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Abstract

In this study, we examined the characteristics of soil moisture dynamics of wet and dry fields across hierarchical spatial scales within the region
of Soil Moisture Experiment 2002 (SMEX02) hydrology campaign in Iowa. The Polarimetric Scanning Radiometer (PSR)-based remotely sensed
surface (∼0–5 cm) soil moisture at 800 m×800 m resolution was used in this study. Wavelet-based multiresolution technique decomposed the soil
moisture into large-scale mean soil moisture fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial
resolutions. Results suggested linearity in the log–log dependency of the variance of soil moisture up to a resolution of 6400 m×6400 m on PSR
sampling dates during SMEX02. The wet fields (with high soil moisture) show almost similar variance for all the resolutions signifying the strong
spatial correlation. Analysis of the dry fields (with low soil moisture) indicated a log–log linearity of moments with various scales, and the slopes
of these relationships exhibit a concave functional form with the order of moments, typically representing a multiscaling process. The scaling
exponent of soil moisture during dry-down suggests a transition from simple scaling (in wet fields) to multiscaling (in dry fields) behavior. The
fluctuation components of multiresolution analysis in the horizontal, diagonal, and vertical directions for dry and wet fields exhibited self-
similarity. Another important finding of this study is the increase of subpixel soil moisture variability with increasing resolution, especially for the
wet fields. These findings will help develop appropriate up-and down-scaling schemes of remotely sensed soil moisture data for various
hydrologic and environmental modeling applications.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Soil moisture in shallow subsurface is a key state variable
that affects hydrological, ecological, and meteorological
processes ranging from local land–atmosphere interaction to
global water cycle. Soil moisture is highly variable across space
scales of few meters to kilometers and time scales of minutes to
months. Significant amount of in situ and remote sensing
research have been conducted to observe and characterize soil
moisture at various spatio-temporal scales (Charpentier &
Groffman, 1992; Cosh & Brutsaert, 1999; Famiglietti et al.,
1999; Hu et al., 1997; Mohanty & Skaggs, 2001; Oldak et al.,
2002). Soil moisture pattern (distribution) at a particular spatio-
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temporal scale evolves from interactions among different
geophysical parameters, i.e., soil, topography, rainfall, and
vegetation (Dubayah et al., 1997; Western et al., 2002). Despite
the fact that soil moisture always exhibits spatio-temporal
variability due to overlapping (governing) geophysical para-
meters, our knowledge of scaling characteristics of soil moisture
variation is rather limited. In literature, a number of contra-
dictions appear about the influence of these geophysical
parameters on soil moisture variability.

With respect to soil and its properties, it always exhibits
significant spatial variability that characterizes soil moisture
transport processes. Soil was conceptualized as a hierarchical
heterogeneous medium with discrete spatial scale by Cushman
(1990), and Roth et al. (1999). They argued natural pattern of
soil variability may exhibit embedded, organizational structures
that lead to non-stationary soil properties and processes. With an
increase of spatial scale, soil properties typically become non-
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stationary. The soil properties may change from deterministic at
smaller scale to random at larger scale, with the small scale
variation filtered out by larger scale processes (Kavvas, 1999).
Rodriguez-Iturbe et al. (1995) also suggested that the spatial
organization of soil moisture is a consequence of soil properties.
Tomer et al. (2006) found significant correlation between soil
properties and soil moisture at watershed scale. Temporal
stability in soil moisture patterns can be associated with the
arrangement soil types and textures on the landscape scale (da
Silva et al., 2001). Also, soil texture is related to topographical
attributes such as surface curvature, slope, and elevation. These
attributes define the functional organization of soil hydrological
processes, and in turn soil moisture variability.

Studies (Famiglietti et al., 1998; Hawley et al., 1983) have
shown topographical characteristics have control on spatial
variation of soil moisture. Topographic attributes reflecting lateral
flows and accumulations at the landscape scale have been
statistically related to soil moisture (Tomer and Anderson, 1995)
and water retention characteristics (Pachepsky et al., 2001).
Western and Blöschl (1999) found the proportion of variation in
soil moisture accounted by terrain indices varied from 22 to 61%,
depending on average soil moisture. However, Charpentier and
Groffman (1992), Niemann and Edgell (1993), and Western et al.
(2003) reported no systematic relationship between topography
and soil moisture. Chang and Islam (2003) demonstrated that soil
physical properties and topography control spatial variations of
soil moisture over large areas. They have shown, topographical
control will dictate soil moisture distribution under wet condi-
tions, and soil physical properties control variations of soil
moisture under relatively dry conditions. Numerous studies (e.g.,
Henninger et al., 1976; Nyberg, 1996; Robinson & Dean, 1993)
have reported negative correlations between soil moisture and
topographical attributes i.e., elevation and slope.. This correlation
is smaller for finer texture soil and larger for coarser texture soil.
The spatio-temporal controls of soil properties and topography on
variability of soil moisture are induced by precipitation event and
its characteristics (i.e., amount, rate, and spatial variability).
Because of the extreme complexity in the inherent relationships
among precipitation, soil moisture, and land–atmosphere feed-
back, relations of soil moisture to subsequent precipitation events
are also significant.

The state and evolution of soil moisture are primarily forced
by precipitation which is the major source of space and time
variability in the hydrologic cycle. Past studies (Gupta &
Waymire, 1990; Kumar & Foufoula-Georgiou, 1993a,b;
Waymire et al., 1984) investigated the space–time rainfall
characteristics at the ground level and have suggested multi-
scaling properties. It is conceivable that this attribute of
precipitation in conjunction with other geophysical variables
may introduce complicated scaling properties in soil moisture
depending on spatial scales. At spatial scales of 100 m to
kilometers, soil moisture variability could be found due to
spatial variability in precipitation events. Sellers et al. (1995)
presented spatial heterogeneity introduced by rainfall and
removed through dry-down dynamics. At much larger scales,
generally variations in precipitation leads to substantial changes
in soil moisture conditions between climate regions.
Vegetation also influences soil moisture spatio-temporal
variability. Among others, Mohanty et al. (2000) and Qui et al.
(2001) have shown that soil moisture responds to variation in
vegetation. The primary effect of vegetation is evapotranspira-
tion from the soil profile. During transpiration, vegetation root
water uptake is largely controlled by soil moisture status and its
spatial (horizontal–vertical) variability. Root and soil interac-
tion tends to homogenize soil water content in the root zone.
Infiltration properties of soil are influenced by vegetation at the
plant scale (Seyfried & Wilcox, 1995). With the increase in
spatial scale, soil moisture variability is affected by variation in
vegetation shifts from plant to patch to the community scale.

All these geophysical variables (soil, topography, rainfall,
and vegetation) typically interact in a complex fashion to make
soil moisture highly variable and introduce nonlinearity in soil
moisture dependent processes. Thus, scaling of soil moisture is
poorly understood and is difficult to measure and model in a
comprehensive manner (Dubayah et al., 1997).

Several studies were conducted to understand the spatio-
temporal scale dynamics of soil moisture. Rodriguez-Iturbe
et al. (1995) studied and characterized the spatial pattern of soil
moisture, and concluded that the variance of soil moisture
follows a power law decay, typical of scaling processes, as a
function of area over which soil moisture is observed. It results
in a linear relation between variance and observation scale,
when plotted on a log scale. Hu et al. (1998) used multi-
resolution analysis to investigate the scale variation of soil
moisture by decomposing soil moisture images into average
large-scale and detailed small-scale fluctuation components.
They found that average large-scale soil moisture was non-
stationary at the scale studied (30 m to 10 km) and the small-
scale fluctuations exhibited simple scaling process, while the
overall soil moisture variability exhibited multiscaling proper-
ties. Kumar (1999) used estimation techniques based on multi-
resolution tree to characterize the subgrid variability of soil
moisture at multiple scales by combining information, such as
soil moisture measurements and soil hydrologic properties
available at different scales. Western and Blöschl (1999)
examined the effect on the apparent spatial statistical properties
of soil moisture (variance and correlation length) with changing
measurement scale in terms of spacing (distance between
samples), extent (overall coverage), and support (integration
area). They found the effect of spatial extent on the correlation
length is most important among the three (extent, support, and
spacing). The apparent variance increases with increasing
extent, decreases with increasing support, and does not change
with spacing. Cosh and Brutsaert (1999) showed that grouping
soil by textural class was useful to characterize the soil moisture
field and their dynamics into groups with different statistical
properties. Famiglietti et al. (1999) used ground-based point-
scale soil moisture measurements during SGP97 campaign
within six selected Electronically Scanned Thinned Array
Radiometer (ESTAR) footprints to investigate within-pixel
variability of soil moisture data. They found significant
variability in soil moisture because of different combinations
of soil type, vegetation cover, management practice, and rainfall
gradient. Mohanty and Skaggs (2001) also used ground-based



Fig. 1. Location of SMEX02 experiment and IOWA regional study area
(Bindlish et al., 2005).
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datasets of SGP97 to show the characteristic differences in the
space-time dynamics of soil moisture within several remote
sensing footprints with various combinations of soil texture,
slope and vegetation type. They found that flat topography with
split wheat/grassland produced the greatest spatio-temporal
variability and also showed that ESTAR footprint average
matches well with ground-based soil moisture in sandy loam
soil with rolling topography and pasture cover.

Another investigation of the spatial structure of soil moisture
for Washita'92 and Washita'94 was presented by Peters-Lidard
et al. (2001). They conducted scaling analysis of both measured
and modeled soil moisture pattern and found multiscaling
properties. Nykanen and Foufoula-Georgiou (2001) studied
scaling properties of soil moisture and reported that their results
disagreed with the results of Rodriguez-Iturbe et al. (1995) and
Hu et al. (1997) who reported log–log linear relationships of the
variance of soil moisture with scale. Recently, Oldak et al.
(2002) studied the statistical properties of remotely sensed soil
moisture field of Washita '92 and SGP97 experiment. They
showed that the shape of scaling dependencies remains the same
during drydowns, consequently reducing the volume of
observations needed to predict scaling of surface soil moisture.
Brunsell and Gillies (2003) conducted multiresolution analysis
on radiometric temperature data of AVHRR (Advanced Very
High Resolution Radiometer) and reported that at very large
scales, statistical self-similarity was observed through all levels
of aggregation. Studies at larger scales (50–1000 km) (Entin
et al., 2000; Vinnikov & Robock, 1996) from agricultural sites
in the former Soviet Union, Mongolia, China, and the USA
have reported the soil moisture variation could be represented as
a stationary field with a correlation length of 400–800 km.

To study spatial scaling of surface soil moisture, remote
sensing offers products over large spatial extent. For soil
moisture spatial scaling, high resolution data is preferable to
capture the soil moisture dynamics with increasing scale. Air-
borne passive microwave remote sensing offers techniques to
estimate soil moisture in top 5 cm of the soil surface over a large
area with good spatial resolution (Jackson 1993). The
operational constraint of airborne passive microwave remote
sensing is non-availability of large spatial soil moisture fields on
regular basis. Lately space-borne sensors have the capability to
map soil moisture in large areas at regular intervals. In the
foreseeable future, no space-borne passive microwave remote
sensing platform will have ground spatial resolution finer than
40 km (Crow et al., 2005). Within such a coarse resolution
(N40 km), great degree of soil moisture variability is observed
over a large range of spatial scales encompassing various soil
types, topographic features, vegetation and meteorological
conditions. Air-borne remote sensing campaigns such as
Southern Great Plains 1997 (SGP97) hydrology experiment
(Jackson et al., 1999), Soil Moisture Experiment 2002,
SMEX02 (Bindlish et al., 2005), SMEX03 (Jackson et al.,
2005), SMEX04, and SMEX05, provide opportunity to study
the spatial scaling of soil moisture in variety of hydro-climatic
conditions, within the coarse footprint resolution of space-borne
passive microwave remote sensing as Advanced Microwave
Scanning Radiometer (AMSR-E) sensor on the AQUA satellite.
In the continental United States of America, most of the soil
moisture scaling studies at field/regional scale were conducted
in the Oklahoma region (Washita'92, Washita'94, and SGP97)
of the Southern Great Plain. The conclusions from these studies
were based on evolution of soil moisture in a sub-humid climate
having rolling topography with land cover dominated by
rangeland, pasture and winter wheat. So, there is a definite gap
in our understanding of soil moisture scale dynamics for
different hydroclimatic conditions/regions. In this study, we
mainly focused on the landscape of Iowa with row crop (corn
and soybean) agriculture. Our primary objective is to investigate
soil moisture scaling characteristics within wet and dry fields of
a large agricultural landscape. The investigation will provide a
basis for up-/down-scaling of soil moisture fields using high/
low resolution data from wet and dry agricultural landscapes of
Iowa and similar hydroclimatic regions for hydrologic and
environmental modeling applications. Air-borne Polarimetric
Scanning Radiometer (PSR)-based remotely sensed surface soil
moisture fields during SMEX02 hydrology campaign in Iowa
was used for the study.

Previous studies (e.g., Hu et al., 1998) have shown natural
pattern of soil moisture field leads to nonstationary spatial
fields. This nonstationary trend of natural variability present in



525N.N. Das, B.P. Mohanty / Remote Sensing of Environment 112 (2008) 522–534
PSR-based remotely sensed surface soil moisture may be
determined from geostatistical analysis, and by wavelet
analysis. Scale-dependent nonstationary processes exhibit
statistical properties that are different than what is usually
assumed in geostatistical analysis. On the other hand in wavelet
analysis the property need not meet any statistical assumptions
other than that of finite variance. For this study, we selected
wavelet analysis over geostatistical techniques, due to its
distinct advantage and capability to process remotely sensed
two-dimensional scale-dependent nonstationary spatial dataset.
Wavelet based multiresolution analysis, described below, was
used to relate soil moisture variability at the scale of the PSR
footprint (800 m×800 m) to larger scale average soil moisture
field variability. We also investigated the scaling characteristics
of fluctuation fields among various resolutions.

2. Materials and methods

2.1. Site description

The regional study area of SMEX02 in Iowa is shown in
Fig. 1 (Bindlish et al., 2005). The details of the SMEX02
experimental plan can be found at URL http://hydroloab.
arsusda.gov/SMEX02. The duration of the study was from June
6th to July 12th, 2002. Nearly 95% of the regional study area is
used for row crop agriculture. Corn and soybean are grown on
approximately 90% of the row crop acreage (nearly 60% of the
crop is corn and 40% is soybean). The climate of SMEX02
regional site is humid, with an average rainfall of 835 mm. The
regional site is considered as the pothole region of Iowa because
of its undulating terrain. The PSR (Polarimetric Scanning
Radiometer) observations were conducted from June 25th to
July 12th, 2002. The PSR is an airborne microwave imaging
radiometer operated by NOAA Environmental Technology
Laboratory (Piepmeier & Gasiewski, 2001). The complete
functional operation (flight lines and mapping specifications) of
PSR is given in Bindlish et al. (2005). The PSR during
Fig. 2. PSR (C-band single channel) based soil moisture
SMEX02 used various frequencies (6 GHz, 6.5 GHz, 6.92 GHz,
7.32 GHz, 10.64 GHz, 10.69 GHz, 10.70 GHz, 10.75 GHz, and
Thermal) for passive microwave remote sensing. Bindlish et al.
(2005) closely examined the effects of RFI (Radio Frequency
Interference) and reported that the 7.32 GHz and 10.7 GHz
bands were far superior to the other frequencies. So the soil
moisture fields of SMEX02 regions were created using these
two PSR/CX band channels (7.32 GHz and 10.7 GHz). PSR-
based soil moisture estimates (resolution: 800 m×800 m, size:
153×74 pixels) observed for 10 days over the regional area
during SMEX02 is illustrated in Fig. 2. They also concluded
that despite the peak crop conditions (biomass ∼8 kg/m2)
encountered during the SMEX02 experiment, good results were
obtained using the full soil moisture retrieval algorithm. As
illustrated in Fig. 2, there are some null values at the bottom
portion of the soil moisture fields. For this study the null values
were dropped from the study region by trimming the daily PSR-
based soil moisture fields resulting in a net area of 125×74 pix-
els (59.2×108 m2) for multiresolution analysis.

Extensive ground based soil moisture sampling were also
conducted within selected (approximately 800 m×800 m) fields
of Walnut Creek watershed. Several fields (WC11, WC12,
WC13,WC15,WC17, andWC24) ofWalnut Creek watershed in
the SMEX02 region were selected randomly to assess uncertainty
within the PSR-based remote sensing pixels. During the SMEX02
experiment, 42 theta probemeasurements at 14 different locations
and 4 gravimetric soil moisture samples coinciding with 4 theta
probe sampling locations were taken daily in every field. The
theta probe observations with a measuring depth of 0–6 cm were
calibrated using the gravimetric observations. The average of the
calibrated theta probe measurements were used as the field
average soil moisture values.

2.2.Multiresolution analysis of PSR estimated soil moisture fields

In remote sensing, spatial scale (resolution) is defined as the
size of the smallest distinguishable part (pixel) of a spatial
estimates over the regional area during SMEX02.

http://hydroloab.arsusda.gov/SMEX02
http://hydroloab.arsusda.gov/SMEX02
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dataset (Lam & Quattrochi, 1992). Spatial dataset at different
scales may carry different information. Each level of spatial
scales has its own unique properties that are not the simple
summation of the disaggregated part (Golley, 1989). Wavelet
analysis, a relatively new tool in geophysics (Kumar &
Foufoula-Georgiou, 1997) has the capability to decompose
the nonstationary spatial dataset of high resolution into
nonstationary fields of increasing spatial scales. Wavelet (and
corresponding scaling function) is the basic function to
decompose a spatial data into directional vectors/components
described by wavelet coefficients. In this study, PSR-based soil
moisture field is decomposed into wavelet coefficients, and
these coefficients are specific to spatial scales and locations.
The wavelet coefficient D derived from the decomposition
corresponds to a wavelet function ψ of scale m and a particular
position of the PSR dataset. Analysis of these coefficients can
therefore give insight into scale specific variability of soil
moisture. Reconstituting data from subsets of wavelet coeffi-
cients specific to different spatial scales allows us to generate
representations of soil moisture fields at different spatial
resolution, and so called multiresolution analysis (Mallat,
1989). In this study a discrete wavelet transform (DWT) was
used to decompose the PSR-based soil moisture fields of
SMEX02 into an equally large set of scaling and wavelet
coefficients. A brief description of DWT follows.

For the sake of brevity and clarity the theory is presented in
one dimension (x). Let the PSR data be defined as a function of
location in space f(x). A mother wavelet is also defined as a
function of location ψ(x). The mother wavelet function should
meet three properties: the mean is zero, i.e.,

Rl
�l wðxÞdx ¼ 0,

the squared norm is 1, i.e., ∫|ψ(x)|2dx=1, and it has a compact
support. The third condition means that the wavelet only takes
non-zero value over a narrow interval. This attribute makes the
wavelet dampen rapidly, hence, operate very locally and
consequently giving a localized description of f(x) variability.
In order to analyze, it is essential to shift (translate) the wavelet
in space. The scale at which a wavelet coefficient describes f(x)
may be changed by dilating (shrinking/expanding) the wavelet
function, ψ(x). For a basic wavelet function, ψ(u), a dilated and
translated version ψλ,x(u) may be obtained with the following
equation:

wk;xðuÞ ¼
1ffiffiffi
k

p w
ubx
k

D E
; kN0; xaR ð1Þ

where λ is the scale parameter of the wavelet which adjusts the
dilation, R denotes the set of real number. The parameter x
determines the location of the wavelet. The wavelet transform is
an integral transform, i.e., a wavelet coefficient Wf(λ,u) is
obtained by integrating the product of a wavelet, ψ(u), with the
data, f(x).

Wf ðk; uÞ ¼
Z l

�l
f ðxÞwk;xðuÞdx ð2Þ

where, u is the location parameter.
In this study the Haar wavelet (Haar, 1910) is used to
conserve the amount of information within multiresolution
analysis. The Haar wavelet was preferred over other wavelets
because of its ability to detect rapid change in the data (Mahrt,
1991). The Haar wavelet ψ(x) and scaling φ(x) function is the
simplest of all orthogonal (orthonormal) wavelets (Kumar &
Foufoula-Georgiou, 1997) and is given as:

wk;xðxÞ ¼ j 1 0V xb1=2
�1 1=2V xb1
0 otherwise

ð3Þ

uk;xðxÞ ¼ j 1 0V xb1
0 otherwise

ð4Þ

In discrete wavelet transform (DWT), e.g., usingHaar wavelet,
the parameter λ can be varied discretely by setting λ to integer
powers,m of basic dilation step λ0, where λN1. For Haar wavelet,
λ0=2, so the scale parameter increases in the dyadic series
λ0
m=2,4,8,. The location is incremented in steps which depend on

the scale parameter so that x=nx0λ0
m, where n is an integer and x0

is a basic step (commonly one interval between samples in PSR
data). So a discretely scaled and translated wavelet is

wm;nðxÞ ¼
1ffiffiffiffiffiffi
2m

p wð2�mðx� n2mÞ ð5Þ

The DWT coefficient is Dm,n, where:

Dm;n ¼
Z

f ðxÞwm;nðxÞdx ð6Þ

The PSR data, f(x), can be represented by a linear combination of
the product of wavelets ψm,n(x) and wavelet coefficient Dm,n, i.e.:

f ðxÞ ¼
Xl

m¼�l

Xl
n¼�l

Dm;nwm;nðxÞ ð7Þ

The wavelet basic functions,ψm,n(x), are orthogonal to their
dilates and translates. So, when evaluating the sum of products
of the wavelets and their coefficients over all locations but for
just one value of the scale parameter, 2k, we obtain an additive
component of the discretely sampled data. This is called detail
component for scale parameter 2k, Qkf(x), where:

Qkf ðxÞ ¼
Xl

n¼�l

Dk;nwk;nðxÞ ð8Þ

When PSR data, f(x), is subjected to extraction of detail
component for a finite level of scales parameter 2m, m=0,1,..,k.
Beside the detail component, it also resulted in a smoothed
representation of the PSR data for scale 2k, denoted by Akf(x).
The smoothed representation is described as:

Akf ðxÞ ¼
X

hf ;uk;niuk;nðxÞ ð9Þ

where, φk,n(x) is a scaled and translated basis function called the
scaling function. The scaling function resembles a smoothing
kernel of the corresponding wavelet function.



527N.N. Das, B.P. Mohanty / Remote Sensing of Environment 112 (2008) 522–534
The derivation above elaborates how PSR-based soil moisture
data could be partitioned into a set of detail directional com-
ponents and a mean/smoothed representation using wavelet
functions and its corresponding scaling functions. This decom-
position is called a multiresolution analysis. So, the multi-
resolution analysis results in an approximate signal at scale k
(smoothed field of coarsest resolution), and detail signals
(components) at all other levels of decomposition. The additional
advantage using Haar wavelet and scaling function within the
multiresolution analysis is that the product at each scale level m
is a smoothed resemblance of the original data. With the Haar
wavelet and scaling function, the smoothed PSR-based soil
moisture data for each scale level m would be the same as when
the region is observed from the same type of sensor but at a
resolution equal to scale level m. Therefore, the Haar wavelet is
suitable to quantify the loss of information (detail components)
within the dataset while decomposing to a coarser resolution. For
two dimensional cases, based on work of Mallat (1989), the
multiresolution analysis is given by:

Am�1 f ðx; yÞ ¼ Am f ðx; yÞ þ Qh
m f ðx; yÞ þ Qd

m f ðx; yÞ þ Qv
m f ðx; yÞ

ð10Þ
where, h, d and v resembles horizontal, diagonal and vertical
detail components of PSR data, respectively.

Applying the above algorithm of multiresolution analysis the
PSR based soil moisture field of July 10th 2002 (SMEX02) at the
original resolution (800 m×800 m) (Fig. 3a (level m=1)) was
decomposed into four fields for the resolution of 1600 m×1600 m
as illustrated in Fig. 3b. This includes the mean/smoothed field A1
Fig. 3. Haar wavelet decomposition of a PSR based soil moisture field. (a)
Represents original soil moisture field A (800 m×800 m) on June 25th 2002. (b)
Average field A1 (1600 m×1600 m) (top left quadrant) and three fluctuation
fields Q1

h (1600 m×1600 m) (horizontal component: top right quadrant), Q1
d

(1600 m×1600 m) (diagonal component: bottom right quadrant), and Q1
v

(1600 m×1600 m) (vertical component: bottom left quadrant).
(top left quadrant) corresponding to the scale function and three
fluctuation fields Q1

h (horizontal component: top right quadrant),
Q1
d (diagonal component: bottom right quadrant), and Q1

v (vertical
component: bottom left quadrant). Similarly the smoothed field A1
presented in Fig. 3b could be decomposed further (levelm=2) into
four fields (A2,Q2

h, Q2
d, andQ2

v) of resolution 3200 m×3200 m. In
this study, 10 PSR-based soil moisture fields for SMEX02 were
decomposed till levelm=5 (resolution: 25,600×25,600 m) using
the multiresolution analysis. At each level of decomposition, the
smoothed field (A) becomes more homogenous and the aniso-
tropy is captured in the fluctuation components (Q). The
horizontal, diagonal and vertical wavelet coefficients measure
the intensity of the local variation within the pixel of the soil
moisture field when decomposing for a particular scale. The value
of the coefficient is zero when no variation (local signal is
constant) is observed within the aggregated pixel for the scale
under consideration. The value of the coefficient is large when the
magnitude of the wavelet is near to the scale of heterogeneity in
the soil moisture field. Thus, the variance of the wavelet
coefficients gives information about subpixel variability for the
spatial scales in remote sensing data (Percival, 1995). The
variance is defined as:

r2k ¼
1
N

X
Q2 ð11Þ

where σk
2 is the variance of the PSR dataset at scale k and N is

total number of the wavelet coefficientsQ in a particular direction
(i.e., horizontal, diagonal, or vertical).

2.3. Scaling surface soil moisture

Scaling is a procedure to reduce amulti-dimensional parameter
space into one-dimensional parameter space by taking advantage
of the relationship between the parameter of interest and
observable properties (e.g., characteristic length, area, volume,
time). As defined by Blöschl and Sivapalan (1995) and Western
et al. (2002), scaling assumes that the properties themselves
change, while the dependence of parameter on observable proper-
ties is same over the range of scales. Soil moisture by virtue of its
spatio-temporal variability due to dominant geophysical controls
at different scales is subjected to certain characteristic scaling
behavior. For soil moisture scaling study, wavelet analysis
(described in the previous section) was used to decompose PSR-
based high resolution soil moisture spatial datasets into
nonstationary fields of increasing spatial scales to obtain soil
moisture at different resolutions/scales.

Following (Gupta & Waymire, 1990), let [Z(x)] represent an
arbitrary stochastic soil moisture field of a spatial dataset indexed
by vector x∈Rd, where Rd is d dimensional space. Then [Z(x)] is
statistically self-similar for any arbitrary set of points, x1, x2, x3, ..,
xn, the equality holds in the joint probability distribution of [Z(x)]:

P½Zðax1Þbz1; N ; ZðaxnÞbzn�
¼ P½ahhZðx1Þbz1; N ; ahhZðxnÞbzn� ð12Þ

where α is the scale ratio and hθ is a real scaling exponent. In this
study, for the soil moisture field the scale factor á=Ai/A0, whereAi



528 N.N. Das, B.P. Mohanty / Remote Sensing of Environment 112 (2008) 522–534
is any pixel obtained from smoothing of the original (remote
sensor) pixel and A0 is the coarsest pixel size after multiresolution
analysis. For simple scaling there is only one scaling exponent hθ
and the process is said to be “fractal” or “mono-fractal”. Here [Z
(x)], the stochastic soil moisture field of multi-dimensional space
is represented with one-dimension through a scaling exponent hθ.
The expectedmoment of stochastic field can then be related to this
single value as a function of scale:

E½ZPðaÞ� ¼ aphhE½ZPð1Þ� ð13Þ
where p is the order of the moment, and taking the log of Eq. (13),

log mpðaÞ ¼ sðpÞlog aþ log mpð1Þ ð14Þ

where mp(α)=E[Z
p(α)] and s(p)=phθ. For a simple scaling

process, the log–log linearity in logmp(α) versus log α for each p
and, linearity of the slope s(p) change for each pmust be satisfied.
When the equality shown in Eq. (12) does not hold, then it is not
possible to transform the stochastic soil moisture field [Z(x)] from
multi-dimensional space into a one-dimensional space through
one scaling exponent hθ. Consequently, we need to have different
scaling exponents (hθ) for different scales. In other words, s(p) is
a nonlinear function of p, and the soil moisture evolutionary
process has multiscaling properties.

One more type of scaling typically found in soil moisture
stochastic fields is the power law scaling of variance of soil
moisture contents (Rodriguez-Iturbe et al., 1995). Power laws
are among the most frequent scaling methods that describe the
scale invariance found in soil moisture phenomena. The
variance of soil moisture follows a power law decay as a
function of the measurement support area where the spatial
correlation remains unchanged with the scale of observation.

VarL ¼ ðaÞhVara ð15Þ
where VarL is the variance at the smoothed level from
multiresolution analysis, Vara is the variance in the original
soil moisture field, á is the scale-factor defined as before, and h
is the slope. The exponent of the power law is found to be an
index for the spatial correlation structure of the soil moisture
field. An exponent of −1 refers to an iid (spatially independent
identical distribution) process, while an exponent of 0 indicates
a spatially (fully) correlated structure. Power laws can be seen
as a straight line on a log–log graph since, taking logs of both
sides, the above equation becomes

logðVarLÞ ¼ hlogðaÞ þ logðVaraÞ ð16Þ
which has the same form as the equation for a line. The linear
decay of soil moisture variance, log(VarL) with increasing
support log(á) shows spatial correlation. Similar power law
scaling was also found for soil properties in previous studies
(Mattikalli et al., 1998; Rodriguez-Iturbe et al., 1995).

In this study, self-similarity analysis is used to evaluate the
dependence of within-pixel variance on spatial resolution. The
wavelet decomposition of PSR-based soil moisture fields
resulted in within-pixel variance in the form of horizontal,
vertical and diagonal wavelet coefficients. Self-similarity
among wavelet coefficients is evaluated using scaling analysis
mentioned in Eqs. (12)–(14).

3. Results and discussions

In this study soil moisture evolutionary process was
observed at the base scale of 800 m×800 m from the PSR
instrument, and the subsequent coarse scale images were
derived by wavlet decomposition technique. PSR-based soil
moisture fields observed for 10 days during SMEX02 (Fig. 2))
were decomposed using multiresolution analysis up to m=5.
With Haar wavelet decomposition (λ0=2), the scale parameter
increases in the dyadic series (λ0

m=2,4,8,…). With every level
of decomposition the spatial extent increases by 4 times.
Therefore, the decomposition resulted in 5 coarser resolution
fields (1600 m×1600 m, 3200 m×3200 m, 6400 m×6400 m,
12,800 m×12,800 m, and 25,600 m×25,600 m) of smoothed
soil moisture fields from the base resolution of 800 m×800 m.
Further decomposition beyond level m=5 (i.e., resolution
25600 m×25,600 m) was not carried out due to restriction
imposed by the area of the SMEX02 experimental region. The
decomposition also resulted in 3 fluctuation fields for detail
components (horizontal, diagonal, and vertical) for each level
of decomposition at 5 coarser resolutions. Five scale factors
(log(á)= log(Ai / A0):−5.3,−3.9,−2.6,−1.2, 0) corresponding
to decomposed resolutions were calculated with A0 as the
coarsest resolution (25600 m×25600 m).

3.1. Statistical characteristics of soil moisture during SMEX02

The volumetric soil moisture probability distribution func-
tion (pdf) is bounded between wilting point and porosity.
Theoretically, this pdf cannot be normal, although normal
distribution appears to be the best two-parameter distribution for
bounded nature of spatial soil moisture (Western & Blöschl,
1999). Therefore, mean and variance were evaluated for the
smoothed soil moisture fields at all scales of multiresolution
analysis. The mean of soil moisture fields at various resolutions
was plotted against log of scale factors in Fig. 4. Three groups
are clearly visible in the plot (Fig. 4), the upper one is of wet
fields (July 10th, July 11th, and July 12th during SMEX02), the
intermediate one is of fields during drydown (July 1st, July 4th,
July 8th, and July 9th during SMEX02) and the lower group is
of dry fields (June 25th, June 27th and June 29th during
SMEX02). The variance for soil moisture fields was plotted
against scale factors on a log–log plot in Fig. 5. Like Fig. 4,
similar three groups are clearly visible in the Fig. 5, with one
exception of July 4th, 2002 which shows high soil moisture
variance due to scattered precipitation in SMEX02 region. It is
quite apparent from Figs. 4 and 5 that wet fields have high
variability and dry fields have low variability. The variability at
any given scale factor becomes smaller as the drydown
progresses (Fig. 5). Minimal change in variability was observed
for wet fields with increase in spatial resolution. However, in
case of dry fields the variance drops off rapidly with increasing
spatial resolution. The discussion of Sellers et al. (1995) about



Fig. 6. Linear fit for moment of order four versus scale-factors on a log–log plot
for average soil moisture fields of June 27th (slope s(p)=−0.54, and R2=0.85)
and July 11th 2002 (slope s(p)=−0.17, and R2=0.9).

Fig. 4. Mean of soil moisture against log of scale-factors.
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high spatial heterogeneity introduced by rainfall and removed
through dry-down dynamics was also found applicable here at
all scale factors. A noticeable feature in the study (Fig. 5) was a
very low variance at scale factor 0 (25,600 m×25,600 m) in the
driest field (June 27th), which indicates an almost uniform soil
moisture field. In Fig. 4, as the slope remains almost constant
for the dry fields, the temporal decrease in variability is mostly
related to the decrease in intercepts.

Linearity in the log–log dependency of the variance on scale
factors (Eq. (15)) can be observed in Fig. 5. Trends lines shown
in Fig. 5 exhibit spatial correlation found during wet and dry
days. Power law decay of the variance of soil moisture was
observed as the spatial resolution degraded. More precisely, the
linearity was observed up to a scale factor of −2.6
(6400 m×6400 m) for all the PSR-based soil moisture fields
considered during SMEX02. The linearity up to a scale factor of
−2.6 shows spatial correlation irrespective of the wetness (i.e.,
wet or dry fields). There is a noticeable break in trend lines for
dry days at a scale factor of −2.6 (6400 m×6400 m). However,
Fig. 5. Dependencies of the variance of soil moisture against scale-factors in a
log–log plot. Trend lines are shown up to −2.6 scale-factors (6400×6400 m2).
complete trend lines with small slope for wet days represent
strong spatial correlation of soil moisture for all the scale
factors. Rodriguez-Iturbe et al. (1995) reported similar type of
scaling up to 1000 m×1000 m for the Washita '92 experimental
data. Hu et al. (1997) in their work found the linearity till
32,000 m×32,000 m for the same dataset (Washita '92). Oldak
et al. (2002) demonstrated that for ESTAR dataset during
SGP97 the linearity was observed up to 7800 m×7800 m. This
result was different from the findings of Rodriguez-Iturbe et al.
(1995) for Washita '92. They found that the slope decreases as
drydown proceeds. However, for the same study region, Hu
et al. (1997) found increase in slope as the soil moisture
drydown continued. In our study, the slope remained almost
constant, and the difference may be explained by the terrain and
landuse in SMEX02 region.

3.2. Scaling analysis of soil moisture fields

Based on Eqs. (13) and (14), scaling analysis was
conducted for all the PSR-based soil moisture fields of
SMEX02. Moments were calculated until eighth order for
each scale factor of all the soil moisture fields. Fig. 6 only
illustrates log–log dependency of 4th moment of June 27th
(dry field) and July 11th 2002 (wet field) plotted against scale
factors. Similarly, 2nd to 8th moments were also plotted (not
shown) against scale factors in a log–log plot for all the soil
moisture fields. The slope in Eq. (14) was estimated by linear
regression for moment order p (2nd to 8th moment) with high
R2. Linearity in s(p) was observed up to scale factor of −2.6
(6400 m×6400 m) for all sampling days of SMEX02, as for
the variance (results not shown here). It was also observed that
the slope s(p) became smaller for higher order moments. In
Fig. 7, slopes of June 27th (dry field) and July 11th (wet field)
were plotted against moment order p. To exhibit simple
scaling process during the wet days, linearity of the change in
slope for each moment order p must be satisfied (Gupta &
Waymire, 1990). The linearity of slope change shows no



Fig. 8. Second moments of 20 realizations from soil moisture fields of June 27th,
and July 11th 2002 (SMEX02).
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change in the soil moisture variability with increasing scale. A
straight line was plotted based on slope of second and third
orders of moments in Fig. 7. For June 27th (dry field) a non-
constant rate of change of slope (non-linear, downward open
concave function) with respect to moment order indicates that
soil moisture does not obey a simple scaling law, therefore it
represents a multiscaling process. The concavity of s(p) is an
indicator of increasing variability with decreasing scale.
Multiscaling property was observed for all the dry fields
(days) of SMEX02. Gupta and Waymire (1990) found the
slope in the range of −5 to 0 for their rainfall analysis, which is
much higher in absolute value than the slope we found in the
present study. On the contrary, Wood (1994) found an upward
concave functional relationship between the slope and the
order of moment for the scaling properties of soil moisture
fields simulated from the coupled water-energy model. Hu
et al. (1998) and Oldak et al. (2002) demonstrated similar
multiscaling behavior for the dry fields of Washita '92 and
SGP97 Experiments, respectively. Another important finding
of scaling characteristics of this study was simple scaling for
all the wet fields during SMEX02. Thus, with simple scaling
for the wet fields, if the slope is known, then given the
observed pixel area and the moments at this resolution, the
moments at any other resolution can be inferred. As illustrated
in Fig. 7, the scaling exponent during drydown suggests a
transition and evolution of soil moisture fields from simple
scaling (during wet days) to multiscaling (during dry days)
characteristics. This study supports the conclusion of Dubayah
et al. (1997), Hu et al. (1998), and Oldak et al. (2002) who
claimed that the multiscaling (mutifractal) is an appropriate
statistical model for soil moisture spatial distribution during
the drydown.

The aforementioned results of this study were observed
without considering the subpixel variability and uncertainties
(errors in sensor measurements) present within sensor footprints.
The passive microwave remote sensing signature gives average
value of the observed variable with unknown variance from a
Fig. 7. Deviation and conformance to simple scaling in the change of slopes with
respect to order of moments for soil moisture fields of June 27th and July 11th
2002 (SMEX02), respectively.
heterogeneous volume within the footprint (Njoku & Entekhabi,
1996). The average value of the observed variable in passive
microwave footprint is sensitive to three parameters i.e., soil
moisture, soil temperature, and vegetation water content (Njoku
et al., 2003). These three parameters are influenced by various
geo-physical variables including soil properties, precipitation,
DEM, radiation, and vegetation. At C-/X-band frequencies (i.e.,
6.6 GHz or higher; PSR frequencies) the sensitivity to soil
moisture becomes very low when vegetation water content
exceeds about 1.5 kg/m2. Furthermore, the C-/X-band also
shares bandwidth with communication services and consequent-
ly get radio frequency interference (RFI) contamination.

To incorporate the sub-pixel variability and uncertainty in
PSR-based remote sensing measurements, few fields (WC11,
WC12, WC13, WC15, WC17, and WC24 of Walnut Creek
watershed in SMEX02 region) were selected to assess
variability present during dry and wet conditions. Based on
ground-based point measurements, it was found that these fields
exhibited a standard deviation of ±20% of volumetric soil
moisture (VSM) and ±10% of VSM for dry and wet fields,
respectively. The subgrid variability and uncertainty in the
remote sensing footprints were accounted as Gaussian white
noise in the study. An arbitrary cut-off point of 0.25 VSM was
used to introduce white noise of ±20% for the footprints having
soil moisture below 0.25 VSM, and ±10% for the footprints
with soil moisture above 0.25 VSM. Twenty realizations were
obtained from each PSR-based soil moisture estimate over the
regional area during SMEX02. Similar scaling analyses were
conducted on each realization.

Fig. 8 shows the scale-factor versus second moments on a
log–log scale for each realization of June 27th (dry field) and
July 11th 2002 (wet field). It is apparent that the range of second
moments at particular scale factor for dry fields (June 27th)
converges with increasing scale. This attribute was observed
even after introducing greater uncertainty (±20% white noise)
in dry fields. The study verifies that for dry fields, as support
increases, the variability decreases due to the effects of
averaging and disappearance of small scale features.



Fig. 9. Deviation and conformance to simple scaling in the change of slopes with
respect to order of moments for soil moisture fields for 20 realizations of June
27th and July 11th 2002 (SMEX02), respectively.

Fig. 10. Variance versus scale factor in log–log plot for fluctuation fields
(horizontal direction) on June 27th and July 11th 2002 (SMEX02).
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Multiscaling trends were also observed for all the dry fields, when
20 realizations were fitted (Fig. 9). The twenty realizations of wet
fields exhibit contrasting features from dry fields. This analysis
shows that the scaling properties of dry and wet soil moisture
fields remain the same even after introduction of uncertainty.

Using satellite-based remote sensors, the surface soil
moisture status of large regions can be monitored. They provide
spatially continuous information that is typically limited to the
upper centimeters of the soil. Most applications are found at the
catchment and regional scale, with a specific emphasis on
characterizing soil moisture variability (e.g., Famiglietti et al.,
1999; Jackson & LeVine, 1996; Schmugge et al., 2002). For
such application, the simple scaling and multiscaling results of
wet and dry fields, respectively, from this study is effective for
upscaling (aggregation) and downscaling (disaggregation) of
soil moisture in agricultural landscapes of Iowa and similar
hydro-climatic regions. The upscaled–downscaled soil mois-
Table 1
Results of regression: slope s(p), coefficient of determination R2 for order of
moment versus scale-factors in horizontal, vertical and diagonal directions
(stationary fluctuation components) for PSR based soil moisture estimates of
SMEX02

SMEX02 Horizontal Diagonal Vertical

June 27th 2002
Order of Moment p Slope s(p) R2 Slope s(p) R2 Slope s(p) R2

2 −0.51 0.99 −0.96 0.98 −0.66 0.91
3 −0.81 0.96 −1.44 0.95 −0.99 0.91
4 −1.13 0.92 −1.95 0.94 −1.35 0.90
5 −1.47 0.86 −2.46 0.94 −1.73 0.87
6 −1.82 0.81 −2.99 0.91 −2.13 0.85

July 11th 2002
2 −0.36 0.96 −0.59 0.93 −0.41 0.92
3 −0.54 0.93 −0.90 0.93 −0.65 0.92
4 −0.73 0.89 −1.22 0.93 −0.91 0.86
5 −0.94 0.86 −1.54 0.93 −1.18 0.82
6 −1.16 0.83 −1.88 0.92 −1.48 0.79
ture may help assess scale-appropriate soil water processes in
hydrologic and environmental model applications.

3.3. Study of self similarity of PSR-based soil moisture

The fluctuation fields or detail components (horizontal,
diagonal and vertical wavelet coefficients) measure the intensity
of the local variation of soil moisture within the scale factor
(resolution). Variances (Eq. (11)) for horizontal, diagonal and
vertical wavelet coefficients were calculated for each level of
scale factor. Fig. 10 shows the variance of horizontal, diagonal,
vertical component against the log of scale factor for June 27th
(dry field) and July 11th (wet field) of SMEX02. Fig. 10
illustrates an interesting feature of subpixel variability present in
wet and dry fields at various scale-factors. A steady increase in
subpixel variability is observed up to the scale factor of −1.2
irrespective of wet or dry field. This characteristic may be
attributed to the landuse topography, and soil type of SMEX02
Fig. 11. Slope s(p) versus order of moment p plots for fluctuations fields on June
27th 2005 (SMEX02): (a) horizontal, (b) diagonal and (c) vertical directions.
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region. With increasing scale factor, more variability was
introduced in the soil moisture fields due to different row/
broadcast cropping patterns, rolling topography, and multiple
soil types. Another noticeable property was high subpixel
variability (high wavelet variance) for wet field when compared
to dry field at all scale factors. This phenomenon shows the
effect of local ridge/furrow features of row cropping and rolling
topographic control in wet fields. Usually, soil moisture tends to
accumulate in the depressions and dissipate at the ridges due to
overland and lateral flow. With drydown the control shifts to
soil type and vegetation type, making soil moisture field more
uniform.

To examine self-similar nature of PSR-based soil moisture
fields of SMEX02, the first six moments of wavelet
coefficients of fluctuation fields (horizontal, diagonal and
vertical components) for twenty realizations (from aforemen-
tioned uncertainty study) were calculated for each level of
decomposition (multiresolution analysis). Table 1 presents the
slope in (Eq. (14)) and R2 for the order of moment versus scale
factor in a log–log plot for all the fluctuation fields of June
27th (dry field) and July 11th (wet field) of SMEX02. Figs. 11
and 12 illustrate the rate of change of slope with respect to
moment order p for three fluctuation components of dry and
wet fields, respectively. The linearity with high R2 suggests
the presence of self similarity (stationarity). A constant rate of
change from the 2nd order moment indicates simple scaling in
all the three directions irrespective of dry or wet field. It is also
interesting to note that the similar behavior was observed by
Hu et al. (1998) in their study of fluctuation fields in Little
Washita watershed using the ESTAR data collected during
Washita '92, and by Brunsell and Gillies (2003) in AVHRR
data of July 2nd 1997 in the SGP97 region. This result is
important when characterizing PSR-based remotely sensed
soil moisture fields. Although dry fields show multiscaling
attributes, when appropriately decomposed the subgrid scale
characteristics of the soil moisture distribution may be
described by simple scaling.
Fig. 12. Slope s(p) versus order of moment p plots for fluctuations fields on July
11th 2005 (SMEX02): (a) horizontal, (b) diagonal and (c) vertical directions.
4. Conclusion

We have examined the spatial structure of PSR-based
remotely sensed soil moisture of wet and dry fields during the
SMEX02 field campaign in Iowa (with row crop agriculture of
corn and soybean) using Haar wavelet multiresolution analysis.
The multiresolution study was conducted on 5 distinct spatial
resolutions (scale-factors). Our study shows that soil moisture
follows power law scaling with increasing scale-factors attesting
similar findings by other researchers in previous field campaigns
at other locations using different remote sensing equipments.
The scaling exponent during drydown suggest a transition from
simple scaling (in wet fields) to multiscaling (in dry fields)
behavior. The fluctuation fields (horizontal, diagonal and
vertical wavelet coefficients) measuring the intensity of the
local variation of soil moisture within a particular resolution
showed simple scaling properties irrespective of wet or dry days.
A caveat of this study is the use of Haar wavelets for
decomposition aggregation with of soil moisture stochastic
fields. With Haar wavelet decomposition the scale parameter
increases in the dyadic series (2,4,8,..), resulting in increasing
the spatial extent by almost 4 times. The implication of such
decomposition may be crucial while determining the spatial
correlation of soil moisture fields with increasing scale,
especially in dry fields. Hence, there is a possibility of that the
spatial correlation may exceed the suggested resolution of
6400 m×6400 m.

The results contribute to the basic understanding of soil
moisture variability and its spatial scaling features which may
help develop scale-appropriate techniques to assess effective
soil parameters and upscaled soil water processes and use them
in ecological and climatological modeling in agricultural
landscapes. Currently, satellite-based passive microwave re-
mote sensing provides the most feasible way to measure soil
moisture in large regions with footprint size ranging tens of
kilometers. However, most of the hydrological/environmental
models operate at field or watershed scale with model grid size
ranging in meters. Therefore, the transition from simple scaling
(in wet fields) to multiscaling (in dry fields) behavior will help
guide the hydrology and land-surface modeling communities
towards developing better downscaling schemes of the remotely
sensed soil moisture, and parameterization of statistical
distributions of surface soil moisture and related hydrologic
processes at subpixel scale. The results of this work can help
improve the simulations of subpixel-scale hydrologic processes
and fluxes (e.g., infiltration, evapotranspiration, and surface
runoff) that are nonlinearly related to soil moisture in
agricultural landscapes of Iowa and similar other environments.
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