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Abstract

Soil moisture status in the root zone is an important component of the water cycle at all spatial scales (e.g., point, field, catchment, watershed,
and region). In this study, the spatio-temporal evolution of root zone soil moisture of the Walnut Gulch Experimental Watershed (WGEW) in
Arizona was investigated during the Soil Moisture Experiment 2004 (SMEX04). Root zone soil moisture was estimated via assimilation of
aircraft-based remotely sensed surface soil moisture into a distributed Soil–Water–Atmosphere–Plant (SWAP) model. An ensemble square root
filter (EnSRF) based on a Kalman filtering scheme was used for assimilating the aircraft-based soil moisture observations at a spatial resolution of
800 m×800 m. The SWAP model inputs were derived from the SSURGO soil database, LAI (Leaf Area Index) data from SMEX04 database, and
data from meteorological stations/rain gauges at the WGEW. Model predictions are presented in terms of temporal evolution of soil moisture
probability density function at various depths across the WGEW. The assimilation of the remotely sensed surface soil moisture observations had
limited influence on the profile soil moisture. More specifically, root zone soil moisture depended mostly on the soil type. Modeled soil moisture
profile estimates were compared to field measurements made periodically during the experiment at the ground based soil moisture stations in the
watershed. Comparisons showed that the ground-based soil moisture observations at various depths were within ±1 standard deviation of the
modeled profile soil moisture. Density plots of root zone soil moisture at various depths in the WGEWexhibited multi-modal variations due to the
uneven distribution of precipitation and the heterogeneity of soil types and soil layers across the watershed.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Surface and root zone soil moisture are important state
variables for hydrological and meteorological modeling. The
sensitivity of energy exchange processes at the land–atmo-
sphere boundary to root zone soil moisture is well known.
These processes are important for global water circulation and
carbon cycling. Passive microwave remote sensing has the
potential to provide synoptic surface soil moisture measure-
ments (Engman & Gurney, 1991; Jackson, 1993; Jackson et al.,
1999; Njoku & Entekhabi, 1995) that are important for
assessment of root zone soil moisture over a region. These
measurements describe near-surface (0–0.05 m) soil moisture
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(Jackson & Schmugge, 1989; Schmugge et al., 1974, 1977,
1980). Recognizing the importance of surface and root zone soil
moistures, major efforts are underway to develop operational
soil moisture remote sensing techniques. Scientific campaigns
such as Washita 1992, Southern Great Plains hydrology
experiments 1997 (SGP97), and Soil Moisture Experiments
2004 (SMEX04) were conducted to validate airborne and space-
borne passive microwave remote sensing platforms and thus
estimating soil moisture over large spatial scales. These
campaigns were conducted in selected geographical regions
representing rangeland, agricultural farmland, and semi-arid
shrubland, as well as different topographic conditions such as
flat, rolling/undulating, and mountainous terrains.

Kostov and Jackson (1993), and Wei (1995) suggested that a
promising approach for estimating profile soil moisture is the
integration of remote sensing surface soil moisture data and
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Fig. 1. Walnut Gulch Experimental Watershed (WGEW) with rain gages, SCAN, RG46, and RG82 sites used in the study.
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computational modeling. In the case of bare soil, Entekhabi
et al. (1994) showed that it is possible to retrieve profile soil
water content using passive microwave data at frequencies less
than 10 GHz. In that study, the propagation of information from
Fig. 2. Walnut Gulch Experimental Watershed (WGEW) digital elevation model (D
source: USDA geospatial-data-gateway.
the surface to deeper soil layers was investigated using a
multilayer model of heat and water transfer. Houser et al. (1998)
studied the use of four-dimensional data assimilation methods
in a macro-scale land hydrology model to generate surface and
EM) at resolution of 800 m×800 m, resampled from 30 m×30 m DEM. Data
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root zone soil moisture fields at regular space and time intervals
for the Walnut Gulch Experimental Watershed (WGEW) in
Arizona. Other related/similar studies have been conducted for
estimation of surface and profile soil water contents using
passive microwave data at watershed/regional scale during the
SGP97 experiment (e.g., Crosson et al., 2002; Crow & Wood,
2003; Das & Mohanty, 2006; Dunne & Entekhabi, 2005;
Margulis et al., 2002; Reichle et al., 2002).

The primary objective of this study is to determine the
evolution of the spatial and temporal dynamics of root zone soil
moisture in semi-arid shrublands of the WGEW during the
SMEX04 experiment. We have used an Ensemble Square Root
Filter (EnSRF) to assimilate aircraft-based (Polarimetric
Scanning Radiometer) remotely sensed surface soil moisture
observations with the Soil–Water–Atmosphere–Plant (SWAP)
model for the estimation of profile soil water content. The
assimilation of Polarimetric Scanning Radiometer (PSR/CX)-
based surface soil moisture and modeling of root zone soil
moisture were conducted by extending the parallel non-
interacting stream tube framework proposed by Das and
Mohanty (2006) and also included run-off and run-on processes
between remote sensing footprints. The temporal evolution of
soil moisture measured at point-based monitoring locations and
depths across the WGEW was also compared with EnSRF-
based model predictions. A secondary objective of this study is
to develop the probability distributions for soil moisture at
various depths within the WGEW.
Fig. 3. Walnut Gulch Experimental Watershed (WGEW) surface soil texture at resolu
loam; GRV-FSL: very gravelly fine sandy loam; GR-FSL: gravelly fine sandy loam;
loamy sand; GRV-L: very gravelly loam; LS: loamy sand; GR-L: gravelly loam; CBV
cobbly loam; CBV-SL: very cobblly sandy loam). Data source: http://soildatamart.n
2. Materials and methods

2.1. Description of study area and forcings

The SMEX04 field campaignwas conducted betweenAugust
2 and August 27, 2004 across Arizona, USA and Sonora,
Mexico (http://hydrolab.arsusda.gov/smex04/). The primary
focus of the field experiments in Arizona during SMEX04 was
the Walnut Gulch Experimental Watershed (31°43′N, 110°41′
W) near Tombstone, operated by the Agriculture Research
Service (ARS), U.S. Department of Agriculture (USDA). The
150 km2 watershed (Fig. 1) is part of the San Pedro river basin,
and is heavily instrumented to measure rainfall and runoff. The
instrumented area of the watershed comprises a dense network
of 88 rain-gages (Fig. 1) of which 19 are collocated with soil
moisture sensors. The elevation of the WGEW (Fig. 2) varies
between 1250 m and 1585 m above the mean sea level, with an
average annual temperature of 17.7 °C. It receives an average of
350 mm of precipitation annually. The vegetation is mainly
shrubs, covering about two-thirds of the watershed. The
remaining one-third is mostly grassland. The soil is generally
well drained, calcareous, gravelly loamwith large percentages of
rock and gravel at the soil surface. Natural Resources
Conservation Services (NRCS) has mapped 27 soil series in
this watershed. The soil classification based on dominant surface
soil texture at a resolution of 800 m×800 m is illustrated in
Fig. 3. Complete information about the WGEW is available on
tion 800 m×800 m (SL: sandy loam; COSL: coarse sandy loam; FSL: fine sandy
CBV-CL: very cobblly clay loam; SR-G: stratified gravel; STV-LS: very stony
-L: very cobblly loam; GRV-SL: very gravelly sandy loam; CBX-L: extremely
rcs.usda.gov/County.aspx?State=AZ.

http://hydrolab.arsusda.gov/smex04/
http://soildatamart.nrcs.usda.gov/County.aspx?State=AZ
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the USDA-ARS website (http://ars.usda.gov/SP2UserFiles/
Place/53424500/WGBrochure.pdf). During SMEX04 cam-
paign, the PSR/CX (Piepmeier & Gasiewski, 2001) with
polarimetric channels of C and X band (5.82–10.80 GHz) was
flown on the Naval Research Lab's (NRL) P3 aircraft. The P3
flight details of the remote sensing campaign are available at
National Snow and Ice Data Center (NSIDC). The PSR/CX-
based soil moisture snapshots for 9 days across the WGEW are
illustrated in Fig. 4 (Bindlish et al., 2008-this issue).

The footprint size (800 m×800 m) of PSR/CX was used as
the basis for grid resampling (by inverse-distance interpolation)
for all variables resulting in a total of 224 pixels across the
WGEW. The resulting daily spatially distributed hydro-climatic
datasets were used as inputs to the SWAP model. For this
distributed modeling and data assimilation study, we used input
data from various sources including the LAI data collected
during SMEX04 campaign, the soil layers and types from the
SSURGO database (USDA-NRCS), and the precipitation data
collected by the network of 88 weighing-type recording rain-
gages arranged in a grid across the WGEW (Fig. 1). An inverse-
distance interpolation (IDI) technique was used to create a
spatial distribution of daily accumulated precipitation on
relevant dates (Fig. 5). It is apparent from Fig. 5 that during
the SMEX04 period WGEW received scattered and scanty
rainfall with no major precipitation event throughout the
watershed. The spatial distribution of LAI (800 m×800 m)
across WGEW was also generated with IDI technique (Fig. 6).
All other meteorological forcings (e.g., relative humidity, wind
Fig. 4. Walnut Gulch Experimental Watershed (WGEW) PSR/CX snapshots of soil m
resolution of 800 m×800 m.
speed, and air temperature) were extracted from the Soil
Climate Analysis Network (SCAN) site located within WGEW
(Fig. 1), and were assumed to be spatially uniform for the
purpose of this study. The relevant GIS and ground measure-
ment datasets available at NSIDC were used for distributed
modeling of root zone soil moisture in the WGEW.

2.2. Soil–Water–Atmosphere–Plant (SWAP) model

SWAP (Van Dam et al., 1997) is a robust physically-based
field scale eco-hydrological model used to simulate the
processes occurring in the soil–water–atmosphere–plant sys-
tem. SWAP is an open source hydrological model and is the
successor of the SWATR model (Feddes et al., 1978). SWAP is
available at http://www.swap.alterra.nl/. The model simulates
both the soil water quantity and quality with daily temporal
resolution. SWAP can account for several combinations of the
top and bottom boundary conditions. Ines and Honda (2005)
have successfully used SWAP in their study for quantifying
surface and root zone soil water contents from low resolution
remote sensing data. Since SWAP was not originally designed
for distributed modeling, it was adapted into a framework
developed by Das and Mohanty (2006). This framework was
developed on ArcGIS platform for distributed hydrological
modeling. It uses geophysical variables in grid format as inputs
to the hydrologic model (SWAP). The framework is capable of
producing soil moisture outputs at watershed-scale at various
depths in a grid format. For this study, run-on and run-off
oisture for Day of Year (DOY) 218, 221, 222, 223, 225, 226, 237, 238, and 239 at

http://ars.usda.gov/SP2UserFiles/Place/53424500/WGBrochure.pdf
http://ars.usda.gov/SP2UserFiles/Place/53424500/WGBrochure.pdf
http://www.swap.alterra.nl/


Fig. 5. Spatial distribution of precipitation at resolution of 800 m×800 m created with inverse distance interpolation (IDI) of measurements from 88 raingages in
Walnut Gulch Experimental Watershed (WGEW).
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routing were also included in the framework by extracting flow-
accumulation, flow-direction, and flow-length information from
the digital elevation model (DEM) (Fig. 2) of the WGEWwith a
steepest descent technique. Note, however, the DEM of 800 m×
800 m resolution (resampled from 30 m×30 m resolution) may
introduce some scale uncertainty while evaluating flow-accu-
mulation, flow-direction, and flow length.

The governing equation of SWAP solves the 1-D Richards'
equation (Eq. (1)) to simulate partially-saturated water move-
ment in the soil profile.
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þ 1

� �� �
� SaðhÞ ð1Þ

where θ is the soil water content (m3/ m3), z is the soil depth
(m), h is the soil water pressure head (m), K is the unsaturated
hydraulic conductivity (m/day), and Sa(h) is the root water
uptake (m/day). The maximum possible root water uptake
over the rooting depth is equal to potential transpiration rate, Tp
(m/day), which is governed by atmospheric conditions. The
potential root water uptake at a certain depth, Sp(z), may be
determined by the root length density, lroot(z) (m/m3), as a
fraction of the integrated root length density.

SpðzÞ ¼ lrootðzÞR0
Droot

lrootðzÞdz
Tp ð2Þ
where Droot is the root layer thickness. In practice the distri-
bution of lroot(z) is often not available. Therefore in SWAP, a
uniform root length density distribution is assumed.

lrootðzÞR0
Droot

lrootðzÞdz
¼ 1

Droot
ð3Þ

which leads to the simplification of Eq. (2) (Feddes et al., 1978),
as

SpðzÞ ¼ Tp
Droot

ð4Þ

The actual root water uptake Sa(h), is calculated from

SaðhÞ ¼ aw

Z Droot

0
SpðzÞdz ð5Þ

αw is the reduction factor as a function of h that accounts for
water stress (Feddes et al., 1978). Penman–Monteith equation
(Monteith, 1965) was used to calculate potential evapotranspi-
ration. The potential transpiration (Tp) and the soil evaporation
(Ep) were partitioned using LAI. The potential evaporation rate
of soil under standing vegetation is derived from Penman–
Monteith equation by neglecting the aerodynamic term. Thus,
the only source of soil evaporation is net radiation that reaches



Fig. 6. Walnut Gulch Experimental Watershed (WGEW) Leaf Area Index (LAI) at resolution of 800 m×800 m. Data source: http://nsidc.org/data/amsr_validation/
soil_moisture/smex04/.
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the soil surface. Assuming that the net radiation inside the canopy
decreases according to an exponential function, we can derive

Ep ¼ Epoe
IjgrLAI ð6Þ

where κgr is the extinction coefficient of global solar radiation and
Epo (m/day) is potential evaporation. SWAP calculates the daily
average Tp (m/day),:

Tp ¼ ð1:0�WfracÞETpo � Ep ð7Þ

where Wfrac (–) is ratio of the daily amount of intercepted
precipitation and potential evaporation rate of the water in-
tercepted by the vegetation. In Eq. (7) ETp0 (m/day) is potential
evapotranspiration rate of a dry canopy.

In the SWAP model soil moisture retention and hydraulic
conductivity functions are defined by the Mualem–van
Genuchten equation,

Se ¼ hðhÞ � hr
hs � hr

¼ 1
1þ jahjn

� �m
ð8Þ

KðSeÞ ¼ KoS
1
ef1� ½1� Sn=ðn�1Þ

e �1�1=ng2 ð9Þ

where Se is the relative saturation (–), θs and θr are the saturated
and residual water content (m3/m3) respectively, α (m−1), n (–),
m (–) are the shape parameters of the soil water retention
function and m=1−1 /n, Ko is the matching point at saturation
(m/s), and parameter l (–) is an empirical pore tortuosity/
connectivity parameter.
2.2.1. SWAP modeling domain and parameters
The spatially and temporally variable atmospheric forcings,

soil hydraulic properties, and vegetation interact in a highly
nonlinear manner to produce heterogeneous soil moisture at the
soil surface and in the root zone. In this paper, we mainly
focused on watershed-scale representations of the root zone soil
moisture at a coarser spatial resolution of 800 m×800 m and
temporal resolution of one day. Therefore, the disparity of scales
between the horizontal (spatial resolution: 800 m×800 m) and
vertical (soil depth: 3.86 m) extents of the root zone was the key
consideration in formulating the framework for watershed-scale
root zone hydrology. For SWAP model simulation, the 3.86 m
thick soil profile (available soil depth in SURRGO database) at
every remote sensing footprint was discretized into 50 nodes,
with finer discretization near the soil layer interfaces and at the
land–atmosphere boundary. Finer discretization near the top
boundary and layer interfaces were used to handle the steep
pressure gradient for the numerical simulations. Time-depen-
dent flux-type top boundary conditions for each parallel soil
column (matching the remote sensing footprints) were used
with precipitation distribution across the WGEW. A unit
vertical hydraulic gradient (free drainage) condition was used
at the bottom boundary of the soil columns because of deep
groundwater table (45 m to 150 m) condition across the
WGEW. No flow bottom boundary condition was imposed
where impervious layers (i.e., bedrocks) were encountered in
3.86 m of the soil profile. Runoff and runon between adjacent
footprints due to topography was considered on the land
surface. The runoff from the one or more adjacent pixels of
steepest descent according to flow routing was used as runon for

http://nsidc.org/data/amsr_validation/soil_moisture/smex04/
http://nsidc.org/data/amsr_validation/soil_moisture/smex04/
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the pixel under consideration. Given the relatively coarse
horizontal scale with shallow root zone, the parallel soil
columns model ignores the lateral water fluxes across the
adjacent soil columns and only predicts the vertical fluxes
including infiltration, evapotranspiration, runoff, and deep
percolation as parallel non-interacting stream-tubes concept in
distributed vadose zone hydrology. We also assumed that 1-D
Richards' equation is an appropriate physical model to simulate
vertical partially-saturated flow and partitioning of fluxes at the
spatial scale of 800 m×800 m. Numerical studies conducted by
Mantoglou (1992), and Zhang (1999) on general upscaled
Richards' equations have shown that at large spatial scales and
in the absence of interflow vadose zone flow can be represented
by one-dimensional Richards' equation.

A probabilistic approach was adopted in the distributed
modeling environment across the WGEW. An ensemble of state
variables (profile soil moistures) was created for all the 224
(800 m×800 m) PSR/CX footprints in the WGEW. A state
augmentation technique was applied by concatenating uncertain
soil properties to state variables, forming composite vectors in the
ensemble. The soil hydraulic properties (θs, θr, and Ksat) from
the SSURGO database were used to introduce uncertainty in the
ensemble. The van-Genuchten shape parameters (α, and n) for the
soil textural classes given by Carsel and Parrish (1988) were used
with ±20% uncertainty. The purpose of including uncertain soil
properties in the ensemble is to address the assumption that it
simulates model errors and subpixel variability present within a
PSR/CX footprint.

For best computational efficiency, one hundred members
(composite vectors) were populated in the ensemble. The soil
moisture in the discretized soil profile was assigned an initial
value of 50% relative saturation according to the soil texture on
the onset of model simulation. A Gaussian noise of 20% to 5%
of the initial soil moisture (in decreasing order from top to
bottom of the soil profile) was introduced in all the ensemble
members with an assumption of decreasing variability in soil
moisture with increasing depth. The SWAP model was run a
month ahead of the SMEX04 campaign (August 2nd, 2004
through August 27th, 2004), to tune the state of initial soil
moisture profile. PSR/CX-measured surface soil moisture was
assimilated with the SWAP model predictions (across the
3.86 m of soil layer) through the ensemble square root filter
(EnSRF) updating scheme described below. At each time step,
final states were determined by averaging the ensemble of the
one hundred replicated predictions made by the model.

2.3. Ensemble Square Root Filter (EnSRF)

An enduring problem in many hydrologic situations is to
forecast the state of a system given a set of observations and a
hydrologic model. While the use of deterministic models has
significantly addressed this problem, it now appears that much
more promising solutions lie with probabilistic forecasting and
data assimilation. In hydrology, the ensemble Kalman filters
(EnKF: Evensen, 2003; Houtekamer & Mitchell, 1998) based
on the Monte-Carlo approach are generally used (e.g., Crosson
et al., 2002; Crow & Wood, 2003; Das & Mohanty, 2006;
Dunne & Entekhabi, 2005; Margulis et al., 2002; Reichle et al.,
2002). Use of the Kalman filter system implicitly assumes that
the observations are related to the true state xt through

y ¼ Hxt þ e ð10Þ
where ε is a Gaussian random error vector with a mean of zero
and measurement error covariance R, and H is the operator that
maps the model variable space to the observation space. Fur-
thermore, the forecast of xt is Gaussian with mean xt=k

f and
error covariance Pt=k

f . Using these assumptions, the estimated
state of the profile soil moisture and error covariance is updated
as

xat¼k ¼ xft¼k þ Kðy� Hxft¼kÞ and ð11Þ

Pa
t¼k ¼ ðI � KHÞPf

t¼k : ð12Þ

Here, the superscripts f and a represent the respective prior
(forecast) and posterior (analysis/updated) estimates, the sub-
script t represents time, y is the observation vector, I is the
identity matrix, and K is the Kalman gain matrix defined as:

K ¼ Pf
t¼kH

T ðHPf
t¼kH

T þ RÞ�1 ð13Þ

The EnKF forecast and analysis error covariance comes directly
from an ensemble of model simulations as:

PfHT ¼ ðNe � 1Þ�1
XNe

n¼1

ðxfn � x̄ f ÞðHxfn � H x̄ f ÞT ð14Þ

Ne is the number of ensemble members, and the subscript n
represents each individual ensemble member. The overbar
represents the ensemble mean, which is sampled as

x̄ f ¼ N�1
e

XNe

n¼1

xfn ð15Þ

The ensemble is generated by perturbing a first-guess value so
that ensemble mean is equal to the first-guess value. The
variance is specified based on the uncertainty in the first-guess.
In this system, ensemble members are integrated independently
and updated in accordance with the Kalman filter methods when
new observations become available.

An alternate version of the EnKF approach is required in our
study to ensure that the analysis error covariance does not
become unrealistically low. Burgers et al. (1998) demonstrated
that Pa is underestimated by a factor of I−KH when ob-
servations are not treated as random variables. This can cause
the EnKF to reject observations in favor of the ensemble
forecast. This leads the analysis incrementally further away
from reality, resulting in filter divergence (e.g., Burgers et al.
1998; Houtekamer & Mitchell 1998; Mitchell & Houtekamer
2000; Whitaker & Hamill 2002). Whitaker and Hamill (2002)
showed that adding random noise to observations further
skews the distribution of Pa, and this results in a more erroneous
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analysis even though the covariance is increased. They
suggested an alternative ensemble square root filter (EnSRF)
where the ensemble mean is still updated by Eq. (11), but
deviations from the mean are updated by

x Vat¼k ¼ x Vft¼k þ K VðHx Vft¼kÞ ð16Þ

where

K V¼ aK ð17Þ
and

a ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
HPH þ R

r
ð18Þ

Using this method, the analysis error covariance is
guaranteed to be exactly equal to that in Eq. (11), and perturbed
observations are no longer necessary (y′=0). This scalar version
of EnKF for the assimilation of a single observation at a time
was implemented in this study.

3. Results and discussion

3.1. Modeling and verification

The model run for the period of SMEX04 resulted in soil
moisture estimation up to a profile depth of 3.86 m in all 224
pixels of the WGEW. Fig. 7 illustrates the evolution of average
(from pixel ensemble) soil moisture fields at the depths of 0.05,
0.20, 1.00, and 3.50 m for August 8th, 2004 (Day of Year, DOY,
221). To evaluate the model performance, model outputs were
compared with soil moisture observations from the SCAN and
Fig. 7. Walnut Gulch Experimental Watershed (WGEW) model (with assimilation)
1.00 m, and 3.50 m at resolution of 800 m×800 m.
Hydra sites (RG46 and RG82) at WGEW (highlighted in
Fig. 1). The modeled footprint-scale profile soil moisture at a
particular depth was compared with the corresponding local
(point-scale) profile soil moisture data measured at these three
sites. It is suggested that the ensemble variability of soil
moisture within a pixel (800 m×800 m) reflects the variability
at the subpixel/point scale at the respective depth. The evolution
of profile soil moisture states at corresponding footprint-scale
and local/point-scale were greatly influenced by the soil layers,
antecedent moisture conditions, soil hydraulic properties, and
precipitation (Fig. 8). Table 1 shows the layer depth (z),
saturated hydraulic conductivity (Ksat), residual water content
(θr), saturated water content (θs), and soil texture for various soil
layers (from SSURGO database) up to 3.86 m depth at the
SCAN and Hydra sites representing typical conditions of the
WGEW. The following discussion elaborates the comparisons
of modeled and observed profile soil moisture values at these
three sites.

3.1.1. SCAN site
The SCAN site is a semiarid shrubland located at an altitude of

1362 m above the sea level. The SCAN site is typical of WGEW
with very gravelly sandy soil texture and high saturated hydraulic
conductivity (Table 1). The site has 5 distinct soil layers up to the
depth of 3.86 m. The top 4 layers at the site have similar Ksat, but
dissimilar θr and θs due to different degrees of compaction. The
SCAN site observations at the depths of 0.05, 0.10, 0.20, 0.50 and
1.00 m are plotted in Fig. 9a–e. Model prediction with PSR/CX-
based data assimilation and open-loop (model prediction without
data assimilation) are also plotted in these figures. The subpixel
variability in the PSR/CX-assimilated prediction is shown as ±1
standard deviation (SD) in the plots. FromFig. 9a, it is clear that at
simulated soil moisture for Day of Year (DOY) 219 at depth 0.05 m, 0.20 m,



Fig. 8. Precipitation in mm observed in three sites (SCAN, RG46 and RG82).
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0.05 m depth, SCAN observations and PSR/CX observations
disagree for the initial study period. During the initial dry days
(DOY: 214-220) the model predictions (with and without data
assimilation) were close to θr (0.039 based on SSURGO),
whereas SCAN observations are much below this value and were
beyond the ±1 SD. One explanation for such low SCAN
observations is the presence of rock and gravel fraction in the top
0.13 m of soil depth. High rock and gravel fraction influence the
soil hydraulic characteristics making them highly nonlinear with
very high saturated hydraulic conductivity, which drains the soil
rapidly. The other reason for the discrepancy between the SCAN
point-scale (observation) and PSR pixel-scale (modeled) soil
moisture is that the SCAN site received scanty rainfall during
SMEX04 (Fig. 8). In dry conditions the model was constrained
due to the lower limit set by θr (from SSURGO dataset). Thus, on
DOY 219, assimilating PSR/CX observations made the model
prediction deviate further away from the SCAN observations
(Fig. 9a). During the rest of the SMEX04 experiment (DOY: 222
Table 1
Saturated hydraulic conductivity, water content (residual and saturated), and soil text
Experimental Watershed (WGEW)

Site Soil layers depth (m) Ksat (m/day)

Top Bottom Min. Avg.

SCAN 0 0.127 1.20 2.41
0.127 0.83 1.20 2.41
0.83 2.00 1.20 2.41
2.00 251.46 1.20 2.41
2.51 3.86 0.34 0.77

RG46 (Hydra) 0 0.07 1.20 2.41
0.07 0.45 0.12 0..23
0.45 2.51 0..03 0.17
2.51 3.86 0.12 0.23

RG82 (Hydra) 0 0.12 1.20 2.41
0.12 2.26 0.12 0.23
2.26 3.86 1.20 2.41
to 244), with the increase in soil moisture at 0.05 m depth, the
model prediction trend matches reasonably well with the SCAN
observations. At the depths of 0.10, 0.20, and 0.50 m (Fig. 9b–d)
the SCAN observations are close to ±1 SD of the model
predictions with data assimilation using PSR-based data. The
deepest SCAN site observations at 1.00 m depth show a uniform
state of soil moisture and the trend matches with both the models
(assimilated and open-loop), and are also contained completely
within ±1 SD of assimilated model predictions. Most SCAN
observations lie within ±1 SD of the assimilated model
predictions. This provides some evidence that the spatial
variability is well represented by the model ensemble for the
particular pixel. The open-loop model also performed somewhat
similar to the assimilated model at the deeper depths (Fig. 9b–e),
demonstrating the dominant effect of soil texture in the evolution
of soil moisture distribution at the deeper depths, irrespective of
the model. Fig. 9a–e also show that the propagation of EnSRF
Kalman gain through the land surface model reaches deeper with
ure of various soil layers at the SCAN site and the Hydra sites of Walnut Gulch

Water content (%) Soil texture description

Max. Residual Saturated

3.62 3.9 25 Very gravelly sandy loam
3.62 5.7 33 Gravelly sandy loam
3.62 6.6 40 Sandy loam
3.62 5.5 33 Gravelly sandy loam
1.20 6.1 37 Gravelly loam
3.62 8 41 Fine sandy loam
0.34 17.5 44 Sandy clay loam
0.34 20 49 Clay loam
0.34 12.2 45 Sandy clay loam
3.62 7.1 33 Gravelly fine sandy loam
0.34 13.8 36 Gravelly sandy clay loam
3.62 7.8 39 Sandy loam



Fig. 9. Comparison of SCAN soil moisture observations with model (with assimilation) simulated soil moisture at depth of (a) 0.05 m, (b) 0.10 m, (c) 0.20 m,
(d) 0.50 m, and (e) 1.00 m of Walnut Gulch Experimental Watershed (WGEW).
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diminishing effect when the soil layers are nearly similar. In other
words, the results from this site show the benefits of providing
better soil layer (textural heterogeneity) information as open loop
simulation performs reasonably well. At 0.10 m depth, soil
moisture values were constrained due to residual water content of
the soil layer. Data assimilation could not improve over open-loop
and they are almost similar. Whereas, at 0.20 m depth, soil
moisture values are slightly more than the residual water content
and data assimilation adjusts the soil moisture and deviate it
further from SCAN observations. This effect exhibits another
good example of having very gravelly sandy soil and how it
influences the soil moisture observations and data assimilation. It
is quite apparent from Fig. 9d–e, that data assimilation did
improve the prediction over open-loop.

3.1.2. Hydra Site (RG46)
This rain-gauge site (RG46) is situated in a shrubland at an

altitude of 1442 m above the sea level. Fig. 8 shows the amount
of precipitation received at this site during the SMEX04
experiment. Hydra soil moisture sensors are installed at 0.13,
0.38, and 0.76 m depths at this site. The top two sensors are in
the second soil layer (Table 1: sandy clay loam), and the sensor
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at 0.76 m is in the third soil layer (Table 1: clay loam). The states
of soil moisture at these depths (Fig. 10a–c) were predomi-
nantly influenced by the clay loam (CL) texture of the layers
(Table 1). The PSR/CX-based surface soil moisture observa-
tions for the pixel at this site are very low, ranging from 2 to 3%
by volume, which is much below θr for the surface soil used in
the modeling. Very low remotely sensed surface soil moisture
for the pixel could be attributed to rock fraction on the surface.
The effect of PSR/CX data assimilation is clearly visible at the
depth of 0.13 m (Fig. 10a). However, the effect of data
assimilation diminishes at the deeper depths of 0.38 and 0.76 m
(Fig. 10b–c). It is also important to note that starting the model
for a month before SMEX04 primed the initial conditions in
both the assimilated and open-loop models quite close to the
Hydra measurements. For the entire SMEX04 duration, the
Hydra measurements for this site were within the bounds of ±1
SD of the assimilated model predictions.

3.1.3. Hydra Site (RG82)
The RG82 site is at 1518 m above the sea level and located in

a shrubland. The site received small amount of precipitation
during the SMEX04 period (Fig. 8). As for the other sites, the
PSR/CX measurements for this site were influenced by the
gravelly sandy loam texture at the soil surface. As illustrated in
Fig. 11a PSR/CX measurements are very low (much below θr of
Fig. 10. Comparison of Vitel (RG46) soil moisture observations with model (with
(c) 0.76 m of Walnut Gulch Experimental Watershed (WGEW).
soil surface from SSURGO) which was due to overall rock
fraction on the soil surface in the pixel. Of the three soil layers
considered in modeling this site, the middle layer contained clay
(Table 1) that impeded water movement. All the three Hydra
soil moisture sensors at the depths 0.13, 0.38, and 0.76 m are
installed in the middle soil layer (gravelly sandy clay loam).
Fig. 11a–c show very small fluctuations in soil moisture as a
result of high retention by the clay content. In the time stability
study, Vachaud et al. (1985) described the relation between soil
water content and soil texture and demonstrated that locations
with the high clay content remain most wet at all times. The
assimilated and open-loop models performed equally well in
describing the soil moisture trend. Comparisons of Hydra
measurements with assimilated and open-loop models show a
good agreement at all the three depths and the match improved
with depth. At this site the Hydra observations were completely
contained within ±1 SD of the assimilated model predictions.

3.2. Spatio-temporal variability of soil moisture in WGEW

From the results presented above for the three test sites, it is
evident that the assimilated model ensembles for a particular
pixel reasonably describe the variability present at the
respective depths. The averages from these ensembles for 224
different pixels are used to characterize the soil moisture states
assimilation) simulated soil moisture at depth of (a) 0.13 m, (b) 0.38 m, and



Fig. 11. Comparison of Vitel (RG82) soil moisture observations with model (with assimilation) simulated soil moisture at depth of (a) 0.13 m, (b) 0.38 m, and
(c) 0.76 m of Walnut Gulch Experimental Watershed (WGEW).
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at various depths across the WGEW (Fig. 12). Western et al.
(2002) showed that the normal distribution fits best for spatial
representation of soil moisture. A kernel smoothing technique
(Silverman, 1981) was used to compute the normal probability
density of soil moisture at the depths of 0.01, 0.05, 0.10, 0.20,
0.50, 0.75, 1.00, 1.50, and 3.50 m at the WGEW scale. At each
depth 31 (daily) realizations of probability density (Fig. 12)
from DOY 214 to 244 (August 1st to August 31st 2004) are
presented using 22400 (224 footprints×100 ensembles) soil
moisture estimates.

Fig. 12a–i reveal the transition of soil moisture probability
densities and describe the temporal variability across the soil
profiles in the WGEW. For most of the days between DOY 214
to 244, unimodality in soil moisture probability density was
observed in the top 0.05 m depth (Fig. 12a–b). Variation in
magnitude of the peak densities for 31 days is apparent at the
depth of 0.01 m (Fig. 12a). We suggest that the change in the
mean and variance of the daily soil moisture probability
densities at the 0.01 m depth (Fig. 12a) is due to the highly
variable (localized) convective summer precipitation patterns
across the WGEW. However, at 0.05 m depth, the variation in
soil moisture probability density peaks is less pronounced as
compared to the probability density at the 0.01 m depth.
Western et al. (2002) found that the bounded normal probability
densities of soil moisture become skewed and less variable as
the means approach the lower bound i.e., residual water
content. In our study, as the Gaussian kernel estimates at
shallow depths (0.01 and 0.05 m, Fig. 12a–b) approach the
lower boundary, probability densities become positively
skewed with small spread/variation. This behavior is also
consistent with the findings of Famiglietti et al. (1999). It is
noteworthy that during the SMEX04 period no shift was
observed from positively skewed (dry: near lower bounds) to
moderate (midrange of wetness) or negatively skewed (wet:
near upper bounds) probability densities at 0.01 m and 0.05 m
depths. This limited variation in soil moisture skewness
indicates an absence of uniform rainfall events over the whole
watershed domain as illustrated in Fig. 5. Further, positively
skewed narrow densities with little or no variation were
attributed to a very conductive (sandy texture) top soil layer
and little precipitation at WEGW.

With increasing depth (0.10 m to 3.50 m), realizations with
multi-modal kernel density estimates were observed (Fig. 12c–i).
Mixture of distinct Gaussian probability density functions (PDFs)
was apparent in these multimodal densities. The persistence of
these distinct Gaussian PDFs in the multimodal densities was
observed at specific soil moisture values. Little difference inmean
and variance was observed in the distinct Gaussian PDFs across
theDOYs (Fig. 12c–i). Also,multimodality of probability density
was much more pronounced for the deeper depths than near the



Fig. 12. Walnut Gulch Experimental Watershed (WGEW) soil moisture densities at depth of (a) 0.01 m, (b) 0.05 m, (c) 0.10 m, (d) 0.20 m, (e) 0.50 m, (f) 0.75 m,
(g) 1.00 m, (h) 1.50 m, and (i) 3.50 m at resolution of 800 m×800 m.

Table 2
Spatial clusters (SC) of soil moisture and hydraulic parameters across WGEWat
specified depths

Soil profile
depth in m

Soil
moisture
SC

Saturated hydraulic
conductivity
(Ksat) SC

Residual
water content
(θr) SC

Saturated
water content
(θs) SC

0.01 1 4 14 11
0.05 2 4 14 13
0.10 3 7 12 14
0.20 3 8 13 11
0.50 3 9 14 13
0.75 3 9 10 12
1.00 8 10 12 12
1.50 9 10 11 11
3.50 12 10 10 10
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soil surface (Fig. 12). A spike in probability distribution was
detected at the depth 1.50 m (Fig. 12h). A logical explanation for
this spike is internal drainage or redistribution. During redistri-
bution, relatively deeper layer (at 1.50m) draw soil moisture from
the upper layers. It is apparent from Fig. 12e–g, that nominal
spikeswere also present forDOY214-225 at the depths of 0.50m,
0.75 m, and 1.00 m. The time-varying rate of redistribution
depends not only on the hydraulic properties of the conducting
soil but also on the initial soil moisture status (wetting front depth
and the relative dryness of the deeper layers). When the initial
wetting front depth is small and the underlying soil is relatively
dry, the hydraulic gradient augmenting the gravitational gradient
are likely to be strong and hence induce a rapid rate of
redistribution.

To understand the spatial variability of soil moisture across
the WGEW, kmean clustering (Jain & Dubes, 1988) was
conducted on 22400 (224 footprints×100 ensembles) soil
moisture estimates at the depths of 0.01, 0.05, 0.10, 0.20, 0.50,
0.75, 1.00, 1.50, and 3.50 m for all 31 days of SMEX04. Table 2
shows the number of spatial clusters of soil moisture at specified
depths in WGEW. Table 2 also provide spatial clustering of
texture related soil hydraulic properties i.e., saturated hydraulic
conductivity (Ksat), residual water content (θr), and saturated
water content (θs) across the WGEW. Number of clusters of θr
and θs are nearly similar at all the specified depths, whereas in
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case of Ksat the number of spatial clusters increases with the
depth. The smaller number of Ksat spatial clusters (4 clusters for
0.05 m depth) corroborate with the presence of large
percentages of rock and gravel fraction on the soil surface.
Based on the groupings of saturated hydraulic conductivity and
soil moisture spatial clusters, three distinct depth-dependent
zones (i) 0–0.05 m, (ii) 0.05–0.75 m, and (iii) below 0.75 m can
be identified in the soil profile. The number of clusters in the
spatial distributions of soil moisture for the depths of 0.01 m,
0.05 m, and 0.75 m were somewhat matching to the modality in
the respective probability distributions in Fig. 12. Also note that
a sudden increase in the number of soil moisture spatial clusters
was observed below 1.00 m depth. The numbers of spatial
clusters found at these deeper depths were close to the number
of soil textures encountered at these specific depths. Based on
these findings we suggest that soil texture takes control of soil
moisture evolution and spatial distribution with increasing
depth and with lesser influence from forcings and feedbacks at
the land–atmosphere boundary. At the depths between 0.05 and
1.00 m, plant roots play a major role in describing the status of
soil moisture. In our SWAP model simulations the maximum
rooting depth was prescribed to be 1.00 m. Plant root water
uptake is largely controlled by soil water status and spatial
(horizontal–vertical) variability of soil moisture. Root-soil
interaction tends to equalize soil water content in the root
zone. The tendency of homogenization of soil moisture at these
depths resulted in three spatial clusters which could be
attributed to root dynamics of various vegetation types present
in the WGEW. The phenomenon of homogenizing soil moisture
in the root zone also reduces soil water flux variability.

Based on the above results it is clear that a coarse spatial
resolution of 800 m×800 m and daily time scale for model
simulations influence the evolution of profile soil moisture and
other hydrologic responses in WGEW during SMEX04.
Furthermore, because of the scanty and scattered nature of
rainfall within WGEW during the SMEX04 period and highly
conductive nature of the top soil layer, no significant surface
runoff and runon were observed at a coarse resolution of
800 m×800 m. The topographic control on spatial distribution
of soil moisture was not apparent due to sustained dry period.
This finding agrees with those of Chang and Islam (2003),
where they demonstrated that soil physical properties and
topography control spatial variations of soil moisture over large
areas. They have shown that topographical control dictates soil
moisture distribution under wet conditions, and soil physical
properties control variations of soil moisture under drier
conditions. Based on these arguments and our results we
suggest that at the remote sensing pixel scale the effect of
topography and patchy rainfall on the spatio-temporal distribu-
tion of soil moisture at the soil surface and deeper depths was
not found to be as significant as that of soil texture in the
WGEW during SMEX04.

4. Summary and conclusion

The distribution, behavior, and evolution of soil moisture at
various depths in the Walnut Gulch Experimental Watershed,
Arizona, during SMEX04 were studied. Aircraft based remotely
sensed surface soil moisture for the WGEW was assimilated
using EnSRF to model root zone soil moisture up to a depth of
3.86 m. The modeled root zone soil moisture was evaluated
with in situ measurements from several Hydra and SCAN sites.
The comparison shows significant benefits of providing better
soil layer/property information, and the propagation of EnSRF
Kalman gain through the land surface model SWAP. Reasonable
agreement was observed for the shallow depths (0–0.50 m).
Most of the measurements at these depths were within ±1
standard deviation of the modeled soil moisture. The models
with assimilation and without assimilation (open-loop) per-
formed equally well at deeper depths using soil layer
information from the SSURGO database. The results also
demonstrated the impact of data assimilation of PSR/CX-based
surface soil moisture measurements reaching deeper layers
having similar hydraulic properties. In case of the presence of
deeper soil layers (with different hydraulic properties from the
surface soil layer) the propagation of information during data
assimilation from the soil surface to deeper layers was found to
be ineffective. The ensembles from the PSR/CX-assimilated
model output were used for characterizing the probability
densities of soil moisture at several depths. The soil moisture
probability densities revealed the temporal evolution across the
soil profile in the WGEW. Unimodality in soil moisture
densities was observed for the top 0.05 m of soil, whereas
multimodality was observed for the deeper soil layers for all
31 days of SMEX04. Multimodality in probability density
became more pronounced with depth across the soil profile.
Almost no appreciable temporal variation in soil moisture
probability densities were observed at any depth between 0.01
and 3.50 m. An increase in the number of soil moisture spatial
clusters with depth was found and could be related to the
number of soil textures encountered at the deeper depths (below
1.00 m). An increase in soil moisture spatial clusters suggests
that soil texture took control of space-time evolution with
increasing depth, while the impact of land–atmosphere
interaction diminished. With a coarser resolution of
800 m×800 m and a temporal resolution of one day, the effect
of existing conditions of geophysical factors (e.g., topography,
rainfall) on the distribution of soil moisture at deeper depths
were found to be less significant in the WGEW during
SMEX04.

Further investigation is warranted involving different data
assimilation schemes and how they affect the evolution of root
zone soil moisture with the use of single layer as opposed to
multilayer soil information in different hydroclimatic condi-
tions. Besides, we need to develop an improved modeling/
assimilation framework to accommodate higher spatial and
temporal resolutions to study diurnal variations in precipitation
and other meteorological forcings (e.g., air temperature, wind
speed) which may be present at the study site.
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