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[1] A Markov chain Monte Carlo (MCMC) based algorithm was developed to derive
upscaled land surface parameters for a soil-vegetation-atmosphere-transfer (SVAT) model
using time series data of satellite-measured atmospheric forcings (e.g., precipitation),
and land surface states (e.g., soil moisture and vegetation). This study focuses especially
on the evaluation of soil moisture measurements of the Aqua satellite based Advanced
Microwave Scanning Radiometer (AMSR-E) instrument using the new MCMC-based
scaling algorithm. Soil moisture evolution was modeled at a spatial scale comparable to
the AMSR-E soil moisture product, with the hypothesis that the characterization of soil
microwave emissions and their variations with space and time on soil surface within the
AMSR-E footprint can be represented by an ensemble of upscaled soil hydraulic
parameters. We demonstrated the features of the MCMC-based parameter upscaling
algorithm (from field to satellite footprint scale) within a SVAT model framework to
evaluate the satellite-based brightness temperature/soil moisture measurements for
different hydroclimatic regions, and identified the temporal effects of vegetation (leaf area
index) and other environmental factors on AMSR-E based remotely sensed soil moisture
data. The SVAT modeling applied for different hydroclimatic regions revealed the
limitation of AMSR-E measurements in high-vegetation regions. The study also suggests
that inclusion of soil moisture evolution from the proposed upscaled SVAT model with
AMSR-E measurements in data assimilation routine will improve the quality of soil
moisture assessment in a footprint scale. The technique also has the potential to derive
upscaled parameters of other geophysical properties used in remote sensing of land surface
states. The developed MCMC algorithm with SVAT model can be very useful for
land-atmosphere interaction studies and further understanding of the physical controls
responsible for soil moisture dynamics at different scales.
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1. Motivation

[2] Studies [Claussen, 1998; Delworth and Manabe,
1989; Foley, 1994; Texier et al., 1997] have shown that
the initial/boundary (I/BC) values of state variables (e.g.,
soil moisture, soil temperature, vegetation water content) at
various spatial and temporal scales in the land surface exert
strong controls on hydrologic, climatic, and weather related
processes. Hence measuring these state variables is crucial
for flood forecasting, natural resource management, agro-
nomic crop management, and regional/global climate sim-
ulation. There are various ways to measure the state
variables depending upon the spatial scale of interest. In

situ techniques provide reasonably accurate measurements
of state variables at the local scale, at desired time intervals.
Direct incorporation of in situ measurements as I/BC in
large-scale models has limitations due to its very small
spatial support. Satellite-based remote sensors measure
spatially integrated measurements of state variables with
temporal sampling that depends upon the orbital placement
of the satellites. This makes satellite-based measurements
suitable for I/BC in large-scale modeling. However, the
quality of satellite-based land parameter measurements is
often questionable due to uncertainties introduced by atmo-
spheric attenuation, clouds, rainfall, and the inherent vari-
ability present in geophysical properties and state variables,
which influence the measurements and their calibration and
validation. The extent and spatial resolution of satellite-
based measurements can also introduce complex scale
effects [Western et al., 2002]. Conventionally, satellite-
based measurements are validated using ground-based
measurements, but this approach is also limited in account-
ing for scale effects and heterogeneity within the large
footprints. In this study we focus primarily on developing
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a physically based soil hydrologic model at the satellite
footprint scale, including parameter upscaling and a soil
moisture data assimilation scheme.
[3] The Advanced Microwave Scanning Radiometer

(AMSR-E) on the Earth Observing System Aqua satellite
is currently used for global soil moisture mapping [Njoku et
al., 2003]. AMSR-E measures radiation at six frequencies in
the range 6.9–89 GHz with dual polarization. It covers the
globe in approximately 2 days or less with a swath of 1445
Km. The spatial resolution at the surface varies from
approximately 60 Km at 6.9 GHZ to 5 Km at 89 GHz
[Njoku et al., 2003]. The current ASMR-E soil moisture
algorithm is based on a change detection approach using
polarization ratios (PR) of the calibrated AMSR-E channel
brightness temperatures [Njoku and Chan, 2006]. The
accuracy of the soil moisture algorithm has been investi-
gated on short timescales during calibration/validation field
campaigns of the Soil Moisture Experiments in 2002, 2003,
and 2004 (SMEX02, SMEX03, and SMEX04) [Bindlish et
al., 2006, 2008; Jackson et al., 2005]. Results show some
level of consistency and calibration stability of the observed
brightness temperatures at specific locations. However,
there have been concerns regarding the spatial variability
of the retrieved soil moisture biases over areas with different
amounts of vegetation. AMSR-E measurements have shal-
low measurement depth (1 cm or less) and coarse spatial
resolution (�60 km) at 10.7 Gz, which, combined with
subgrid and grid scale variability, also impose limitations on
the retrieval algorithm and its operational accuracy.
[4] Measurements of microwave emissions show sensi-

tivity to soil moisture through the effects of moisture on the
dielectric constant and hence emissivity of the soil [Ulaby et
al., 1986]. The large contrast between the real part of the
dielectric constant of water and that of dry soil translates
into a difference of up to 100 K or more in brightness
temperature between very dry and very wet soils [Njoku and
Kong, 1977;Wang, 1980;Wang and Choudhury, 1995]. The
surface geophysical properties, i.e., soil characteristics (sur-
face roughness and soil texture) and vegetation, also affect
the microwave emissivity. Vegetation acts as an attenuating
and emissive layer over the soil [Jackson and Schmugge,
1991; Njoku and Chan, 2006; Ulaby and Wilson, 1985] and
is characterized mainly by its water content and geometrical
structure. The net effect of vegetation is a reduction in
sensitivity that makes it more difficult to estimate soil
moisture accurately over vegetated terrain. At AMSR-E
frequencies (6.6 GHz and higher) the sensitivity to soil
moisture becomes very low when the leaf area index (LAI)
exceeds 2.0 [Njoku and Li, 1999]. Surface roughness adds
another dimension of complexity due to surface scattering
[Choudhury et al., 1979; Njoku and Chan, 2006], which
affects the emissivity. The net effect of surface roughness
can be difficult to establish, especially when dealing with
inhomogeneous elements. Soil texture, ranging from sand to
clay, also influences the emissivity of the soil. Sandy soil
has the highest emissivity at all frequencies, which is
influenced by least specific surface area of soil that leads
to lowest bound water [Wang and Schmugge, 1980].
[5] The uncertainty in estimating microwave emissivity at

the AMSR-E footprint scale is affected also by the hetero-
geneity of the vegetation, surface roughness, and soil
moisture within the footprint. Soil moisture exhibits hetero-

geneity due to variability in a number of geophysical
parameters (soil properties, vegetation, topography, and
precipitation). The soil moisture distribution at a particular
spatiotemporal scale within an AMSR-E footprint evolves
from complex interactions among these geophysical param-
eters [Dubayah et al., 1997; Western et al., 2002]. Soil
properties always exhibit significant spatial variability that
characterizes the soil moisture status and transport processes.
For example, Rodriguez-Iturbe et al. [1995] suggested that
the spatial organization of soil moisture is a consequence of
the soil properties; Tomer et al. [2006] found significant
correlation between soil properties and soil moisture at the
watershed scale; and [daSilva et al., 2001] showed that
temporal stability in soil moisture patterns can be associated
with the arrangement of soil types and textures at the
landscape scale. Soil texture is also related to topographical
attributes such as surface curvature, slope, and elevation.
Mohanty and Mousli [2000], Pachepsky et al. [2001], and
Leij et al. [2004] demonstrated that soil hydraulic properties
relate to relative landscape positions in topographically
complex landscapes, and Chang and Islam [2003] demon-
strated that soil physical properties and topography together
control spatial variations of soil moisture over large areas.
They showed that topographical control dictates the soil
moisture distribution under wet conditions, and soil physical
properties control variations of soil moisture under relative-
ly dry conditions. Infiltration properties of soil are influ-
enced by vegetation at the plant scale [Seyfried and Wilcox,
1995] or tillage/cropping practice at the field scale
[Mohanty et al., 1994b]. In a recent study, Sharma et al.
[2006] discovered that including remotely sensed vegetation
parameters in addition to soil texture and topographic
features improved the predictability of soil hydraulic prop-
erties across Little Washita watershed in Oklahoma using
artificial neural networks. These spatially overlapping geo-
physical attributes define the functional organization of soil
hydrological processes and, in turn, soil moisture variability.
The evolution of the soil moisture state within the AMSR-E
footprints is primarily forced by precipitation. For this
study, subgrid variability of precipitation is not considered.
The partitioning and transport of the water above and below
the land surface is controlled mainly by soil hydraulic
properties, which are in turn influenced by soil types,
texture, topography, and vegetation. In summary, the emit-
ted microwave radiation (brightness temperature) of the soil
observed at the 60-km � 60-km AMSR-E footprint scale is
a weighted integral of the soil moisture distribution, as
influenced by the variability in soil hydraulic properties
within the footprint. Camillo et al. [1986] have also shown
that remotely sensed soil moisture may be inverted to
estimate soil hydraulic properties using a microwave emis-
sion model and soil moisture and temperature profiles
generated by moisture and energy balance equations. Ap-
plication of such approaches on a regional scale may
generate large-scale soil properties for input into mesoscale
land-atmosphere models. Regional soil properties may be
estimated by inversion of a dynamic one-dimensional soil-
water-vegetation model in conjunction with soil moisture
obtained from microwave remote sensing.
[6] On the basis of the above discussion we hypothesize

that an ensemble of soil hydraulic properties describing the
soil moisture dynamics within the AMSR-E footprint can be
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used to compare with the soil moisture estimated from
microwave emission of the surface soil layer. In other
words, the ensemble of soil hydraulic properties can suit-
ably characterize the variability present within the AMSR-E
footprint. Although at a field scale, Burke et al. [1997]
demonstrated retrieval of soil hydraulic properties from the
time series of the measured brightness temperature over
agricultural fields. There could be some concern, however,
about the validity of using an ensemble of local soil
hydraulic properties to represent conditions at the remote
sensing footprint scale. Soil hydraulic properties are defined
at the point to field scale, whereas soil is conceptualized as a
hierarchical heterogeneous medium with discrete spatial
scales [e.g., Roth et al., 1999]. It is argued that the natural
pattern of soil variability may exhibit embedded, organiza-
tional structures that lead to nonstationary soil hydraulic
properties and processes. With an increase in spatial scale
(support), soil hydraulic properties typically become non-
stationary. The soil hydraulic properties may change from
deterministic at smaller scale to more random at larger scale,
with the small-scale soil properties filtered out by larger-
scale soil-related processes [Kavvas, 1999]. Thus upscaling
of soil properties is required to understand the physical
processes and to characterize the evolution of soil moisture
and, in turn, soil emissivity, at the AMSR-E footprint scale.
[7] The primary objective of this study is to develop a

procedure, using a Markov Chain Monte Carlo (MCMC)
algorithm, for estimating upscaled land surface parameters
to be used in a SVAT model for evaluating satellite-based
land surface state measurements. The performance of the
upscaled parameters and SVAT model can then be tested
using selected AMSR-E footprints in three different hydro-
climatic conditions to evaluate the satellite-based soil mois-
ture product.

2. Approach

[8] Effective soil hydraulic parameters are a representa-
tive set of parameters that characterize a footprint-scale
domain and approximate the flux equivalent to the aggre-
gated flux obtained from distributed modeling within the
domain [Kabat et al., 1997; Zhu and Mohanty, 2003].
Footprint-scale effective soil hydraulic parameters are vital
to hydroclimatic studies since such studies commonly use
soil-vegetation-atmosphere-transfer (SVAT) models whose
subsurface flow components are based on the Darcian flow
equation [Demarty et al., 2005]. The soil hydraulic param-
eters used in SVAT models are physically defined at a local
measurement scale (mostly at point to field scale). Therefore
soil hydraulic parameter upscaling from field scale to
hydroclimate grid or satellite footprint scale is critical for
SVAT model performance at these scales. The difficulty of
upscaling soil hydraulic parameters to the footprint scale
stems from the inherent spatial variability of soil properties
and the nonlinear dependence of soil moisture. Our strategy
here is to develop a new approach for estimating upscaled
soil hydraulic parameters. We follow a method that derives
upscaled hydraulic parameters directly from explicit infor-
mation on the soil moisture state at the AMSR-E footprint
scale and the stochastic variability of soil hydraulic param-
eters at the much smaller (local) scale within the footprint.
Using ensembles of upscaled soil hydraulic parameters,
large-scale fluxes and states at the land surface can be

determined that are compatible with the microwave emis-
sion from the surface soil layer at the footprint scale.
[9] The algorithm developed for this approach uses a

Bayesian methodology that provides an effective and effi-
cient tool for combining two or more discrete sources of
information, model output, and observed data. The algo-
rithm is used to merge prior information on an arbitrary
number of soil hydraulic parameters, with the information
content of the related soil moisture data, to find SVAT
model parameter estimates. The algorithm is particularly
useful when extracting target (soil hydraulic property)
characteristics from remotely sensed (e.g., AMSR-E soil
moisture) data. The Bayesian technique can produce full
probability distributions for an arbitrary number of param-
eters. In practice, the probability distributions can be con-
sidered to represent either the imprecise knowledge
regarding the true value of the parameter, the natural
variability of the parameter, or a combination of the both.
In the procedure, the inference about the set of soil
hydraulic parameters is obtained after integrating all possi-
ble combinations of the soil hydraulic parameters in the full
joint probability posterior distribution. In this study the
integration is performed on the set of parameters using a
Markov Chain Monte Carlo (MCMC)-based numerical
method.

2.1. MCMC Algorithm

[10] Bayesian methods provide a framework within
which preexisting knowledge about the parameters of a
model can be combined with observed data and model
output. This results in a probability distribution of the
parameter space (posterior distribution) that summarizes
uncertainty about the parameters based on the combination
of preexisting (or prior) knowledge and the sampled data
values. In this study, the uncertainties in accurately deter-
mining the parameters of the nonlinear soil water retention
function for large-scale hydrological modeling is the focus
of the development of the Bayesian framework. The Bayes-
ian approach takes the parameters of the model as random
variables [Gelman et al., 1995] with particular probability
density functions (pdf’s). Thus, in addition to the determi-
nation of a likelihood function, the process of Bayesian
inference may require the specification of prior pdf’s that
summarize the prior knowledge. Figure 1 illustrates the
methodology of the Bayesian framework. Here the likeli-
hood function is the time series of AMSR-E derived soil
moisture data D = {q1, q2, . . ., qt} at a particular grid point.
The priors are defined as the soil hydraulic parameters
(shown in equation (1)) of the dominant soil types based
on Soil Survey Geographic (SSURGO) database within the
particular AMSR-E footprint. These soil hydraulic param-
eters are used in the Mualem–van Genuchten functions
[Mualem, 1976; van Genuchten, 1980]:

Se ¼
q hð Þ � qres
qsat � qres

¼ 1

1þ ahj jn
� �m

ð1Þ

K hð Þ ¼ KsatS
l
e
1� 1� S

1=m
e

� �mh i2
; ð2Þ

where water content q is a nonlinear function of pressure
head h, Se is the relative saturation ( ), qres and qsat are the
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residual and saturated water contents (cm3 cm�3) respec-
tively, a (cm�1), n ( ), m ( ), and l ( ) are shape parameters
of the retention and the conductivity functions, Ksat is the
saturated hydraulic conductivity (cm d�1), and m = 1 � 1/n.
The values of these parameters are distinct among soil
(textural) types and are defined at the local or field scale. By
virtue of the variability in soil types within an AMSR-E
footprint, very relaxed pdf’s (high standard deviations, s)
were defined for the soil parameters as priors. A normal
distribution was assigned to all parameters, e.g., qres �
N(mqres, sqres) based on the UNSODA database [Nemes et
al., 2001]. In principle, nonnormal priors could be used as
well, but the computational complexity would increase
considerably. If no prior information from the SSURGO
database is available for the soil parameters except for their
ranges, uniform pdf’s are assigned in the valid ranges. For
computational simplicity, random samples are drawn
independently from the pdf’s of different soil hydraulic
parameters to form a field-scale parameter set (qr, qs, a, n,
Ksat). A scaling parameter b is introduced in our algorithm
to account for the scale disparity. The scaling parameter b
has a noninformative prior distribution (i.e., uniform
distribution) that gives no preference to any parameter
definition domain. However, it can be noted that a
noninformative prior gives information on the parameter
limit values i.e., a uniform distribution between 0 and 1.
Thus b relates the soil hydraulic parameters at the field scale
to the effective soil hydraulic parameters at the ASMR-E
footprint scale. The general relationship used in this study
for upscaling of any of the soil hydraulic parameters in the
Mualem–van Genuchten relationship (equation (1)) can be
written as (e.g., for qr)

qrð Þeff¼ qrð Þb; ð3Þ

where (qr)eff is the effective value of the residual water
content at the ASMR-E footprint scale. For flat homogenous

bare soil the value of b is 1 and the parameter values are
independent of spatial scale. With heterogeneity the value
of b remains no longer equal to unity and in fact can be
larger or smaller than one. The study found the upscaling
factor b smaller than 1 due to heterogeneity introduced by
soil types, vegetation, and atmospheric forcings with
increasing spatial scale. Essentially, all the nonlinearity
encountered in the physical processes with increasing
spatial scale is lumped in the scaling factor b. Thus, for
upscaling the field-scale parameters, equation (3) was used
to form a set of upscaled parameters, zi = (qres

bi , qsat
bi , abi, nbi,

Ksat
bi )i, where i is a realization of the MCMC and the

upscaling parameter bi represents the corresponding
upscaling parameter drawn randomly from a uniform
distribution between 0 and 1.
[11] By applying Bayes’ theorem, the conditional poste-

rior pdf, P(ZjD), given the measured values of D (vector of
AMSR-E soil moisture data), is described as

P ZjDð Þ ¼ P Zð ÞP DjZð Þ
P Dð Þ ; ð4Þ

where P(Z) is the prior joint pdf for the upscaled soil
hydraulic parameters Z = {z1, z2, . . ., zm}. The P(D) is a
normalization factor, and P(DjZ) is the likelihood derived
from measured AMSR-E soil moisture footprint values
given Z. To describe the AMSR-E data, a normal (pdf)
likelihood was introduced. Once the joint pdf is obtained,
given specific values for D, the marginal posterior cap
back to beginning PDF that retains exclusively the
dependence on one parameter (e.g., qres

b ) can be obtained
as follows:

P qbresjD
� �

¼
R R R R

P DjZð ÞP Zð ÞdqbsatdabdnbdK
b
sat

P Dð Þ ð5Þ

Figure 1. Markov chain Monte Carlo (MCMC) based schematic for deriving upscaled soil hydraulic
parameters.
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P DjZð Þ /
Y exp

D�q hð Þð Þ2
2s2

� �
s

ð6Þ

P Zð Þ / exp � 1

2
Z � mð ÞT@�1 Z � mð Þ

� �
; ð7Þ

where @ is the covariance matrix of the soil hydraulic
parameters, s is the standard deviation of D, and m is the
vector of means of the parameters. This marginalization
could potentially be an intractable task because of the
high-dimensional integration in equation (5). This could
happen when the retrieval process is applied to situations
where there are more than two soil parameters to be
estimated, and when the resulting PDF does not have a
standard form. A possible solution is to estimate the form
of the posterior PDF by generating samples by means of
the Markov Chain Monte Carlo (MCMC) method [Brooks
and Roberts, 1998]. The mean, variance, and higher-order
moments for the parameters can be calculated from the
numerically approximated PDFs of the MCMC. We use
the MCMC to perform the integration required for the
evaluation of equation (5). More specifically, we used the
Metropolis algorithm for the Markov Chain Monte Carlo
(MCMC) method with a simple random walk to describe
the posterior distribution, representing the ensemble of soil
hydraulic parameters for the AMSR-E footprint. The
Metropolis algorithm [Metropolis and Ulam, 1949] has
been widely used in Bayesian applications because of its
simplicity and its efficiency. Its principle can be
summarized as follows: Starting from a vector generated
at iteration i � 1, a new candidate vector is generated
based on a symmetric jump distribution. The symmetric
jump distribution depends on candidate vector generated at
iteration i � 1 and explores the surroundings of candidate
vector. The SVAT model (addressed below) is run with the
new candidate vector (proposed soil hydraulic parameters),
and the surface soil moisture generated from the model is
compared with the AMSR-E measurements. If this new
candidate vector leads to an increased probability of the
target (i.e., posterior) distribution, it is accepted as the
generated value at iteration i. Otherwise, the ratio between
the new and the previous value of the target distribution is
computed, and used as the acceptance probability of the
candidate vector. In case of rejection, the generated vector
at iteration i remains the same as that at iteration i � 1.
The Metropolis algorithm was used in this paper with a
Gaussian jump distribution with covariance matrix @. The
MCMC algorithm used in the study is summarized below:
[12] 1. Choose a starting point of candidate vector p(0)

with a covariance matrix @.
[13] 2. Iterate i = 1, . . ., Niter.
[14] 3. Generate a candidate vector based on p* � N

(p(i�1), @).
[15] 4. If p(p*jX) 
 p(p(i�1)jX), set p(i) = p*, else accept

the candidate vector (p(i) = p*) with probability r =
p p�jXð Þ
p pi�1jXð Þ

redo or reject it (p(i) = p(i�1)) with probability (1 � r).
[16] In order to avoid numerical overflows, it is useful to

consider the logarithm of the posterior distribution, and to
compute the posterior ratio as r = exp(log(p(p*jX)) �
log(p(p(i�1)jX))). Moreover, this ratio is made invariant by
multiplying the posterior distribution by a constant, which

implies that the Metropolis algorithm can be applied to a
nonnormalized target distribution. The MCMC algorithm
generates a Markov chain (kn) whose stationary distribution
is p(k). The posterior distributions of parameters obtained
from the MCMC algorithm are further subjected to a
process of thinning. The objective of thinning is to decrease
the autocorrelation (increasing independence) between sam-
ples. Thinning a Markov chain necessitates that the chain be
long enough to obtain a sample of the desired size. Thinning
was implemented in the algorithm by periodic selection of
samples from the MCMC chain at a specified rate to form
an ensemble of soil hydraulic parameters.

2.2. SVAT Modeling for Soil Moisture Estimation

[17] Key challenges in using SVAT models for very
coarse scale (e.g., AMSR-E footprint scale) hydrologic
modeling are the selection of governing flow equations,
setting accurate boundary conditions, and defining the
modeling domain. For this study, we used the parallel
noninteracting soil column approach [Milly, 1988; Peck
et al., 1977] that allows a variety of modeling concepts
for soil water processes in heterogeneous conditions. In this
stream-tube approach, the horizontal spatial heterogeneity is
represented by an ensemble of upscaled soil hydraulic
parameters and is conceptualized as bundle of independent
parallel soil columns. At the large spatial scale, the stream
tube approach suits well the hypothesis of negligible lateral
interflow across adjacent soil columns within the modeling
domain. In a previous study, Zhu and Mohanty [2002]
analyzed the magnitude of the lateral flow component in
parallel soil columns and found them of minor importance.
We also assumed that the 1-D Richards’ equation is an
appropriate physical model to simulate the vertical partially
saturated flow and partitioning of fluxes at such coarse
spatial scale. Numerical studies conducted by Mantoglou
[1992] and Zhang [1999] on general upscaled Richards’
equations have shown that at large spatial scales and in the
absence of lateral flow, vadose zone flow can be represented
by the one-dimensional Richards’ equation. We used the
SWAP model [Van Dam et al., 1997] to simulate the
processes of the soil-water-atmosphere-plant system. SWAP
is a physically based, hydrologic model that numerically
solves the one-dimensional Richards’ equation for simulat-
ing the soil moisture dynamics in the soil profile under
different climatic and environmental conditions. Irrespec-
tive of scale, for transient isothermal unsaturated water flow
in nonswelling soil, Richards’ equation as used in SWAP is
described by

@q
@t

¼ @

@z
K

@h

@z
þ 1

� �� �
� Sa hð Þ; ð8Þ

where q is the soil water content (m3/m3), z is the soil depth
(m), h is the soil water pressure head (m),K is the unsaturated
hydraulic conductivity (m/d), and Sa(h) is the sink term i.e.,
root water uptake (m/d). The Penman-Monteith equation
[Monteith, 1965] was used to calculate potential evapotran-
spiration, while potential transpiration (Tp) and soil evapora-
tion (Ep) were partitioned using LAI. In the SWAP model,
soil moisture retention and hydraulic conductivity functions
are defined by the Mualem–van Genuchten equations,
shown in equations (1) and (2), respectively.
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[18] SWAP is a numerical water management tool that
can accommodate several combinations of top and bottom
boundary conditions. Availability of satellite data to char-
acterize the upper boundary condition as well as the
vegetation cover allows study of regional/footprint scale
soil water processes. The SWAP model simulates both the
soil water quantity and quality with a temporal resolution of
1 day, along with other state variables. The model has been
used in various applications in the past and has been well
validated under different climatic and environmental con-
ditions [Ines and Droogers, 2002; Ines and Mohanty, 2008;
Wesseling and Kroes, 1998]. For more detailed descriptions
of SWAP the reader can refer to Van Dam [2000].
[19] A rooting depth of 50 cm for the soil profile with a

parallel soil columns concept was used to characterize the
AMSR-E soil moisture footprints, keeping in view the
scope and objective of this study. For the SWAP model
simulations, the 50-cm-thick soil profile at each remote
sensing footprint was discretized into 50 nodes, with finer
discretization near the soil layer interfaces and at the land-
atmosphere boundary. Finer discretizations near the top
boundary and at layer interfaces were used to handle the
steep pressure gradients for the numerical simulations. A
time-dependent flux-type top boundary condition was ap-
plied for each parallel soil column matching the AMSR-E
footprint. A unit vertical hydraulic gradient (free drainage)
condition was used at the bottom boundary of the soil
profile because of shallow root zone (50 cm). Given the
relatively coarse horizontal scale with shallow root zone, the
parallel soil column model ignores the lateral water fluxes
across the adjacent soil columns and only predicts infiltra-
tion, evapotranspiration, and deep percolation following the
parallel noninteracting stream-tubes concept of distributed
vadose zone hydrology.
[20] Within the modeling domain, stochasticity was

considered for soil hydraulic parameters as described in

section 2.1. However, other sources of stochasticity (e.g.,
uncertainty in forcing data) also exist but are not considered
for the study. So, a quasi-stochastic approach was imple-
mented in this study, where soil parameters were stochastic
and forcings were deterministic (i.e., average values). Such
an approach was adopted because making a model fully
stochastic increases the modeling dimensions by manyfold
and is extremely difficult to manage. For this study it is also
assumed that the uncertainties and modeling errors intro-
duced in simulated soil moisture values that propagate in
time for such quasi-stochastic setup were reduced by
precipitation events.

2.3. Site Description

[21] To study the MCMC based parameter upscaling and
SVAT modeling for evaluating soil moisture dynamics in
large space-borne AMSR-E footprints, diverse hydrocli-
matic regions within the United States were selected. As
illustrated in Figure 2, large regional areas in Arizona
(semiarid), Oklahoma (grassland/pastures), and Iowa (agri-
cultural) were selected for the study. All of these regions
have been included in previous hydrologic field campaigns
(e.g., Southern Great Plains 1997 (SGP97), 1999 (SGP99),
Soil Moisture Experiment 2002 (SMEX02), 2003
(SMEX03), 2004 (SMEX04), and 2005 (SMEX05)) whose
objectives included calibration and validation of remotely
sensed geophysical variables, especially soil moisture. The
selected Arizona region comprises 42 AMSR-E footprints
covering nearly 26,250 km2. The landscape consists of
perennial shrub cover with low LAI (<1 m2/m2), well-
drained gravelly sandy loam soil, and moderately rocky
and hilly terrains. The Oklahoma regional site encompasses
45 AMSR-E footprints covering nearly 28,125 km2. Grass-
land and pasture with rolling topography dominates the
landscape, with LAI averaging between 3 and 4 m2/m2 and
attaining peak value between late spring and summer.

Figure 2. Three selected study regions (Arizona, Oklahoma, and Iowa) within the continental United
Sates of America.
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Loamy sand, sandy loam, loam, and silty loam are the
predominant surface soil textures in the Oklahoma region.
The Iowa region, with 35 AMSR-E footprints spanning
21,825 km2, has mainly a row crop agricultural landscape
(nearly 60% corn and 40% soybeans in 2002). This site is
considered as the pothole region of Iowa because of its
undulating terrain. The soil on the surface is mainly silty
clay loam with a large percentage of organic matter. During
the peak crop growing condition the LAI for this region
reaches a high of 4–6 m2/m2.

2.4. Data

2.4.1. AMSR-E Soil Moisture Product
[22] For this study we used 2 years (2004–2005) of

AMSR-E Level-2B data extracted for the three regions
(Arizona, Oklahoma, Iowa), that was obtained from the
NASA Jet Propulsion Laboratory. This Level-2B land
surface product includes daily measurements of surface soil
moisture, vegetation water content interpretive information,
and quality control variables. The data values correspond to
a�60 km mean spatial resolution for AMSR-E at 10.7 GHz.
Note that there is a difference between the spatial resolution
of the AMSR-E instrument and its spatial sampling. The
AMSR-E instrument samples in time every 2.6 ms at
the lower frequencies [Njoku et al., 2003]. During this time,
the antenna motion along scan and the spacecraft motion
along track result in successive samples being spaced
approximately 10 km apart when projected at the Earth’s
surface. At each sample point, since the antenna beam has a
certain width, the instrument receives radiation from a fairly
broad region at the surface, i.e., the footprint or instanta-
neous field of view (IFOV). The footprint is normally
defined by the 3-dB width of the beam, which when
projected on the Earth’s surface covers an elliptical region
of dimension 74 km � 44 km (at 10.7 GHz), or approxi-
mately 60 km (average). So at each sample point, the
measurement can be considered representative of radiation
received from a footprint of dimension 60 km, even though
it is sampled every 10 km. This means that the region
observed in successive samples has considerable overlap,
i.e., there is significant over-sampling, and each measure-
ment is not strictly an independent observation of a fully
separate region of terrain. These 10-km samples are defined
in a reference coordinate system determined by the conical
scan of the antenna and the forward motion of the space-
craft, forming a helical scan trace at the Earth surface.
Hence the samples are often more conveniently remapped
onto Earth-fixed coordinate grids (EASE-grid in our case)
which could have any desired spacing (e.g., 25 km). The
more reliable nighttime AMSR-E data [Njoku et al., 2003]
were used, as soil moisture and temperature profiles remain
more uniform, and soil-vegetation temperature differences
are smaller during the night than the early afternoon. In
other words the soil moisture retrieval algorithm is expected
to have less error and be more representative of deeper soil
layers using the nighttime data.
2.4.2. TRMM and Other GPCP Calibrated Data for
Precipitation
[23] Precipitation is arguably the most critical input for

accurate soil moisture modeling. We used Tropical Rainfall
Measuring Mission (TRMM) and other Global Precipitation
Climatology Project (GPCP) calibration rainfall product 3B-
42 (available at http://disc.sci.gsfc.nasa.gov/data/datapool/

TRMM/01_Data_Products/02Gridded/ind- ex. html). The
combined instrument rain calibration algorithm (3B-42)
uses an optimal combination of products from other satel-
lites to adjust instantaneous rain (IR) estimates from geo-
stationary IR observations. The rainfall data product used in
this study has a spatial resolution of 0.25� � 0.25� grid for
every 3 h.
2.4.3. MODIS Data for LAI
[24] Eight-day composite LAI data (from the MODIS

instrument on the Terra satellite) (http://nsidc.org/
�imswww/pub/imswelcome/index.html) with 1-km spatial
resolution were used for the study. For soil moisture
modeling, the MODIS data were averaged up from 1 km
to �60 km resolution to match the AMSR-E mean spatial
resolution.
2.4.4. NCEP/NCAR Reanalysis Data for Atmospheric
Forcings
[25] The atmospheric forcing data such as relative hu-

midity, air temperature, etc., required for soil moisture
modeling was acquired from the 40-year reanalyses prod-
ucts of NCEP (http://www.cdc.noaa.gov/cdc/data.ncep.
reanalysis.surfaceflux.html). The NCEP/NCAR 40-year
reanalysis uses a state-of-the-art global data assimilation
system and a complete available database [Kalnay et al.,
1996].
2.4.5. SSURGO Data for Soil Texture
[26] Soil texture information (fraction of sand, silt, and

clay) was required for generating the ensemble of upscaled
soil hydraulic parameters. The data were obtained from the
Soil Survey Geographic (SSURGO) database (http://
www.ncgc.nrcs.usda.gov/products/data sets/ssurgo/).
SSURGO is the most detailed level of soil mapping done
by the Natural Resources Conservation Service (NRCS).
Mapping scales generally range from 1:12,000 to 1:63,360.

3. Results and Discussion

3.1. Upscaled Soil Hydraulic Parameters

[27] The approach described above was applied in the
Arizona, Oklahoma, and Iowa regions, each encompassing
several AMSR-E footprints. The SVAT model was run
within the MCMC framework for 1 complete year (2004).
The soil moisture evolutions from first 2 months (January
and February 2004) were not used in evaluating the pro-
posal probability distribution of soil hydraulic parameters
during the MCMC runs (as mentioned in section 2.1, ii.2).
This was necessary to eliminate the effects of initial con-
ditions imposed across the profile of soil layers. Soil
moisture states at the land surface were selected for 30 d
in 2004 coinciding with the AMSR-E footprints to evaluate
the proposal probability in MCMC sampling. A key issue in
successful implementation of MCMC sampling is the num-
ber of runs (steps) until the chain approaches stationarity
(length of the burn-in period). A poor choice of starting
values and/or proposal probability distribution of soil hy-
draulic parameters can greatly influence the required burn-
in time. The use of the SSURGO database for soil texture
information, and corresponding parameter distributions
from the UNSODA database, eliminated the possibility of
choosing poor starting values from proposed parameter
distributions. For this study, the MCMC chain was run
50,000 times, and the first 5000 burn-ins were discarded.
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An acceptance ratio of nearly 7–10% was realized during
MCMC for all the AMSR-E footprints used in the study. For
illustration, the mixing of chain (evolution of soil hydraulic
parameters from MCMC) for upscaled parameters (qres

b , qsat
b ,

ab, nb) selected randomly at the AMSR-E footprint scale
from the Arizona, Iowa, and Oklahoma regions are shown
in Figures 3a–3d, 4a–4d, and 5a–5d), respectively. Visual
examination of these plots indicates reasonably good mix-
ing i.e., sampling from all valid probability space. However,
the length is too large (45,000) to rely upon visual inspec-
tion. Hence we considered convergence diagnostics based
on the Geweke test [Geweke, 1992]. The Geweke test splits
the MCMC chain (after removing the burn-in period) into
two parts. The first part comprises the beginning 10% of the
chain, and the second part is the last 50% of the chain. If the
chain is at stationarity, the mean of the two parts should be
equal, and the resulting test statistic is often referred to as
the Geweke z-score. A value of greater than 2 for the
Geweke z-score indicates that the mean of the series is still
drifting, and a longer burn-in period is required. During the
MCMC process for parameter upscaling, convergence diag-
nostics of the Geweke test detected no z-score greater than
2. A z-score less than 2 is also indicative of time invariant
soil parameters within the footprint. The accepted proposals
were extracted from the MCMC chain and subjected to a

thinning process to reduce autocorrelation. From the thin-
ning process an ensemble of upscaled soil hydraulic param-
eters were prepared for the SVAT model simulation.
[28] The upscaled soil hydraulic parameters of the study

regions (section 2.2) from the MCMC process were greatly
influenced by the initial proposal distributions of the
parameters. For the Arizona region, the initial parameter
space was defined based on the dominant soil type, i.e.,
mostly sandy loam with a high percentage of gravel. On the
other hand, the Iowa region topsoil is mostly silty clay and
loam, and in the Oklahoma region the topsoil layer is
dominated by fine sandy loam, clay and occasional loam.
Although, the initial distributions of the parameters were
predefined, the Markov random process drew samples from
a very relaxed search space provided for all the parameters.
The signature of soil types for the three regions is clearly
visible in the PDFs of the hydraulic parameters, shown in
Figures 3a–3d, 4a–4d, and 5a–5d. As expected, the mean
upscaled residual water content qres

b in Arizona was the
lowest of the three regions. As illustrated in Figure 5a, the
effect of clay and fine sandy loam soil in Oklahoma region
is also evident with highest mean qres

b . The observed
variance of upscaled residual water content qres

b was quite
low and very similar for all the three regions. Similarly,
increasing trend for saturated water content qsat

b was also

Figure 3. Posterior density plots for upscaled van Genuchten parameters, for a particular footprint in the
Arizona regional site.
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observed from sand and gravel dominated soil in Arizona to
clayey and fine sandy loam soils in Oklahoma, revealing the
influence of the parameter space in the MCMC algorithm.
The variance of qsat

b encountered was also larger for the
Oklahoma region than for the other two regions, determined
primarily by the soil texture present in the regions. The van
Genuchten parameters (ab, nb) show a trend with the
highest mean observed for the Arizona region and lowest
for the Oklahoma region, consistent with the dominant soil
texture for each region. The characteristics of the hydraulic
parameters shown in Figures 3a–3d, 4a–4d, and 5a–5d is
typical of these particular regions. Of all the van Genuchten
parameters, the saturated hydraulic conductivity (Ksat

b ) was
the most variable and uncertain parameter obtained from the
upscaling algorithm. Figure 6 illustrates the probability
distribution of Ksat

b for a typical footprint from the Arizona
region. Unlike other parameters, Ksat

b shows a multimodal
distribution in space. Similar multimodal PDFs were also
observed for the Iowa and Oklahoma regional sites. Studies
have shown that saturated hydraulic conductivity is a highly
uncertain parameter that varies widely at the field scale
[Mohanty et al., 1994a]. The wide range of Ksat

b in a footprint
scale is a fair estimation keeping in view the size of the spatial
domain of this study. The MCMC-based upscaling of soil
hydraulic parameters results in an effective ensemble of

parameter sets that is specific to regional hydroclimatic
conditions, vegetation, and soil type. Influence of topogra-
phy on upscaling of soil hydraulic parameters was not
considered in this framework. However, with the parallel
stream-tube concept and the large horizontal spatial extent
(60 km � 60 km) compared with the vertical range of
topographic variations, the effect of topography on soil
hydraulic parameters is greatly diminished.
[29] Figures 7a–7c illustrate the posterior distribution of

the upscaling parameter b for the three study regions. It also
exhibits typical characteristic behavior as influenced by the
parameter search space of the field-scale soil hydraulic
parameters. For flat homogenous bare soil the value of b
is 1 and the parameter values are independent of spatial
scale. With heterogeneity the value of b remains no longer
equal to unity and in fact can be larger or smaller than 1. In
this study the upscaling parameter b is smaller than 1 due to
heterogeneity introduced by soil types, vegetation, and
atmospheric forcings with increasing spatial scale. Essen-
tially, all the nonlinearity encountered in the physical
processes with increasing spatial scale is lumped in the
upscaling factor b. As shown in Figure 7, the MCMC
converges to a stationary distribution of b with a mean of
nearly 0.8, 0.85, and 0.9 for the Arizona, Iowa, and
Oklahoma regions, respectively. Mean value of b may

Figure 4. Posterior density plots for upscaled van Genuchten parameters, for a particular footprint in the
Iowa regional site.

W05416 DAS ET AL.: MCMC ALGORITHM FOR SVAT MODELING

9 of 16

W05416



depend upon the individual AMSR-E footprint, as every
footprint is unique due to complex combination of topog-
raphy, vegetation, soil, and other geophysical processes.
Further investigation is required to study the influence of
individual as well as different combinations of geophysical
parameters (soil type, topography, vegetation, and atmo-
spheric forcings) on the behavior of b with increasing
spatial scale.

3.2. Comparison of Modeled and Remotely Sensed Soil
Moisture

3.2.1. Arizona Regional Site
[30] The Arizona regional site is ideal for satellite-based

passive microwave remote sensing of soil moisture because
of sparse vegetation (LAI < 1 m2/m2). Studies [Njoku and
Li, 1999; Paloscia et al., 1993] have demonstrated that at
the AMSR-E frequency of 10.7 GHz used for soil moisture
sensing, the sensitivity of brightness temperature (Tb) to
variations in soil moisture strongly decreases when the soil
is covered with well-developed vegetation. Also, the pre-
dominant sandy texture soil with sparse vegetation of this
region is suitable for microwave remote sensing. Therefore
we used this regional site as a test bed to evaluate the
MCMC algorithm developed for upscaling of soil hydraulic
parameters. One hundred ensemble members (each member
representing one set of upscaled van Genuchten parameters)
were selected from the thinning operation of the MCMC
chain (posterior distribution). Modeled soil moistures from

the top 1 cm depth of the soil profile from all 42 AMSR-E
footprints in the region were compared with the AMSR-E
measurements. Three out of 42 footprints in the region were
randomly selected to display the results of SVAT modeling
of the 100 ensemble members (Figures 8a–8c) at 60 km �
60 km resolution for 2004–2005. As illustrated in
Figures 8a–8c, most of the times the ensemble of SVAT

Figure 5. Posterior density plots for upscaled van Genuchten parameters, for a particular footprint in the
Oklahoma regional site.

Figure 6. A typical example of probability distribution for
upscaled saturated hydraulic conductivity (Ksat

b ), from the
Arizona regional site.
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simulated soil moisture matches very well with the AMSR-E
footprint measurements and are always within the bounds of
the ensemble of SVATsimulated soil moisture. However, few
discrepancies were also observed as reflected in Figure 8b.
Close examination of these discrepancies reveals that the
AMSR-E soil moisture data did not respond to the TRMM-
based precipitation data. The reason may be the precipitation
event occurring after the overpass time of the Aqua satellite
(descending, 1:00 A.M.) and vice versa. The topsoil, which
mostly contributes to the microwave emission, has high rock
and gravel fraction with sandy texture. This influences the
soil hydraulic characteristics, making them highly nonlinear
with very high saturated hydraulic conductivity, which drains
the soil rapidly and the signature of the precipitation event is

Figure 7. Posterior density plots for upscaling parameter
for the (a) Arizona region, (b) Iowa region, and
(c) Oklahoma region.

Figure 8. Comparison of randomly selected footprints of
soil moisture evolution from ensemble of upscaled soil
hydraulic parameters using soil-vegetation-atmosphere-
transfer (SVAT) model and AMSR-E measurements for
2004–2005, from Arizona region (W, winter; S, summer).
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lost from the topsoil. During the SMEX04 field campaign,
Das et al. [2007] also observed similar behavior in Walnut
Gulch watershed situated within this Arizona regional site. A
high correlation (average R of 0.91) was observed between
the AMSR-E soil moisture and the mean of SVAT ensembles
for all the 42 footprints during the summer seasons of 2004–
2005. However, lower correlation was observed for winter
periods of 2004–2005, with an average R of 0.65 (R ranging
between 0.51 and 0.75). The Arizona region experiences
most of the precipitation during winter by North American
monsoon, which is mostly widespread and is unlike convec-
tive thunderstorms during summer. The SVATmodel showed
high soil moisture during such major precipitation events,
whereas the AMSR-E footprints showed a weak response.
This also degraded the correlation value observed during the

winter periods. Coregistration of satellite-based precipitation
and soil moisture measurement may minimize such anoma-
lies. The estimated upscaled hydraulic parameters for this
region reasonably modeled the soil moisture evolution at a
footprint scale. These upscaled parameters also retained the
typical characteristics of the sandy soil at large scales. The
good performance of SVAT model (using MCMC based
upscaled parameters) with AMSR-E measurements in semi-
arid Arizona region is further evaluated in agricultural land-
scapes with high biomass (Iowa region) and grass/pasture
(Oklahoma region).
3.2.2. Iowa Regional Site
[31] The Iowa regional site is a typical example of

agricultural landscape (LAI of 3–6 m2/m2). Using data
from a soil moisture experiment (SMEX02) in June–July
2002 in this region, Bindlish et al. [2006] reported a
satisfactory validation of the spaceborne AMSR-E soil
moisture using an airborne polarimetric scanning radiometer
(PSR). However, in this region, our study found contrasting
results for 2004–2005. Performance of the AMSR-E soil
moisture product was evaluated against the SVAT model
simulated soil moisture for 35 footprints. Results from three
randomly selected footprints in the region are illustrated in
Figures 9a–9c. Figure 9a shows that AMSR-E did not
respond to the precipitation events, especially during the
summer months. This behavior was also found in many
other footprints in the region (results not shown here).
During summer in such agricultural regions, middle- to
late-stage corn and soybean crops of high LAI (3–6 m2/m2)
attenuate microwave emission from soil and themselves
emit essentially depolarized microwave radiations [Wang
and Choudhury, 1995]. The attenuation of microwave
emission from soil introduces a masking effect observed
by remote sensors and uncertainty in soil moisture process
dynamics at the soil surface. Soil moisture values with very
little variations or decreasing trend were found in AMSR-E
measurements with the increase of LAI during the summers
in the Iowa region. Contrarily, the SVAT model predictions
responded with high soil moisture in the topsoil layer on the
day of precipitation events. Consequently, a very low
average R (0.15) was recorded between AMSR-E soil
moisture product and SVAT simulated values. The region
observed R values ranging from 0.11 to 0.25. A slightly
higher average correlation (R = 0.23) was observed for the
winter seasons. In a few occasions, AMSR-E soil moisture
was found much higher during the winters, which may be
due to wet ice. A noticeable feature in Figure 9c is high soil
moisture measured by AMSR-E during the summer of
2005. This happened after small precipitation events, when
the canopy interception due to high LAI reduces emissions
to a large extent. At the same time, little increase in
simulated soil moisture values was observed. Because of
such uncertainties and overall variability, the SVAT model
ensemble trajectory for the 2 years did not match well with
the trend of AMSR-E measurements. A noticeable feature
of this regional site is high average value and large
variability in soil moisture content than the Arizona site.
This finding signifies that the proposed MCMC algorithm,
which retained the basic nature of the soil type after
upscaling, highlights the discrepancies of SVAT modeled
soil moisture evolution with the AMSR-E measurements.

Figure 9. Comparison of randomly selected footprints of
soil moisture evolution from ensemble of upscaled soil
hydraulic parameters using SVAT model and AMSR-E
measurements for 2004–2005, from Iowa region (W,
winter; S, summer).
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3.2.3. Oklahoma Regional Site
[32] Studies showing AMSR-E instrument validation for

this region are not available to date. Other studies [Hu et al.,
1998, 1997; Nykanen and Foufoula-Georgiou, 2001; Oldak
et al., 2002; Peters-Lidard et al., 2001; Rodriguez-Iturbe et
al., 1995] conducted in this region, using airborne remote
sensing (Electronically Scanned Thinned Array Radiometer,
ESTAR) soil moisture data during SGP97 field campaign
reported nonstationarity and multiscaling properties with
increasing spatial scale. Our MCMC-based upscaled hy-
draulic parameters in the SVAT model were used for 45
footprints in this region, and ensemble trajectories of soil
moisture evolution for three (randomly selected) AMSR-E
footprints are presented in Figures 10a–10c. The SVAT
model did reasonably well as compared with the Iowa
regional site. Average R values of 0.51 for the summers

and 0.39 for the winters in 2004–2005 were recorded for
the Oklahoma region. The region observed R values ranging
from 0.32 to 0.61. As shown in the Iowa sites, the AMSR-E
footprints for Oklahoma on many occasions show no effects
of major precipitation events. During the summer months,
LAI of this region grows up to 3–5 m2/m2, which hampers
the sensitivity of AMSR-E 10.7-GHz frequency, resulting in
low soil moisture values of AMSR-E footprints. It was also
observed that for this regional site, the model ensemble
trajectories match with the AMSR-E measurements most of
the time when the LAI of this region is low.

3.3. Comparison of Ground-Based, Remotely Sensed,
and Modeled Soil Moisture

[33] Extensive regional-scale field campaigns for surface
soil moisture measurement (with point scale support) were
conducted during the SMEX04 (in the Arizona regional
site) and the SMEX05 (in the Iowa regional site). The time
period of our modeling study (2004–2005) overlapped with
the duration of these field campaigns. Figures 11 and 12
illustrate the comparison of surface soil moisture from
SVAT model predictions, AMSR-E observations, and
ground measurements (local/point scale) for the Arizona
and Iowa regions, respectively. For comparison, simple
average was evaluated for the all ground measurements
within the specific AMSR-E grid. Note, however, the local/
point scale soil moisture data (theta-probe measurements)
supports a depth of 5 cm, whereas the SVAT model
evolutions are from the top 1 cm and AMSR-E soil moisture
data with footprint scale support are valid up to 1 cm depth.
In Figure 11, the AMSR-E observations and the SVAT
model predictions having footprint scale (60 km � 60 km)
support maintain a steady trend without much variation, as
observed in the local/point scale surface soil moisture data
in the Arizona region. This is because at the footprint scale
most of the local variations were homogenized, which were
captured by local point scale surface soil moisture data.
Also, Das et al. [2007] found that the change in the mean
and variance of daily soil moisture probability densities at
the 1 cm depth was due to the highly variable (localized)
convective summer precipitation patterns across the Walnut
Gulch watershed in the Arizona region. However, in the
Arizona regional site the differences in mean of the surface
soil moisture with SVAT model and AMSR-E soil moisture
data (Figure 11) were not prominent as in the Iowa regional
site (Figure 12). This was due to the prevailing dry
conditions with a very conductive topsoil in the Arizona

Figure 10. Comparison of randomly selected footprints of
soil moisture evolution from ensemble of upscaled soil
hydraulic parameters using SVAT model and AMSR-E
measurements for 2004–2005, from Oklahoma region (W,
winter; S, summer).

Figure 11. Comparison of field scale, SVAT model, and
AMSR-E soil moisture data from Soil Moisture Experiment
2004 (SMEX04).
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region. The less difference in mean soil moisture was due to
no major precipitation event throughout the region during
SMEX04. Therefore the wetting and subsequent dry-down
phase is missing in Figure 11. Whereas, in the Iowa region,
the mean of in situ surface (0–5 cm) soil moisture data is
much higher than the SVAT model predictions, and the
AMSR-E soil moisture data. As already discussed in section
3.2.2, high soil moisture that was measured by point-scale
gravimetric sample in the clayey textured topsoil was
completely masked by high LAI in the agricultural region
for the AMSR-E measurements. In the Iowa region, how-
ever, the SVAT model prediction clearly responds to the
precipitation events, which is not observed in the case of
AMSR-E measurements because of microwave emission
attenuation/manipulation by high vegetation. Another no-
ticeable feature in Figure 12 is the difference in correlation
of soil moisture of the SVAT model predictions and the
point-scale measurements on wet days versus dry/dry-down
days. This finding reflects the simple spatial scaling char-
acteristics for the wet day as opposed to the multiscaling
properties for the dry-down period, which corroborates the
findings of Das and Mohanty [2008] during the SMEX02
campaign in the Iowa region. This comparison further
strengthens the notion of parameter upscaling requirement
and validity of using our proposed MCMC based upscaled
SVAT model to record the hydrological processes within
large AMSR-E footprints.

4. Conclusions

[34] It has been demonstrated that upscaling of soil
hydraulic parameters from field scale to satellite footprint
scale has potential for modeling soil moisture evolution at
the footprint scale and for evaluating the uncertainty and
limitations involved in satellite-based soil moisture data. A
simple MCMC-based algorithm was developed with priors
from existing field-scale soil parameters and likelihood
from AMSR-E based soil moisture data to generate a
posterior set of upscaled hydraulic parameters. The SVAT
model used these upscaled soil hydraulic parameters in
three different hydroclimatic regions to simulate the surface
soil moisture for 2 years (2004–2005). A high correlation
between AMSR-E soil moisture data and simulated soil
moisture values was observed for the semiarid region of
Arizona, attesting to the use of upscaled parameters in
SVAT models at the AMSR-E footprint scale. In the

agricultural landscapes of the Iowa region, the SVAT model
revealed the limitation in the AMSR-E soil moisture prod-
uct under dense vegetative conditions. A very low correla-
tion was observed in the summers of 2004–2005 for the
Iowa regional site. The SVAT model did reasonably well in
grass/pasturelands of Oklahoma as compared with the Iowa
agricultural sites. High vegetation during summers was
found to degrade the AMSR-E soil moisture detection
sensitivities. One constraint encountered during this study
was the precipitation inputs from TRMM, which were not
coregistered with AMSR-E footprints. This led to the
mismatch of soil moisture evolution from SVAT model
and AMSR-E soil moisture product. Our approach, using
remotely sensed data to calibrate a SVAT model to mimic
the evolution of land surface state variable such as soil
moisture, may be used in the future for improving the
remotely sensed products through data assimilation. The
technique also has the potential to derive upscaled param-
eters for geophysical properties.
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moisture: A hydrologic perspective, Annu. Rev. Earth Planet. Sci., 30,
149–180, doi:10.1146/annurev.earth.30.091201.140434.

Zhang, D. X. (1999), Nonstationary stochastic analysis of the transient
unsaturated flow in randomly heterogeneous media, Water Resour.
Res., 35, 1127–1141, doi:10.1029/1998WR900126.

Zhu, J., and B. P. Mohanty (2002), Spatial averaging of van Genuchten
hydraulic parameters for steady-state flow in heterogeneous soils: A
numerical study, Vadose Zone J., 1, 261–272.

Zhu, J., and B. P. Mohanty (2003), Upscaling of hydraulic properties of
heterogeneous soils, in Scaling Methods in Soil Physics, edited by Y. A.
Pachepsky et al., pp. 97–118, CRC Press, Boca Raton, Fla.

����������������������������
N. N. Das and B. P. Mohanty, Department of Biological and Agricultural

Engineering, Texas A&M University, 301 C Scoates Hall, College Station,
TX 77843-2117, USA. (bmohanty@tamu.edu)

E. G. Njoku, Water and Carbon Cycles Group, Jet Propulsion Laboratory,
California Institute of Technology, M/S 300-233, 4800 Oak Grove Drive,
Pasadena, CA 91109, USA.

16 of 16

W05416 DAS ET AL.: MCMC ALGORITHM FOR SVAT MODELING W05416


