are powerful search techni-
ques that combine the survival of the fittest mechanism
within a structured yet randomized information exchange to
search for the solutions of complex search/optimization
problems [Holland, 1975; Goldberg, 1989]. In binary
GAs, the search spaces of the unknown parameters, e.g.,
the soil hydraulic parameters, are discretized into finite
lengths and then coded as sets of binary substrings assem-
bled to form string structures called chromosomes. The
arrangement of binary digits (i.e., 0 and 1) within a
chromosome can be a possible solution to the search
problem. The procedure starts by randomly generating a
population of chromosomes used as starting search posi-
tions to the search surface. Since several chromosomes are
included within a population, multiple starting positions are
explored at the start of the search simultaneously. The
chromosomes are individually evaluated to determine their
suitability based on a prescribed fitness function, i.e., the
search surface. Then they undergo the process of selection,
crossover, and mutation. On the basis of their fitness, they
compete to be selected, and mate and reproduce for the next
generation. During selection, the fitter chromosomes sur-
vive and the weaker ones die. The selected chromosomes
randomly mate to exchange genetic information through the
process of crossover to produce their offspring. The result-
ing new chromosomes are subjected to mutation to infuse
fresh genetic materials for the new generation and to restore
certain genetic characteristics that were lost due to degen-
eracy. The processes of selection, crossover, and mutation
are repeated for many generations until the best possible
solution is achieved; this solution is the fittest chromosome
that evolved after many generations (see Figure 1). Detailed
descriptions of GA can are given by Goldberg [1989] and
Michalewicz [1996].
[12] In this study, we used a modified-microGA [Ines

and Droogers, 2002] (see also D. L. Carroll, http://
www.cuaerospace.com/carroll/ga.html) to solve for the
unknown parameter set (Figure 1). A microGA uses a
micropopulation to search for the search-surface. A unique
feature of a microGA is that the micropopulation restarts
when the majority of the chromosomes are similar in
structure before the maximum generation is reached. Jump
mutation (i.e., mutation at the binary level) is not allowed in
a classic microGA [Krishnakumar, 1989]. Apparently, the
microGA framework is highly suitable for coupled meth-
odologies because of the lesser number of chromosomes

involved during fitness evaluation, saving computational
time. The restarting of the micropopulation mechanism also
increases the resampling of the global search space with
only a small number of parameter combinations being
evaluated. Nevertheless, with the ill-posed nature of inverse
problems [Kool and Parker, 1988], a restarting microGA
can easily fall short of the elusive solution of the inverse
problem. Besides, the new chromosomes from the restarted
population are raw combinations of parameters not condi-
tioned on the converging parameter search spaces. D. L.
Carroll (http://www.cuaerospace.com/carroll/ga.html) intro-
duced a creep mutation operator in a microGA to infuse new
genetic materials to the restarting micropopulation, which
resulted in an improved performance of the microGA. A
creep mutation is a mutation variant that alters the parameter
set k at the decimal level, thus minimizing the perturbations
made on the converging parameter combinations. This
minimized parameter perturbation does not compromise
the micropopulation restarting mechanism in a microGA.
Ines and Droogers [2002] further modified the algorithm to
enhance more the potential benefits of a restarting micro-
population for inverse modeling of unsaturated flows.
[13] Moreover, we added several new features to the

modified microGA for this study. We implemented a first-
order time-saving scheme where the chromosomes in the
previous generation (g-1) are remembered and compared
with the present generation (g) to evaluate if similar chro-
mosomes exist such that they can directly inherit the prop-
erties of the former, reducing further the computational time
[Ines and Honda, 2005]. A new feature called intermittent
jump mutation was introduced at selected instances along the
generations (e.g., 25th, 50th, 75th, and 85th percentile of the
maximum generation) to introduce further fresh influx of new
genetic material to the converging micropopulation. In the
GA search, we used a binary tournament selection process, a
uniform crossover to exchange genetic information between
the selected chromosomes, a micropopulation of 10, and a
maximum number of generations of 500 (see Table 1).
[14] For the inverse-modeling-based near-surface soil

moisture assimilation, we considered the soil hydraulic
parameters of the Mualem–Van Genuchten functions as
unknowns expressed as k = {a, n, qres, qsat, Ksat, l}. Since
l is assumed to be 0.5 (Mualem [1976]; see section 2.1.3) and
defining pj = 1, m�1 = {a, n, qres, qsat, Ksat} (see equation (1)),
hence k = {pj = 1, m�1, l} (see section 2.1.3 for parameter
definitions). The parameters p0(pj = 1, m�1) were the only ones
propagated in GA, and their binary and decimal representa-
tions are given in Table 1. The maximum ranges of the
parameter values were designed to accommodate a variety of
soils ranging from clay to sandy loam [Leij et al., 1999]. The
fitness function was defined as

fitness p0ð Þ ¼ 1

Z kð Þ ; ð4Þ

where the binary elements of p0 are concatenated with
their decimal values using the linear mapping technique of
Goldberg [1989]:

C pj

� �
¼ CMin pj

� �
þ

PLpj
h¼1

ah2
h�1

2
Lpj � 1

CMax pj

� �
� CMin pj

� �h i
8j; ð5Þ

Table 1. Representations of the Mualem-Van Genuchten

Parameters in the Genetic Algorithma

Parameter

Search Space

Number of
Bits (L) 2L

Minimum
Values

Maximum
Values

a 0.0060 0.0330 5 32
n 1.200 1.610 6 64
qres 0.061 0.163 7 128
qsat 0.37 0.55 5 32
Ksat 1.84 55.7 10 1024

aGlobal search space = 32 � 64 � 128 � 32 � 1024 = 8,589,934,592.
Example of k = {a, n, qres, qsat, Ksat} = {00101 110010 0001111 00001
0101000101}. Probability of crossover = 0.5. Probability of creepmutation =
0.5. Probability of intermittent jump mutation = 0.05. Population = 10
chromosomes. Number of multipopulations = 3.Maximum generation = 500.
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where CMax and CMin correspond to the maximum range of
parameter p (elements of p0); C is the decimal value of a
binary substring p; Lp is the length of the substring p; a is the
bit value 0 or 1 at position h in the substring; and j is an index
for parameter position in the string p0.
2.1.3. Simulation Model
[15] SWAP [Van Dam et al., 1997] is a variably saturated

flow model used to simulate the processes of the soil-water-
atmosphere-plant system. It solves the one-dimensional
Richards equation (equation (6)) using a robust implicit
finite difference scheme [Belmans et al., 1983] to simulate
soil moisture dynamics in the soil profile under different
climatic and environmental conditions,

@q hð Þ
@t

¼ C hð Þ @h
@t

¼
@ K hð Þ @h

@z þ 1
� � �
@z

� S hð Þ; ð6Þ

where q is the soil moisture (cm3 cm�3), K is the hydraulic
conductivity (cm d�1), h is the soil water pressure head (per
cm), z is the soil depth (cm) taken positively upward, t is
time (d), C is the differential water capacity (cm�1), and
S(h) is the actual soil moisture extraction rate by plants
(cm3 cm�3 d�1) defined as equation (7) in case of a uniform
root distribution

S hð Þ ¼ aw hð ÞTpot

jzrj
; ð7Þ

where Tpot is the potential transpiration (cm d�1), zr the
rooting depth (cm), andaw is a reduction factor as function of
h and accounts for water deficit and oxygen stress [Feddes et
al., 1978]. SWAP can simulate many configurations of the
root density.
[16] The soil hydraulic functions in SWAP are defined by

the Mualem-Van Genucthen equations [Van Genuchten,
1980; Mualem, 1976]

Se ¼
q hð Þ � qres
qsat � qres

¼ 1

1þ jahjn
� �m

ð8Þ

K hð Þ ¼ KsatS
l
e 1� 1� S

1=m
e

� �mh i2
; ð9Þ

where Se is the relative saturation(), a (cm�1) is a shape
parameter equivalent to the inverse of the bubbling pressure,
n() is a shape parameter that accounts for the pore size
distribution, qres (cm

3 cm�3) and qsat (cm
3 cm�3) are the

residual and saturated soil moisture content respectively,
Ksat (cm d�1) is the saturated hydraulic conductivity, and
l() is a shape parameter that accounts for tortuosity in the
soil. Van Genuchten [1980] proposed m = 1 – 1/n. The
values of these parameters are distinct among soil textural
types and have to be defined as inputs to the simulation
model. Mualem [1976] suggested a representative value of
l equal to 0.5 for most soils, although this value may not be
optimal in many situations [Schaap and Leij, 2000].
[17] SWAP accounts for several combinations of the top

and bottom boundary conditions (e.g., Dirichlet, Neumann,
and Cauchy types). It is equipped with crop growth models

and water management modules for irrigation and drainage
studies. The model simulates both soil water quantity and
quality with a temporal resolution of 1 day.
[18] The potential evapotranspiration (ETpot) is calculated

by SWAP using the Penman-Monteith equation, where the
components potential transpiration (Tpot) and soil evapora-
tion (Epot) are partitioned using the leaf area index (LAI) or
soil cover fraction (SC) of the simulated land unit. As the
soil dries, SWAP reduces ETpot into actual ET (ETact) using
the adjusted values of Epot and Tpot into actual values based
on the existing environmental conditions calculated from
established empirical relationships. The model has been
well validated in the field and found to perform very well
under different climatic and environmental conditions [e.g.,
Wesseling and Kroes, 1998; Sarwar et al., 2000; Droogers
et al., 2000, Singh et al., 2006a, 2006b]. In this study, we
used SWAP as our soil hydrologic model to evaluate the
parameter set p0 proposed by GA (recall that k = {p0, l}; see
section 2.1.2). Detailed descriptions of SWAP are given by
Van Dam et al. [1997] and Van Dam [2000].
2.1.4. Parameter Uncertainty
[19] To quantify the parameter uncertainty, we used a

technique that may allow a microGA to provide some
estimates of the uncertainty levels. Although GA is a
stochastic approach and contains a population of possible
solutions in a generation, it is inherently limited to account
for the uncertainty of the solution since we consider a
solution in a GA as the best chromosome of the population.
One might argue that we can use the whole population for
estimating parameter uncertainties. In the case of a simple
GA [see Goldberg, 1989], this may not be adequate because
the weaker chromosomes are not considered solutions to the
problem. Also, in this study, when a microGA converges,
most of the chromosomes are almost alike. This problem is
exacerbated by the elitist, non-niching nature of a microGA
as it tries to converge only to one region (near-optimal/
optimal) in the search surface. For this reason, we chose to
use a multipopulation search in an attempt to estimate
parameter uncertainties under the perfect model/data condi-
tion scenarios. This may give us also an opportunity to
estimate nonuniqueness in the solutions, as this step is
analogous to solving the inverse problem from multiple
different starting positions on the search surface. Multi-
populated GAs have been used for hydrologic modeling
before but not with the intent of estimating for uncertainty
in parameter estimates [Seibert, 2000]. In this study, by
using three micropopulations running in parallel, we
searched the search surface for the inverse modeling sol-
utions (see Table 1 for the ranges of parameter search
spaces). At the end of the maximum generation, the suc-
cessful chromosomes from the multipopulations were inte-
grated together and then classified as above-averaged if
their fitness exceeds the grand average fitness defined by
the average of all the chromosome fitness from the multi-
population or below-averaged, otherwise. The above-
averaged chromosomes are considered to be the most
probable solutions of GA to the inverse problem and were
used for estimating uncertainties of the parameter estimates
(see Figure 1), while the below-averaged chromosomes are
discarded from the final solution. The uncertainty of
parameter estimates was estimated by calculating the 95%
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confidence interval (95PCI) of the derived parameter val-
ues. The uniqueness of the solutions were estimated using
equation (10),

Rangeijk ¼ 95PCIijkþ � 95PCIijk� 8i; 8j; 8k; ð10Þ

where 95PCIijk+ and 95PCIijk� indicate the upper and lower
bounds, respectively, of the 95PCI; i, j, and k are indices for
hydrologic year, soil hydraulic parameter, and soil type,
respectively. For a high degree of uniqueness, equation (10)
should yield a near-zero value. It should be noted that this
parameter uncertainty estimation as used in this paper is an
attempt to deal with uncertainties in GAs and should not be
viewed as a finished project, but rather as an ad hoc scheme
that can possibly be improved in future.
[20] In real-world conditions, aside from the skill of the

search algorithm, other factors like model imperfections,
data and modeling errors, and the ill-posed nature of the
inverse problem all contribute to uncertainties of the pa-
rameter estimates [see Kool et al., 1987; Kool and Parker,
1988; Russo et al., 1991; Van Dam et al., 1992; Šimůnek et

al., 1998; Romano and Santini, 1999]. For this reason, we
also made some parameter estimation experiments under
uncertainty considering an imperfect data and/or modeling
conditions (see section 2.2.2.4).

2.2. Numerical Experiments

2.2.1. Model Domain and Flow Conditions
[21] This study was conducted as a proof of concept that

the effective soil hydraulic parameters of the soil profile can
be quantified using near-surface soil moisture data such as
those measured from remote sensing. Hence we opted to use
numerical experiments of unsaturated flows to cover a wide
range of hydrologic conditions (Figure 2) that will test most
of the questions posed in the previous sections. As with any
numerical experiments [e.g., Kool and Parker, 1988;Walker
et al., 2001; Walker and Houser, 2004], we generated
hypothetical soil moisture data from available soils, weather,
and crop management information from the study site. We
considered three typical hydrologic years of varying rainfall
patterns: dry, relatively wet, and wet years based on clima-
tology in northern Texas (see Figure 3; http://mesonet.

Figure 2. Schematic layout of the model domain and flow conditions used in the numerical
experiments: (a) homogenous soil column under a free-draining condition; (b) homogenous soil column
with shallow water table; and (c) heterogeneous soil column under a free-drainage condition.
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tamu.edu/). A land unit with a soil depth of 200 cm and a
ponding depth of 10 cm was considered for simulations. The
crop considered was wheat (Triticum aestivum) under irri-
gated condition. Under the base scenario, irrigation was
applied by SWAP automatically according to an irrigation
scheduling criterion based on allowable water stress by the
crops (here Tact/Tpot � 0.70; see section 2.1.3 for defini-
tions). If this crop water stress level is exceeded, SWAP
applies 100 mm of water by surface irrigation. Three
different soil types were considered in the simulations. i.e.,
(1) sandy loam, (2) silt loam, and (3) clay loam representing
a wide range of soils for this numerical study (UNSODA
database [Leij et al., 1999]). The expected values of the
Mualem-Van Genuchten soil hydraulic parameters for sandy
loam, silt loam, and clay loam soils are given in Tables 2a,
2b, and 2c (based on UNSODA). Other meteorological data
including daily solar radiation, wind speed, maximum and
minimum air temperature, and humidity used in this study
were collected from the Texas Mesonet station in Lubbock,
Texas (http://mesonet.tamu.edu/). All SWAP simulations

were done across the crop growing season from 1 March
to 31 July (days of year (DOY) 60–212) for all the years
considered in the numerical experiments.
2.2.2. Numerical Case Studies
2.2.2.1. Case 1: Homogenous Free-Draining Column
[22] The first case study involves a homogenous free-

draining column (Figure 2a), a scenario representing deep
draining soils like soils in arid/semiarid regions. The soil
column was discretized into 33 computational layers with
finer divisions from the soil surface to a depth of 10 cm. For
all the simulations, the soil columns were initialized uni-
formly at �100 cm pressure head (h) (i.e., initial profile soil
moisture contents are calculated at this initial pressure head
distribution). The near-surface soil moisture assimilation
procedure was conducted using various data collection/
aggregation schemes including a (1) daily interval protocol
(D), (2) weekly interval (W), (3) 7-day average (7D), and
(4) a wet/dry window scheme (WDW) to explore the best
possible data collection/aggregation scheme for the param-
eter estimation. The WDW scheme is implemented by

Figure 3. Rainfall patterns used in the numerical experiments under northern Texas climate. Insets
show near-surface soil moisture patterns used in the parameter estimation.
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passing a moving window across the time series of near-
surface soil moisture and aggregating soil moisture data
during drying and wetting periods. Among the four data
collection/aggregation schemes, the WDW is based more on
the physics of the soil water movement because the daily
soil moisture data were aggregated based on a wetting event
and subsequent drying phases. All experiments have three
replicates by using multiple populations in the GA imple-
mentations (see section 2.1.4). For case 1, a total of 108
numerical simulations were conducted, i.e., 3 soil types � 3

years (see Figure 3) � 4 data collection schemes � 3
replicates.
2.2.2.2. Case 2: Homogenous Column With a
Shallow Water Table
[23] The second case represents soils with shallow water

table for all year-round (Figure 2b). At the onset of
simulations, the initial pressure heads of the soil column
were in equilibrium with the shallow water table, at 150 cm
deep from the soil surface. The bottom flux (positive
upward) is calculated using h(z = �150, t > 0) = 0 cm

Table 2a. Solutions of the Genetic Algorithm to the Near-Surface Soil Moisture Assimilation Under Sandy Loam Soil, Case 1,

Homogenous, Free-Draining Column

Parameter Expected Valuea Collection Scheme

Dry Year Relatively Wet Year Wet Year

Mean 95PCI Mean 95PCI Mean 95PCI

a 0.021 daily interval 0.022 0.020–0.023 0.022 0.020–0.023 0.022 0.021–0.024
weekly interval 0.022 0.020–0.024 0.022 0.020–0.023 0.022 0.021–0.024
7-day average 0.022 0.020–0.024 0.023 0.021–0.024 0.022 0.020–0.024
wet/dry window 0.022 0.021–0.023 0.022 0.021–0.024 0.022 0.020–0.023

n 1.61 daily interval 1.61 1.60–1.61 1.61 1.60–1.62 1.61 1.59–1.62
weekly interval 1.61 1.61–1.61 1.60 1.57–1.63 1.61 1.60–1.61
7-day average 1.61 1.59–1.62 1.61 1.61–1.61 1.61 1.60–1.62
wet/dry window 1.61 1.60–1.61 1.61 1.61–1.61 1.61 1.60–1.61

qres 0.067 daily interval 0.066 0.064–0.068 0.066 0.064–0.068 0.068 0.065–0.071
weekly interval 0.067 0.065–0.068 0.066 0.064–0.068 0.067 0.067–0.067
7-day average 0.067 0.065–0.068 0.066 0.063–0.069 0.067 0.066–0.068
wet/dry window 0.067 0.066–0.068 0.067 0.067–0.067 0.067 0.067–0.067

qsat 0.370 daily interval 0.372 0.366–0.378 0.374 0.366–0.382 0.374 0.365–0.383
weekly interval 0.373 0.367–0.380 0.374 0.367–0.380 0.378 0.372–0.385
7-day average 0.375 0.369–0.380 0.380 0.366–0.394 0.378 0.366–0.389
wet/dry window 0.375 0.366–0.383 0.377 0.367–0.387 0.374 0.363–0.384

Ksat 41.6 daily interval 44.1 37.0–51.1 45.3 37.3–53.3 48.1 39.6–56.5
weekly interval 44.4 38.0–50.8 46.5 35.9–57.0 50.4 41.1–59.7
7-day average 46.1 37.3–55.0 50.6 38.8–62.3 48.9 37.8–59.9
wet/dry window 46.0 37.6–54.5 48.7 38.3–59.1 45.1 35.0–55.3

aUNSODA database [Leij et al., 1999].

Table 2b. Solutions of the Genetic Algorithm to the Near-Surface Soil Moisture Assimilation Under Silt Loam Soil, Case 1,

Homogenous, Free-Draining Column

Parameter Expected Valuea Collection Scheme

Dry Year Relatively Wet Year Wet Year

Mean 95PCI Mean 95PCI Mean 95PCI

a 0.012 daily interval 0.011 0.009–0.013 0.013 0.011–0.016 0.013 0.008–0.018
weekly interval 0.011 0.010–0.012 0.011 0.010–0.013 0.013 0.007–0.018
7-day average 0.010 0.009–0.011 0.013 0.010–0.017 0.011 0.010–0.012
wet/dry window 0.011 0.010–0.013 0.014 0.011–0.016 0.013 0.011–0.014

n 1.39 daily interval 1.44 1.32–1.56 1.39 1.37–1.40 1.39 1.37–1.41
weekly interval 1.52 1.41–1.63 1.41 1.39–1.42 1.41 1.34–1.48
7-day average 1.51 1.38–1.65 1.44 1.39–1.49 1.43 1.38–1.47
wet/dry window 1.40 1.36–1.45 1.38 1.34–1.42 1.39 1.37–1.40

qres 0.061 daily interval 0.078 0.045–0.110 0.062 0.060–0.063 0.062 0.061–0.064
weekly interval 0.101 0.073–0.128 0.065 0.062–0.067 0.066 0.056–0.075
7-day average 0.090 0.058–0.123 0.069 0.059–0.079 0.065 0.057–0.073
wet/dry window 0.067 0.049–0.085 0.063 0.059–0.067 0.062 0.061–0.063

qsat 0.430 daily interval 0.435 0.409–0.462 0.441 0.422–0.459 0.440 0.417–0.462
weekly interval 0.447 0.423–0.472 0.428 0.415–0.441 0.440 0.420–0.461
7-day average 0.442 0.421–0.463 0.460 0.426–0.495 0.435 0.422–0.449
wet/dry window 0.431 0.422–0.440 0.437 0.429–0.445 0.439 0.429–0.449

Ksat 30.5 daily interval 29.7 22.0–37.4 41.6 24.8–58.3 41.6 15.5–67.7
weekly interval 31.1 25.1–37.0 26.6 20.2–33.0 39.3 6.8–71.7
7-day average 24.3 17.8–30.7 43.9 23.4–64.5 27.0 22.6–31.4
wet/dry window 30.3 23.7–36.8 41.0 27.7–54.3 40.8 27.3–54.2

aUNSODA database [Leij et al., 1999].
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[Van Dam, 2000]. This case was conducted to test if the
codependency assumption (see section 2.1.1) used in near-
surface soil moisture assimilation studies [e.g.,Walker et al.,
2001] is still valid if the flow processes in the unsaturated
zone are dominated by the bottom boundary condition, e.g.,
by major upward flows from shallow water table. On the
basis of our findings in case 1 (described later), we applied
only the wet/dry window (WDW) data collection scheme
for case 2, resulting in a total of 27 experiments, i.e., 3 soil
types � 3 years � 3 replicates. An additional 54 experi-
ments (27 for each additional groundwater table depths at
200 and 100 cm) were also conducted to assess the impacts
of varying water table depths to the performance of the
near-surface soil moisture assimilation procedure.
2.2.2.3. Case 3: Heterogeneous Column
[24] For case 3, the heterogeneous soil profile was

composed of sandy loam (top 60 cm) and silt loam (bottom
140 cm) layers and was assumed to be well drained
(Figure 2c). As in case 2, we applied only the WDW data
collection scheme for case 3. For the two-layer system, the
GA chromosome was defined as

pj¼1;m�2 ¼ fa1; n1; qres1; qsat1;Ksat1;a2; n2; qres2; qsat2;Ksat2g

and thus

k ¼ p00;l1;l2f g;

where l1 = l2 = 0.5 and p00 is pj = 1, m�2. For all our
numerical experiments under heterogeneous condition, we
used a single-criterion procedure with near-surface soil
moisture as conditioning variable (see equation (2)), and a
multicriteria procedure using (f� (soil moisture) + (1 – f)�
evapotranspiration (ET)) (see equation (3a)), where f is the
weight given to the near-surface soil moisture and (1 – f) is
the weight given to evapotranspiration. In equation (3a), the
soil moisture and ET values were normalized, thus allowing

Table 2c. Solutions of the Genetic Algorithm to the Near-Surface Soil Moisture Assimilation Under Clay Loam Soil, Case 1,

Homogenous, Free-Draining Column

Parameter Expected Valuea Collection Scheme

Dry Year Relatively Wet Year Wet Year

Mean 95PCI Mean 95PCI Mean 95PCI

a 0.030 daily interval 0.030 0.028–0.031 0.030 0.027–0.032 0.030 0.027–0.032
weekly interval 0.029 0.026–0.032 0.030 0.029–0.032 0.030 0.028–0.031
7-day average 0.030 0.029–0.031 0.030 0.027–0.033 0.030 0.027–0.033
wet/dry window 0.030 0.028–0.031 0.029 0.028–0.031 0.031 0.029–0.033

n 1.37 daily interval 1.38 1.34–1.41 1.40 1.37–1.44 1.38 1.36–1.41
weekly interval 1.38 1.34–1.43 1.38 1.35–1.42 1.36 1.33–1.40
7-day average 1.37 1.33–1.41 1.38 1.32–1.44 1.39 1.35–1.43
wet/dry window 1.36 1.35–1.38 1.42 1.40–1.44 1.39 1.36–1.41

qres 0.129 daily interval 0.131 0.122–0.139 0.137 0.128–0.147 0.134 0.126–0.142
weekly interval 0.135 0.123–0.148 0.132 0.121–0.144 0.126 0.116–0.136
7-day average 0.127 0.115–0.139 0.130 0.118–0.142 0.135 0.122–0.148
wet/dry window 0.128 0.123–0.133 0.141 0.138–0.143 0.133 0.124–0.141

qsat 0.470 daily interval 0.471 0.465–0.476 0.473 0.468–0.479 0.471 0.465–0.477
weekly interval 0.471 0.465–0.476 0.472 0.465–0.478 0.470 0.465–0.475
7-day average 0.471 0.465–0.478 0.472 0.465–0.478 0.472 0.466–0.479
wet/dry window 0.469 0.469–0.469 0.476 0.472–0.481 0.473 0.468–0.479

Ksat 1.84 daily interval 1.87 1.82–1.93 1.88 1.80–1.96 1.87 1.81–1.92
weekly interval 1.87 1.80–1.94 1.90 1.73–2.07 1.88 1.81–1.96
7-day average 1.87 1.81–1.93 1.90 1.76–2.04 1.89 1.80–1.98
wet/dry window 1.86 1.80–1.91 1.88 1.81–1.94 1.87 1.81–1.92

aUNSODA database [Leij et al., 1999].

Figure 4. Example of a genetic algorithm solution: clay
loam, dryyear,wet/drywindow (WDW) scheme: (a)maximum
fitness, (b) average fitness, and (c) average soil moisture error
(near surface).
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the use of both variables in one equation. ET was used
as a secondary search criterion because in theory it could
influence the perturbations at deeper soil layers due to
its transpiration (T) component, and as a result it could
impact parameter identifiability [e.g., Feddes et al., 1993a,
1993b; Jhorar et al., 2002; Ines and Droogers, 2002] of
the silt loam layer underlain by the sandy loam layer
(Figure 2c). In the experiments, four scenarios were
considered based on the following conditioning criteria,
using (1) soil moisture alone (f = 1.0), (2) soil moisture and
ET with f = 0.6, (3) soil moisture and ET with f = 0.5,
and (4) soil moisture and ETwith f = 0.4, resulting in a total
of 36 experiments, i.e., 4 conditioning criteria � 3 years �
3 replicates.
2.2.2.4. Parameter Estimation Under Uncertainty
[25] The case studies above assumed a perfect model and

data conditions. Hence the uncertainties in the parameter

estimates could be attributed to the search algorithm,
including the form of the objective function; the information
content of the data, which include the type, data variability,
and their sensitivity to the soil hydraulic parameters; and to
the ill-posed nature of inverse problems [e.g., Kool et al.,
1987; Kool and Parker, 1988; Russo et al., 1991; Van Dam
et al., 1992, 1994; Šimůnek et al., 1998; Romano and
Santini, 1999; Vrugt et al., 2001; Ines and Droogers,
2002]. In this part of the study, we only considered the
effects of data and modeling errors on the performance of
our near-surface soil moisture assimilation scheme. We used
the sandy loam soil case under the dry year condition with
homogenous free-draining column for our error analysis
(case 1; see section 2.2.2.1). To account for data errors, we
perturbed the ‘‘error-free’’ near-surface soil moisture data
assuming that soil moisture errors are normally distributed
using q0 = q�(1 + xx) where x � N(0, 1) and �1 � x � 1; q0

Figure 5. Chronological search space exploration of the search surface Z = f(a, n, qres, qsat, Ksat)
bounded by amin � a � amax, nmin � n � nmax, qresmin � qres � qresmax, qsatmin � qsat � qsatmax, and
Ksatmin � Ksat � Ksatmax (see Table 1). Case 1, clay loam; WDW scheme; seed = �1000; population
size, 10; number of generations, 500; a (cm�1); n, ( ); qres (cm

3 cm�3); qsat (cm
3 cm�3); Ksat (cm d�1).
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and q are the perturbed and error-free soil moisture, respec-
tively; x is a normal random deviate with mean and standard
deviation equal to 0 and 1, respectively; and x is the error
term. An error of 20% was propagated along the time series of
error-free near-surface soil moisture, in which 10 perturbed
soil moisture series were generated. This x term can be
associated with measurement errors that could be incurred
during the field data collection. To account for modeling

(structural) errors, we considered the effects of rooting depth
and root density variation on the performance of the near-
surface soil moisture assimilation scheme. Two root densities
were studied, i.e., a triangular (0–1 m depth: 100–0.01%
density) and a trapezoidal configuration (0–0.5–1.0 m depth:
100–100–0.01% density). The rooting depth scenarios in-
clude a condition in which the rooting depth was shallower
than the base case scenario. In our base scenario, the potential

Figure 6a. Uniqueness of solutions for sandy loam for case 1 under free-draining condition. D, daily;
W, weekly, 7D, 7-day average; WDW, wet/dry window. Values are normalized based on the minimum
and maximum values of the parameters from Table 1.

Figure 6b. Uniqueness of solutions for silt loam for case 1 under free-draining condition. D, daily; W,
weekly, 7D, 7-day average; WDW, wet/dry window. Values are normalized based on the minimum and
maximum values of the parameters from Table 1.
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maximum rooting depth was 125 cm with a triangular root
density, and the shallower rooting depth scenario was taken as
75 cm. All 10 realizations of the perturbed soil moisture data
were used to estimate the effective soil hydraulic properties of
the soil profile under all combinations of the rooting depth and
root density scenarios.

2.3. Field Validation Experiment

[26] We applied our near-surface soil moisture assimila-
tion scheme to a field validation site (ARS133) in the Little
Washita watershed, Oklahoma, using in situ data from the
Southern Great Plains 1997 (SGP97) hydrology experiment
[see Heathman et al., 2003; Das and Mohanty, 2006]. The
ARS133 site has a sandy loam soil and grass ground cover.
The SGP97 experiment was designed to study the variabil-
ity of soil moisture within the remote sensing footprint and
to analyze the physical controls of soil moisture dynamics at
various spatial scales (from point, field, to remote sensing
footprint) [Mohanty and Skaggs, 2001]. The near-surface
and profile soil moisture data used in this study were
measured using time domain reflectometry probes
[Heathman et al., 2003]. Daily weather data including
solar radiation, precipitation, humidity, minimum and
maximum temperature, and wind speed were collected
from the USDA Agricultural Research Service Micronet
weather station on-site and from nearby Oklahoma
Mesonet stations. In this part of the study, simulations
were done for 1 calendar year between 1 January and 31
December 1997 wherein the near-surface soil moisture
(0–5 cm depth) collected during the SGP97 experiment
(June–July 1997) were used as conditioning data for the
parameter estimation. SWAPmodels grass as an annual crop
with a growth cycle of 1 year. To account for uncertainties
caused by initial and boundary conditions, we conducted the
experiments using various combinations of boundary and

initial conditions (imposed by water table depths of 200, 150,
and 100 cm from the soil surface).

3. Results and Discussions

3.1. Numerical Case Studies

3.1.1. Case 1: Homogenous Free-Draining Column
[27] Figure 4 shows an example of a GA solution to the

near-surface soil moisture assimilation procedure. The three
lines in each panel indicate the performance of the three sets
of initial populations used in the GA (see section 2.1.4).
Notice the gradual improvements of the solutions as the
generation progresses (Figure 4a). The stepwise improve-
ment of the best chromosome is a unique characteristic of an
elitist GA [Ines and Droogers, 2002]. The effect of the high
creep mutation rate is also evident, and the effect of the
intermittent jump mutation is noticeable as well (Figure 4b;
see also Figure 5, the spikes in the case of Ksat). These
perturbations on k are essential to better exploring the
global search space, which has a maximum possible param-
eter combinations of 8,589,934,592 (see Table 1). Searching
for the solution space by exhaustive enumeration would be
impossible. With the multipopulation approach, a total of
15,000 parameter combinations (with replacements) were
evaluated, translating to a much smaller (1.75 � 10�6)
fraction of the global search space being searched, thus
being computationally more efficient than exhaustive enu-
meration. It is also noteworthy that all three populations
have converged after the 500th generations (Figure 4c). The
differences in the maximum fitness (Figure 4a) among the
elite chromosomes of the three populations are attributed to
the genetic makeups of the random number generator seeds;
whether they are weak or strong, or how good are their
genetic traits, which would indicate how long will it take for
their offspring to evolve into better individuals. Figure 4a

Figure 6c. Uniqueness of solutions for clay loam soils for case 1 under free-draining condition. D, daily;
W, weekly; 7D, 7-day average; WDW, wet/dry window. Values are normalized based on the minimum
and maximum values of the parameters from Table 1.
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indicates some degree of nonuniqueness among the fitness
of the elite chromosomes at the end of the generations, but if
these performances are translated into soil moisture errors
(Figure 4c) the differences are rather minimal (Figure 4c).
Figure 5 also shows a chronological GA search space
exploration by one of the three populations used. It shows
the power of the modified microGA to converge simulta-
neously albeit starting the search process from very weak
positions at the search surface. After some time along the
generations, all five soil hydraulic parameters converged
closely within the vicinity of their expected values.
[28] Tables 2a–2c show the summary of results of the

near-surface soil moisture assimilation for case 1 (Figure 2a)
under different soil types and different hydroclimatic con-
ditions. The estimated soil hydraulic parameters are shown
in terms of their (arithmetic) means and 95PCI. In Table 2a,
comparing the expected values and the estimated parameters
(with modified microGA) showed that the sandy loam soil
appeared to be easily identifiable during the dry year. On the
average, the shape parameters a and n were properly
identified (0.022 and 1.61, respectively) while the scale
parameters (qres, qsat, and Ksat) showed small variations (in

means) among the data collection/aggregation schemes
used: 0.066–0.067 cm3 cm�3 for qres, 0.372–0.375 cm3

cm�3 for qsat, and 44.1–46.1 cm d�1 for Ksat. Their 95PCI
showed that the derived soil hydraulic parameters honor
their expected values wherein their bounds indicate the
uncertainties of the GA solutions. Apparently, the uncer-
tainties of a, n (except for the 7D scheme), and qres
appeared to be smaller compared with qsat and especially
Ksat. In general, these findings may suggest that the shape
parameters (describing the nonlinearity) are better predict-
able with more accuracy than the scale parameters (describ-
ing the relative magnitude) for defining the water retention
and hydraulic conductivity functions for sandy loam soil.
The advantage of using the (physical) event-based WDW
(wet/dry event window) data aggregation scheme for better
matching the mean and constraining the spread of qsat and
Ksat was not yet evident compared with using a daily (D) or
weekly interval (W) data set. This result has practical
implications in terms of hydrologic data collection protocols
as the weekly interval scheme (W) faired well in perfor-
mance during the dry year (Table 2a). Almost similar
patterns were observed for the results in relatively wet

Figure 7. Derived q(h) and K(h) for silt loam estimated using (a) daily interval and (b) wet/dry window
scheme in case 1 during dry year.
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and wet years in terms of the mean values of a, n, and qres,
although mean values of qsat and Ksat appeared to be
relatively larger than their expected values. This indicates
the general insensitivities of qsat and Ksat to the parameter
estimation during wetter conditions. Similar patterns (dur-
ing the dry year) were also observed during the wetter years
in terms of the uncertainty bands of all the soil hydraulic
parameters. Overall, the method was found to be relatively
robust in estimating the mean parameter values of a, n, qres,
and qsat for the sandy loam soil (Table 2a). Ksat was
relatively more variable (i.e., less unique) and that on the
average had been of some orders of magnitude above the
expected values for sandy loam (see Table 2a).
[29] Figure 6a further shows the uniqueness of the soil

hydraulic parameter estimates for the sandy loam soil under
all data collection/aggregation schemes used during the dry,
relatively wet, and wet years considered. The plots in the
Figure 6a were normalized based on the minimum and
maximum parameter values given in Table 1. In general,
there was a high degree of uniqueness for parameters n and
qres, while moderate degrees of uniqueness for a and qsat
and a fair degree of uniqueness for Ksat were observed. The
mean values of n were properly defined (see Table 2a), and
their uniqueness (range of 95PCI) was slightly variable
among the different data collection/aggregation schemes
and hydroclimatic conditions, suggesting that parameter n
can be adequately defined across a range of hydroclimatic
conditions and data collection protocols in sandy loam soils.
In physical terms, this may again imply the significance of

nonlinearity (reflected by n) in soil water retention and
hydraulic conductivity functions for sandy loam soil.
[30] Table 2b shows the results of the silt loam soil.

Generally, the results in the dry year were opposite the case
of the sandy loam soil (Table 2a). The mean values of a
were properly defined, and very good estimates were
derived for qsat and Ksat. However, parameters n and qres
were more variable than the results of the sandy loam soil.
In this case, the WDW scheme performed better than the
other data collection schemes (D, W, and 7D). It is inter-
esting to note that there are data collection schemes whose
95PCI bounds did not capture well the expected values of
several soil hydraulic parameters including 7D for a, and W
for n and qres (in dry years), meaning they either greatly
underestimated or overestimated their expected values. This
result indicates that the hydraulic parameters of silt loam are
more difficult to identify during the dry year. On the other
hand, parameters a, n, qres, and qsat were better identified in
the wet year. However, Ksat uncertainties were generally
higher during the wet year (Table 2b). Figure 6b demon-
strates that the uniqueness of a was variable. The parameter
qres was more unique during the wetter years, while qsat was
moderately unique for all the hydrologic years considered.
[31] To better understand the processes occurring in the

soil profile during a dry or a wet year, we examined the
correlations of soil moisture, pressure heads, and fluxes at
different depths in the soil profile. Our analysis showed that
during the dry year, the correlation of the near-surface soil
moisture (0–5 cm) and the soil moisture in the subsurface

Figure 8a. (top) Daily soil moisture (cm3 cm�3) and (bottom) flux (cm d�1) at 0–5 cm and 180–200 cm
depths of the silt loam column using q(h) and K(h) derived from daily (D) interval data collection scheme
during dry year (case 1, homogenous, free-draining soil column). Mean_Ensemble, mean of ensembles;
mean_param, derived from the mean of parameter estimates.

14 of 26

W06422 INES AND MOHANTY: NEAR-SURFACE SOIL MOISTURE ASSIMILATION W06422



soil layers are lower compared with when it is a wet year.
This suggests that the signature of the near-surface soil
hydraulic processes within the subsurface soil layers are
weaker during a dry year than in a wet year. The difference
in the near-surface versus subsurface soil moisture correla-

tions between dry and wet years is attributed to the
difference in response times for the near-surface events to
propagate in the subsurface soil layers. The degree of
continuity/discontinuity in the pore spaces (based on satu-
ration) is different in a wet and a dry year condition. We

Figure 8b. (top) Daily soil moisture (cm3 cm�3) and (bottom) flux (cm d�1) at 0–5 cm and 180–200 cm
depths of the silt loam column using q(h) and K(h) derived from wet/dry window (WDW) scheme during
dry year (case 1, homogenous, free-draining soil column). Mean_Ensemble, mean of ensembles;
mean_param, derived from the mean of parameter estimates.

Table 3. Solution of Genetic Algorithm to the Near-Surface Soil Moisture Assimilation for Case 2, Homogenous Column With Shallow

Water Table (�150 cm) With WDW Scheme

Soil/Parameter ExpectedValuea

Dry Year Relatively Wet Year Wet Year

Mean 95PCI Mean 95PCI Mean 95PCI

Sandy loam
a 0.021 0.023 0.021–0.025 0.022 0.021–0.024 0.022 0.020–0.024
n 1.61 1.59 1.55–1.62 1.60 1.58–1.61 1.61 1.59–1.62
qres 0.067 0.066 0.065– .067 0.066 0.065–0.068 0.067 0.063–0.071
qsat 0.37 0.375 0.369–0.380 0.373 0.367–0.379 0.375 0.362–0.388
Ksat 41.6 50.2 39.8–60.6 46.5 37.0–55.9 46.7 30.8–62.7

Silt loam
a 0.012 0.013 0.007–0.019 0.011 0.004–0.017 0.011 0.008–0.013
n 1.39 1.49 1.34–1.65 1.48 1.37–1.59 1.45 1.29–1.60
qres 0.061 0.116 0.035–0.197 0.091 0.060–0.123 0.071 0.050–0.092
qsat 0.43 0.433 0.378–0.487 0.429 0.353–0.506 0.428 0.371–0.485
Ksat 30.5 34.5 0.0–71.9 23.6 0.0–57.2 22.3 13.0–31.6

Clay loam
a 0.030 0.029 0.027–0.032 0.030 0.028–0.031 0.030 0.027–0.033
n 1.37 1.35 1.32–1.38 1.38 1.35–1.41 1.40 1.37–1.42
qres 0.129 0.118 0.081–0.154 0.130 0.121–0.139 0.136 0.128–0.144
qsat 0.47 0.469 0.462–0.476 0.471 0.465–0.476 0.473 0.468–0.479
Ksat 1.84 1.92 1.75–2.09 1.88 1.83–1.93 1.89 1.80–1.97

aUNSODA database [Leij et al., 1999].

W06422 INES AND MOHANTY: NEAR-SURFACE SOIL MOISTURE ASSIMILATION

15 of 26

W06422



hypothesize that during the dry year the dependence of qres
and n is high in silt loam soils because of the discontinuity
(i.e., air entrapment) in the soil matrix and as a result they
are more difficult to identify.
[32] Table 2c shows the results for the clay loam soil. The

hydraulic parameters of clay loam were better identified
compared with sandy loam and silt loam soils. The mean
soil hydraulic parameters (except qres) were properly esti-
mated for both dry and wet years. The uncertainties of
parameter estimates were also found to be small except for
the parameter n. The 95PCI of the mean values were narrow
and the mean parameter estimates were close to the
expected values for all cases, which indicates that GA is
highly effective in estimating the soil hydraulic parameters
of clay loam for all (dry, relatively wet, wet) years consid-
ered. Figure 6c shows that the uniqueness of the parameter
estimates ranged from high to moderate, demonstrating
further the strong identifiability of clay loam soil by inverse
modeling with GA.
3.1.1.1. Robustness of the Parameter Estimates
[33] Here we present only the case of the silt loam soil for

the dry year condition using two (D and WDW) data

collection/aggregation schemes. Figures 7a–7b show the
q(h) and K(h) curves using the parameter values from the
GA solutions (Table 2b). For the (daily) D scheme, notice
the effects of uncertainties of qres, n, and qsat on q(h). The
effects of the Ksat uncertainty can be also noticed in the K(h)
curve. Comparing the estimated soil water retention q(h)
and hydraulic conductivity K(h) functions between the D
and the (wet/dry window) WDW scheme, the improvements
for the q(h) derived from WDW scheme were considerable.
On the other hand, the difference of the estimated K(h)
between the two data collection schemes was less signifi-
cant. These derived soil hydraulic parameters were then
translated into soil hydrologic states by using them as inputs
in the SWAP forward simulations. Figures 8a–8b show the
simulated soil moisture contents and fluxes near the soil
surface (0–5 cm) and the deeper (180–200 cm) layers of
the soil profile. In Figure 8a (for the D scheme), the
uncertainty of the simulated soil moisture during the drying
event may be attributed to the uncertainty of q(h) in the drier
range of soil moisture (see Figure 7a). The uncertainty of
fluxes near the bottom of the soil profile (180–200 cm
depth) at the beginning of the simulation period (DOY 60–
80) can be attributed to the uncertainty in the near-saturated
range of q(h) and K(h) (as shown in Figure 7). The
uncertainty of soil water fluxes decreases for drier condi-
tions because the derived K(h) matches well the expected
values in the drier range (Figure 7a). Figure 8b shows the
improvements of the simulated soil moisture contents and
fluxes across the soil profile (i.e., for both shallow and deep
layers) due to the improved estimates of the soil hydraulic
parameters derived using the physically based WDW
scheme. Evidently, the WDW scheme smoothened some
of the uncertainties in the estimated q(h) and K(h) functions.
Note that these results are based on error-free conditions and
that the effects of modeling and data uncertainties are not
accounted for in the simulations of the subsurface processes.
Hence, if the effective soil hydraulic parameters are prop-
erly estimated in the inverse modeling the subsurface
processes are likely to be highly replicated. The effects of
modeling (structural) and data errors on the simulated
subsurface processes are discussed later, in section 3.1.4.
3.1.2. Case 2: Homogenous Column With Shallow
Water Table
[34] Table 3 shows the summary of results of the near-

surface soil moisture assimilation in the presence of a
shallow water table at a depth of 150 cm from the soil
surface (Figure 2b). In this case, we only used the WDW
scheme in preparing the conditioning data for the parameter
estimation. Table 3 shows that on the average the hydraulic
parameters for the sandy loam and clay loam soils can still
be identified with comparable results as with the ones
derived under free-draining conditions (compare the
Tables 2a and 2c WDW schemes). The parameter estimates,
however, were more uncertain, especially for parameter n
for both sandy loam and clay loam soils and qres for clay
loam soil. For the silt loam soil, only the soil hydraulic
parameters a and qsat were estimated more successfully. The
performance of the silt loam soil in the presence of a
shallow water table will be examined in-depth in the
succeeding section. The uniqueness of the parameter esti-
mates ranged from fair to high across the hydrologic dry
through wet years with better uniqueness observed for

Figure 9. Uniqueness of solutions for (a) sandy loam,
(b) silt loam, and (c) clay loam soils for case 2 with the
presence of shallow water table (�150 cm) using wet/dry
window (WDW) scheme.
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sandy loam and clay loam soils, while worst for the silt
loam soil (Figures 9a–9c).
3.1.2.1. Robustness of the Parameter Estimates
[35] Table 4 shows the water balance generated from

forward SWAP simulations with a shallow water table
condition using the parameter estimates in Table 3 during a
dry year (annual rainfall 330 mm). For sandy loam, although
the seasonal bottom flux is positive, meaning upward in
direction (going into the control volume), irrigation was still
required because the capillary rise was not able to supply the
seasonal crop water requirements. This particular response is
attributed to the texture of the soil and the proximity of the
water table from the rooting zone. The seasonal bottom flux
covered only 35.6% of the seasonal ET (i.e., soil evaporation
+ transpiration). For the two wet years considered, the
seasonal bottom fluxes covered 28.5% (cropping season
rainfall, 199 mm; see Figure 3) and 31.6% (cropping season
rainfall, 228 mm) of the seasonal ET, respectively (results not
shown here). For the sandy loam, the soil hydrology was still
dominated by downward flows caused by rainfall and irriga-
tion and by redistribution in the soil profile. As shown in
Table 4, the estimated soil hydraulic parameters were able to
reproduce closely the water balance components within
acceptable uncertainty bounds.
[36] In the case of the silt loam soil, most of the water

needed by the wheat crop was supplied by the shallow water
table through capillary rise combined with the moderate
hydraulic conductivity of the soil. The bottom (upward) flux
from the water table covered 67.2% of the seasonal ET during
the dry year (Table 4) and covered 74.3% and 72.7% of
seasonal ET during the wet years (not shown). The higher
contributions of the groundwater to ET during the wet years
were apparent because of the 84-mm rainfall event (see
Figure 3) that occurred at the later stage of the growing
season during the dry year, which supplied adequate water for
crop use on that year. From these results we infer that the
inability of the near-surface assimilation to characterize
better the silt loam soil under a shallow water table could
be attributed to the flow process conditions in the unsaturated

zone. The flow process was predominantly controlled by the
bottom boundary condition (upward fluxes) (see Table 4) and
not by the near-surface processes, in which the conditioning
data for the parameter estimation were derived.
[37] For the case of the clay loam soil, the capillary rise

was not able to supply water in the root zone adequately,
and thus irrigation was made by the SWAP model during
the growing season. Although high capillarity was expected
in fine-textured soils, the limited hydraulic conductivity
(small Ksat) of the soil restricts the upward flow of water
from the shallow water table to the rooting zone, limiting
the transport of water for a limited period of time (i.e., a
cropping season). Because of the higher uncertainty of the
derived Ksat during the dry year (see Figure 9c), a wider
spread of the simulated soil water storage was observed in
the water balance (Table 4). However, during the wet years
the parameter estimates were able to reproduce closely the
water balance components with acceptable levels of uncer-
tainty (not shown). Furthermore, the soil was predominantly
draining as no major upward flows (i.e., mostly negative
bottom fluxes) from the shallow water table were observed
(Table 4).
3.1.2.2. Sensitivity to Water Table Depths
[38] We expanded our analysis to study the effects of

shallow water table on the near-surface soil moisture
assimilation by examining the sensitivities of the estimated
soil hydraulic parameters by varying water table depths.
Figure 10 shows the overall trends of the parameter esti-
mates as a function of water table depths. The sandy loam
soil shows a trend of improving identifiability of all of its
soil hydraulic parameters as the water table depths become
deeper. This result strengthens our observation that the
parameter identifiability tends to be higher when the soil
profile is dominated by downward flows. For the clay loam
soil, however, there was no apparent trend in parameter
sensitivity, as clay loam soil hydraulic parameters can be
adequately identified for all hydrologic scenarios consid-
ered. For the case of the silt loam soil, it can be seen that
there is no unique sensitivity trend among the parameter

Table 4. Seasonal Water Balance (mm) With Shallow Water Table (�150 cm) for Cropping Season 1 Mar to 31 Jul (Dry Year)

Water Balance
Components

Sandy Loam Silt Loam Clay Loam

Target
Valuesa

Mean of
Ensemblesb SD

Averaging
Parametersc

Target
Values

Mean of
Ensembles SD

Averaging
Parameters

Target
Values

Mean of
Ensembles SD

Averaging
Parameters

Storage
Final storage 595.90 597.98 3.18 597.40 774.80 776.23 27.09 775.40 876.80 853.27 23.45 838.00
Initial storage 598.30 600.35 3.22 599.80 776.20 777.58 27.33 776.60 795.90 796.52 10.04 797.40
Change �2.40 �2.40 0.00 �2.40 �1.40 �1.32 0.22 �1.20 80.90 56.75 28.24 40.60

Incoming fluxes
Rain 271.90 271.90 0.08 271.90 271.90 271.90 0.00 271.90 271.90 271.90 0.00 271.90
Irrigation 199.90 199.98 0.10 200.10 0.00 0.00 0.00 0.00 600.00 600.02 0.08 600.00
Bottom fluxd 255.80 250.28 7.23 246.30 530.90 529.37 0.41 531.90 ?78.40 ?94.12 28.92 �112.80

Outgoing fluxes
Interception 11.50 11.30 0.29 11.10 14.20 14.10 0.00 14.20 7.60 7.90 0.44 8.00
Runoff 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 85.20 79.45 7.15 79.10
Transpiration 614.10 608.90 7.47 605.00 685.70 683.89 0.54 686.50 472.10 477.52 8.94 478.80
Soil evaporation 104.40 104.35 0.90 104.50 104.40 104.58 0.10 104.30 147.60 151.78 11.11 152.00
Crack flow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

aSimulated using the expected values of the parameter estimates.
bAverage of water balance components from the ensemble of simulations.
cWater balance components derived from forward simulations using the arithmetic average of parameter estimates.
dNegative sign means the bottom flux is going out (downward in direction) from the control volume. Positive sign means the bottom flux is going into

the control volume (upward in direction).
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estimates, as n and qsat tend to be more identifiable when the
water table depth is shallower, while a and qres showed the
opposite. On the contrary, Ksat did not show any clear trend
at all. From these findings we suggest that the soil hydraulic
parameters of the silt loam soil were not well identifiable
because it was mostly dominated by upward flows from the
shallow water table, and thus the processes in the unsatu-
rated zone was primarily controlled by the bottom boundary
condition and not by the near-surface processes that were
used in the parameter estimation. Even at 200 cm water
table depth, the bottom flux covered about 44.2–51.2% of
the seasonal ET (not shown). We observed, however,
that when the contributions of the bottom flux are lesser
(during the wet year when most of the flow processes are
vertically downward), the soil hydraulic parameters were
fairly estimated.
3.1.3. Case 3: Heterogeneous Profile
[39] Figures 11a–11d show the results of the experiments

during the dry year for a heterogeneous profile (Figure 2c)
using the following search criteria: (1) near-surface soil
moisture data (SM) only, (2) combined 0.6 SM and 0.4 ET,
(3) combined 0.5 SM and 0.5 ET, and (4) combined 0.4 SM
and 0.6 ET. These fractional values were selected to reflect
the relative contributions of ET and soil moisture to the
objective function (see equation (3a)). ET was considered to

be a surrogate variable that could influence the processes
occurring in the deeper layers of the soil profile and could
potentially improve the identifiability of the subsurface soil
hydraulic properties in the parameter estimation. It is evident
that increasing the number of unknown parameters (with
increasing number of soil layering) for the inverse modeling
has resulted in higher parameter uncertainties. Nevertheless,
the procedure was able still to provide fairly good results for
several of the cases studied. Figure 11a demonstrates that
using near-surface soil moisture data alone was capable of
identifying hydraulic parameters of the topsoil layer (sandy
loam) but not sufficient for identifying parameters of the
bottom layer (silt loam) (see Figure 2c). In the second layer,
the mean values of parameters a and qsat were well defined
but with large uncertainties (numerical values not shown
here), qres was overestimated, and Ksat was characterized
also by high uncertainties. Figure 11b shows the effect of
adding 0.4 ET to the conditioning criteria (0.6SM). Appar-
ently using both soil moisture (f = 0.6) and ET (1 – f = 0.4)
in the optimization problem has resulted in improved
parameter estimates for the second/deeper layer, particularly
for Ksat. With the additional conditioning data, the uncer-
tainty bounds of q(h) have also decreased, but the estimates
of qsat and qres were still slightly off from their expected
values. In the first soil layer, the mean values of qsat and qres

Figure 10. Parameter sensitivity to water table depths for sandy loam, silt loam, and clay loam,
averaged for all years. Asterisk indicates target values.
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did not match well to their expected values, and uncertain-
ties of Ksat estimates have increased noticeably (compare
Figure 11b and Figure 11a). Now, only the shape parameters
a and n were better defined after the additional condition-
ing. Nevertheless, the estimated q(h) and K(h) functions for
both first and second soil layers were better (Figure 11b)
than when using only the near-surface soil moisture
as conditioning data (Figure 11a). Figure 11c also shows
the effects of adding 0.5 ET to the conditioning criteria
(equation (3a)). The parameter estimates improved slightly
for both first and second soil layers. Adding more weights
to ET in the conditioning criteria did not show any further
improvements to the parameter estimates (see Figure 11d).
During wet years (not shown), almost similar trends were
observed, while Ksat estimates for the second soil layer were
always overestimated. The improvements made in the
parameter estimates when ET was used as additional con-

ditioning data suggest that the evapotranspiration front,
which is the zone where root activities are active within
the soil profile, is capable of (indirectly) providing infor-
mation about the hydraulic properties of the subsurface soil
layers.
3.1.4. Parameter Estimation Under Uncertainty
[40] Figure 12a shows the effects of data errors on the

parameter estimation, i.e., using imperfect near-surface soil
moisture data with perfect modeling assumptions (see
section 2.2.2.4) in our numerical studies. Apparently, even
with an assumed 20% error in the data sets (for all 10
realizations), the estimation of q(h) was not greatly im-
paired. This result suggests that as long as the modeling
domain is properly defined, the potential of estimating q(h)
using data with moderate errors in the parameter estimation
is relatively high. K(h), however, was overestimated at the
wetter range and with high uncertainty. Figure 13a shows

Figure 11. Solutions of the layered soil using (a) near-surface soil moisture (SM) only, (b) 0.6 SM
and 0.4 ET, (c) 0.5 SM and 0.5 ET, and (d) 0.4 SM and 6 ET, as matching criteria during the dry year.
Dashed line, target values; thick line, mean GA solutions; thin lines, 95 PCI; q (cm3 cm�3), K (cm d�1),
h (per cm).
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the performance of the derived soil hydraulic functions in
simulating the near-surface (0–5 cm) and subsurface (50–
60 cm) soil moisture contents. The simulated mean soil
moisture contents (both surface and subsurface) corre-
sponded well with the target values and the uncertainties
of the soil hydraulic parameter estimates (Figure 12a) were
manifested more in the deeper soil layer (50–60 cm) than
the near-surface soil layer.
[41] Figures 12b and 12c also show the effects of mod-

eling errors on the parameter estimation in this numerical
study. For Figures 12b and 12c we used perfect near-surface
soil moisture data under imperfect modeling assumptions in
the inverse modeling, i.e., varied rooting depth (Figure 12b)
and varied root density (Figure 12c), respectively. Remark-
ably, even with varied (shallow) rooting depth (and base
case scenario root density) and varied root density (and base
case scenario rooting depth), the mean soil water retention
curve q(h) was estimated fairly well while K(h) was still
overestimated at the wetter range at varying uncertainty

levels. K(h) was more uncertain in the case of improper
assumption of root density than for rooting depth
(Figures 12b and 12c). However, it is also clear that the
subsurface soil moisture (50–60 cm) was overestimated
(wetter) with shallower rooting depth/triangular root density,
and underestimated (dryer) with deeper rooting depth/
trapezoidal root density (see section 2.2.2.4) during the
drying phases in the simulations (Figures 13b and 13c).
The uncertainty in the simulated subsurface soil moisture
was higher if the root density is not properly defined.
Evidently, the simulated near-surface soil moisture was
dryer under the shallower root condition (base case scenario
root density) due to more active upper rooting zone and
wetter under the trapezoidal root density (base case scenario
rooting depth) due to more active lower rooting zone (see
Figures 13b and 13c).
[42] In the real world, however, data and modeling errors

we encounter are more of a norm than deviations. Figures 12d
and 13d show the combined effects of data and modeling

Figure 11. (continued)
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errors to the performance of the parameter estimation. Here
we solved the inverse problem using imperfect modeling
assumptions (rooting depth and root density) with data errors
(all 10 realizations; see section 2.2.2.4). The combined

effects of errors in data and modeling assumptions can be
seen in the uncertainties of the estimated q(h) and K(h)
(Figure 12d), and in the simulated near-surface (0–5 cm)
and subsurface (50–60 cm) soil moisture (Figure 13d)
consistent with the findings of Yang et al. [2005]. Because
of the increased number of ensemble members, the corre-
spondence between the mean simulated and target soil
moisture contents (both surface and subsurface) have im-
proved. Apparently, K(h) was overestimated and more un-
certain while q(h) was estimated fairly well with lesser
uncertainty, which suggests that the estimation of q(h) by
inverse modeling is less sensitive to the effects of data and
modeling errors. This could be true assuming that the
information content of the data (range, variability, type) is
adequate to define the driest to wettest regions of the soil
water retention curve.

3.2. Field Validation Experiment

[43] Figure 14 shows the derived q(h) and K(h) at the
(field) validation site ARS133 with a sandy loam soil and
grass cover at the Little Washita watershed, Oklahoma
[Heathman et al., 2003]. Figure 15 also shows the daily
rainfall during the SGP97 hydrology campaign and the
simulated near-surface (0–5 cm) and subsurface (0–
60 cm) soil moisture contents using the derived q(h) and
K(h) (shown in Figure 14) as inputs in the forward SWAP
simulations. The estimated effective q(h) matched well the
measured q(h) derived from laboratory measurements
(Figure 14a) using a soil core extracted near the ARS 133
site [Mohanty et al., 2002]. The estimated q(h) also corre-
sponded well with the UNSODA data for sandy loam [Leij
et al., 1999] and showed even better results at the drier end
of the water retention curve derived from laboratory meas-
urements, which highlights the value of using actual field
data in determining the hydraulic properties of field soils.
These results further confirm the high identifiability of
sandy loam soil by inverse modeling with a genetic algo-
rithm. Since we did not consider macropore effects in our
inverse analyses, the estimated K(h), particularly Ksat, did
not match well with the average Ksat (sandy loam) in the
Little Washita watershed and SGP97 region. Nevertheless,
the estimated q(h) and K(h) reproduced well the near-surface
(0–5 cm) (R = 0.94; MBE = 0.006 cm3 cm�3) and subsurface
(0–60 cm) (R = 0.83; MBE = �0.025 cm3 cm�3) soil
moisture dynamics when used in the forward modeling
with SWAP.

4. Concluding Remarks

[44] This paper presents a near-surface soil moisture
assimilation procedure that can be used to quantify effective
soil hydraulic parameters in the soil profile. The approach
included an indirect way of assimilating the near-surface
soil moisture data into soil hydrologic models to derive
saturated and unsaturated hydraulic conductivity K(h) and
soil water retention q(h) properties of the soil. We used a
modified microGA to search for the solutions of q(h) and
K(h) via inverse modeling using a one-dimensional soil
hydrologic model, SWAP. The approach also allows us to
evaluate the uncertainties of the solutions, although the GA
uncertainty assessment presented here may be considered ad
hoc as it is not of the Bayesian type. We studied three

Figure 12. Derived soil hydraulic functions q(h) and K(h)
under (a) imperfect data (10 realizations)/perfect modeling
condition (base case scenario rooting depth/base case
scenario root density); (b) perfect data (base scenario)/
imperfect modeling condition (varied rooting depth/base
case scenario root density); (c) perfect data (base scenario)/
imperfect modeling condition (base case scenario rooting
depth/varied root density); and (d) imperfect data/imperfect
modeling condition (varied rooting depth/varied root
density). Dashed line, target values; thick line, mean GA
solutions; thin line, 95 PCI; q (cm3 cm�3), K (cm d�1), h
(per cm).
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Figure 13. Simulated versus target soil moisture at 0–5 cm and 50–60 cm depths under (a) imperfect
data (10 realizations)/perfect modeling condition (base case scenario rooting depth/varied root density);
(b) perfect data (base scenario)/imperfect modeling conditions (varied rooting depth/varied root density);
(c) perfect data (base scenario)/imperfect modeling condition (base case scenario rooting depth/varied
root density); and (d) imperfect data (10 realizations)/imperfect modeling conditions (varied rooting
depth/varied root density). Thick dashed line, target values; thin lines, 95 PCI; thick faded line, simulated
soil moisture.
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different cases including a homogenous free-draining soil
column (case 1), a homogenous soil column in the presence
of a shallow water table (case 2), and a heterogeneous soil
column (case 3). For cases 1 and 2 we considered three
different soil textures, sandy loam, silt loam, and clay loam,
as our tests for porous media, and for case 3 we used a two
layered system of silt loam overlain by sandy loam. Gen-
erally, our results showed that the identifiability of soil
hydraulic parameters increased as we approached the outer
ranges of the soil textural class (clay loam – sandy loam).
Most of the soil hydraulic parameters can be adequately
identified for coarse- and fine-textured soils. We observed
some difficulties in the identification of the moderate
textured soil (silt loam) especially when the soil is dry.
We found that flow regimes significantly controlled by the
bottom boundary condition (i.e., upward flux from shallow
water table) were less successful for the parameter estima-
tion using near-surface soil moisture information. This result
suggests that soil hydraulic parameters are better identified

when the soil profile is predominantly draining than when
the soil is predominantly wetting by upward flows from a
shallow water table. However, when the contributions of the
(upward) bottom flux from the shallow water table to the
seasonal ET are less than 50%, the soil hydraulic parameters
can be sufficiently identified using mainly near-surface soil
moisture information in the parameter estimation. For the
case of layered soil systems, the approach was not quite
successful and only certain parameters could be identified.
With soil moisture alone as conditioning criterion, we were
able to define the soil hydraulic properties adequately for the
first soil layer. This result was expected due to the direct
relationship of the soil water retention and hydraulic prop-
erties of the first layer to the near-surface soil moisture data.
Adding ET as conditioning criterion has improved the
identification of the hydraulic parameters for the second
layer, although not all parameters are highly identifiable.
Using weights between 0.4 and 0.5 to ET (i.e., 0.6–0.5 SM)
into the conditioning criteria has resulted in improved

Figure 13. (continued)
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estimates of the soil hydraulic parameters in the second
layer. Overall, the shape parameters a and n of the Mualem-
Van Genuchten functions defining the nonlinearity are the
most highly identifiable parameters in both the top and
bottom layers of the layered soil system case studies. We
also conducted parameter estimations under uncertainties
(data and modeling errors) and found that q(h) could still be
reasonably estimated while K(h) was more uncertain. The
combined effects of data and modeling errors affect the
uncertainties of the simulated soil moisture in the subsurface.
Finally, the high identifiability of the effective soil hydraulic
properties of sandy loam soils (especially for q(h)) was
demonstrated by applying the near-surface soil moisture
assimilation scheme using in situ data from a field validation
site in Little Washita watershed, Oklahoma.
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