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Multiscale Pedotransfer Functions for Soil
Water Retention

Raghavendra B. Jana, Binayak P. Mohanty,* and Everett P. Springer

Parametric soil water retention and hydraulic conductivity functions are often used for predicting soil hydrologic behavior using
hydrologic, hydroclimatic, and contaminant transport models. The prediction accuracy of any such model is critically depen-
dent on the quality of the input parameters. Limited availability of (detailed) soil hydraulic data for large-scale hydroclimatic
models (with grids ranging from several kilometers to several hundred kilometers) is a major challenge. To address this need,
pedotransfer functions (PTFs) have been used to estimate the required soil hydraulic parameters from other available or easily
measurable soil properties. While most previous studies derive and adopt these parameters at matching spatial scales (1:1) of
input and output data, we have developed a methodology to derive soil water retention functions at the point or local scale using
the PTFs trained with coarser scale input data. This study was a novel application of an artificial neural network (ANN)-based
PTF scheme across two spatial support scales within the Rio Grande basin in New Mexico. The ANN was trained using soil
texture and bulk density data from the SSURGO database (scale 1:24,000) and then used for predicting soil water contents at
different pressure heads with point-scale data (1:1) inputs. The resulting outputs were corrected for bias before constructing
the soil water characteristic curve using the van Genuchten equation. A hierarchical approach with training data derived from
multiple clustered subwatersheds (with varying spatial extent) was used to study the effect of the increase in spatial extent. The
results show good agreement between the soil water retention curves constructed from the ANN-based PTFs and field obser-
vations at the local scale near Las Cruces, NM. The robustness of the multiscale PTF methodology was further tested with a
separate data set from the Little Washita watershed region in Oklahoma. Overall, ANN coupled with bias correction was found
to be a suitable approach for deriving soil hydraulic parameters at a finer scale from soil physical properties at coarser scales and
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across different spatial extents. The approach could potentially be used for downscaling soil hydraulic properties.

ABBREVIATIONS: ANN, artificial neural network; LW, Little Washita; PTE pedotransfer function.

Soil hydraulic properties are needed in global- and regional-
scale circulation models for hydrologic and climate forecast-
ing. They are also necessary in point- and nonpoint-source con-
taminant transport models. Prediction accuracy of these models
is highly dependent on the quality of the model parameters.
Collecting the required soil hydraulic parameters by direct mea-
surement at any model grid scale is expensive and time consum-
ing. Also, to capture the variability of these spatially distributed
parameters, a large number of samples needs to be collected. All
of these factors make it highly impractical to match direct mea-
surements of the soil hydraulic parameters to the invoked model
grids. For these reasons, pedotransfer functions (PTFs) have
been advocated to estimate the required soil hydraulic param-
eters from other available or more easily measurable soil data.

A large number of studies have been performed in the recent
past to develop such PTFs and test them against available soil prop-
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erties databases (e.g., Rawls et al., 1991; van Genuchten and Leij,
1992; Schaap et al., 1998; Pachepsky et al., 1999; Wosten et al.,
2001; Sharma et al., 2006). “Point regression” PTFs use empiri-
cally derived regression equations to predict the soil water content
at fixed soil water potentials (e.g., Rawls et al.., 1982; Ahuja et
al., 1985; Tomasella et al., 2000). On the other hand, “function
parameter” PTFs predict the parameters of the water retention
and hydraulic conductivity functions (e.g., Vereecken et al., 1989;
Schaap et al., 1998; Wosten et al., 2001), such as those given by
Brooks and Corey (1964), Campbell (1974), and van Genuchten
(1980). Both approaches have been widely utilized for various soil
databases. Arguably, function parameter PTFs were preferred to
point regression PTFs since they generate the complete function of
the relationship between the water content and the pressure head.
This made it easy to construct the entire soil water retention curve
useful for modeling studies. It was recently shown, however, that
point regression PTFs perform better than function parameter PTFs
(Tomasella et al., 2003). Since the relationship between soil physi-
cal properties and soil water retention parameters is rather compli-
cated, the variability in the retention parameters is controlled by
different subsets of soil physical properties at different ranges of soil
water pressure. Tomasella et al. (2003) suggested that the reason
for the relatively poor performance of function parameter PTFs is
due to their inability to accurately describe these complex physical
relationships at all pressure heads from wet to dry conditions.

Soil texture (sand, silt, and clay percentages) has been pop-
ularly used for predicting soil hydraulic properties. It has been
shown that the use of detailed particle-size distributions can
increase the accuracy of soil hydraulic parameter predictions
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(Schaap et al., 1998) compared with using soil textural class
alone as input (Clapp and Hornberger, 1978); however, detailed
particle size data are not easily available in all cases. The most
commonly used soil physical properties for PTF applications are
soil texture, organic C, and bulk density. Other parameters such
as topography and vegetation have rarely been used in developing
PTFs (Wosten et al., 2001). Recently, Pachepsky et al. (2001),
Leij et al. (2004), and Sharma et al. (2006) included certain avail-
able topographical and vegetation attributes, in addition to soil
physical parameters, for developing PTFs. While the inclusion of
more input parameters for the PTFs provided some improvement
in the performance of the transfer function models, the basic soil
properties had by far the most effect on the hydraulic properties
predictions. Increasing the number of model input parameters
also means increasing the complexity of the model, including
inherent uncertainties associated with the input data.

Most previous PTF studies have derived and adopted soil
hydraulic parameters at matching spatial scales of the input and
target data. The primary objective of this study was to develop
and test a methodology to derive soil water content values (at
saturation, 0, residual, 0, and field capacity, 6;) and the van
Genuchten soil water retention function at the point
or local (1:1) scale using artificial neural network
(ANN)-based PTFs trained with coarser (1:24,000)
scale SSURGO soil textural data. A secondary objec-
tive was to investigate improvements, if any, in the
performance of the ANN-based PTF scheme to pre-
dict soil water contents at the local or point scale by
including training data from larger spatial extents
(scales) in a hierarchical fashion within the Rio
Grande basin, New Mexico.

Materials and Methods
Study Area

The Rio Grande basin, from its headwaters in
southern Colorado to the New Mexico—Texas border, is
the focus of field and modeling studies by the National
Science Foundation’s Science and Technology Center
for Sustainability of Semi-Arid Hydrology and Riparian
Areas and Los Alamos National Laboratory (Winter et
al., 2004). This region, having an area of approximately
90,000 km? in New Mexico, was used for our case study
(Fig. 1). We used point-scale (1:1) soil physical and
hydraulic properties measured at the Las Cruces trench
site (Wierenga et al., 1989), situated within the Rio
Grande-Mimbres subwatershed region, for our data at
the local or point scale. We developed a multiscale soil
physical and hydraulic properties database by compil-
ing (i) the point-scale (1:1) data from the Las Cruces
trench site, and (ii) coarse-scale (1:24,000) SSURGO
soil survey data for the Rio Grande river basin from the
NRCS. The database was developed in Geodatabase
format, thus making the spatial data accessible through
the ESRI ArcMap software (ESRI, Redlands, CA). B

Point- or Local-Scale Soil Properties Data

The Las Cruces trench is located at New Mexico
State Ranch, roughly 65 km northeast of the city of Las
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Cruces (Fig. 1). The trench is 26.4 m long, 4.5 m wide, and 6 m
deep, and is situated in undisturbed soil. Using in situ and labo-
ratory methods, Wierenga et al. (1989) developed a comprehen-
sive database of fine-scale (1:1) soil properties using 594 disturbed
soil samples and 594 associated soil cores taken from nine distinct
soil layers identified along the north wall of the trench. Additional
samples were taken from three vertical transects along this wall. The
data set included saturated hydraulic conductivity, the soil water
retention function, particle size distribution, and the bulk density
of each layer. Besides Las Cruces trench site data, no other complete
soil properties data set was available for the Rio Grande river basin
at this scale (Jana et al., 2005), thus limiting our model test bed to
the Las Cruces location. For point- or local-scale testing of the hier-
archical PTFs developed using the coarse-scale soil properties across
clustered subwatersheds up to the Rio Grande river basin, we used
replicated values across the 26-m-long trench.

Coarse-Scale Soil Properties Data

The coarse-resolution (1:24,000) soil properties data were
derived from the Soil Survey Geographic (SSURGO) database
(Soil Survey Staff, 2007). SSURGO is the most detailed soil map-
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Fic. 1. Study area showing the Rio Grande Basin in New Mexico and location of the
city of Las Cruces (trench site).
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ping database compiled by the NRCS, containing georeferenced
spatial and attribute darta for soils. Since the database covers a
large areal extent, the soil property data in SSURGO are based on
soil type rather than the spatial location. The SSURGO database
was created by field methods, using observations along soil delin-
eation boundaries and traverses, and by determining map unit
composition using field transects. Aerial photographs were inter-
preted and used as the field map base, while multiple readings
were taken for each property within each map unit. The number
of readings differ between map units based on such factors as
size of the soil polygon, variations in topography, and changes in
vegetation, among others. Low, high, and representative values
for the observed readings were then entered into the database for
that particular soil type or map unit. The procedure is in line
with the specifications of the USDA-NRCS National Soil Survey
Handbook (Natural Resources Conservation Service, 2001).
Maps were made at scales ranging from 1:12,000 to 1:31,680
(www.il.nrcs.usda.gov/technical/soils/soilfact.heml  [verified 9
Oct. 2007]). In our study, we used representative values for all
parameters from the maps with a scale of 1:24,000. The initial
SSURGO data were measured at the point scale, but the values
reported in the database are averaged values. Although recent
studies (Zhu and Mohanty, 2002a,b; Mohanty and Zhu, 2007)
have indicated that appropriate (site-specific) upscaling schemes
are necessary for deriving effective soil parameters at larger scales,
averaging multiple sample values across soil map units to arrive
at the spatially representative parameter values for the 1:24,000
scale is a simple form of upscaling adopted by SSURGO. Hence,
the available SSURGO database arguably provides a generic form
of upscaled (coarse-resolution) values for the parameters.

The hydraulic parameters used from the SSURGO database
are the water content at satiation (0), the water content at a
pressure of 1.5 MPa (0 ), and the water content at 33.3 kPa ().
Retention measurements closest to 33.3 kPa at the Rio Grande
trench site were taken at =300 cm pressure. Hence, the water
content at that value was used for 05 while other water contents
are for the same pressure heads as those of SSURGO.
Furthermore, the values used from the SSURGO
database were for the topsoil layer (0-6 cm). To com-
pare similar data from the two scales (coarse and fine)

cific differences, and the availability of spatially distributed local-
or fine-scale soil hydraulic properties data, made the LW region
ideal for validating the multiscale PTF approach. Seventy point-
scale measurements at 3- to 9-cm depth were chosen across the
LW watershed to form the fine-scale (1:1) data. SSURGO data
from Caddo, Comanche, and Grady counties in Oklahoma were
used for the coarse-scale (1:24,000) data.

Artificial Neural Network—Linear Regression Based
Pedotransfer Function

In this study, the ANN analysis was performed using the
Neural Network Toolbox of MATLAB (The MathWorks, Natick,
MA). The networks were designed with one input layer, one hid-
den layer, and an output layer. Although ANN techniques have
been well established, for the sake of completeness, a brief descrip-
tion of the ANN approach adopted here is given below.

A neural network typically consists of an input layer, an out-
put layer, and one or more hidden layers linking these two. The
hidden layer extracts useful information from inputs and uses
them to predict the outputs. The ANN is schematically repre-
sented in Fig. 3. The input layer consists of four input param-
eters (soil physical properties). These are fed to the hidden layer,
consisting of four neurons. The inputs are multiplied by the
layer weights w and summed with the layer bias 4. This summa-
tion is then fed to the transfer function f. Outputs from the hid-
den-layer transfer functions are subjected to the same treatment
at the output layer. The output-layer transfer function produces
the required output, the soil water content.

Neurons may use any differentiable transfer function to
generate their output. The log-sigmoid (Log), tan-sigmoid
(Tan), and linear (Lin) transfer functions are the more popu-
larly used functions. These three functions are generally used
as they are mathematically convenient and allow the ANN to
model both strong and weakly nonlinear relationships. Because
of the complexity of soil hydraulic properties across scales, we
adopted all three (Log, Tan, and Lin) transfer functions in this
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at matching depths, only values from corresponding
layers were used from the Las Cruces trench site.

Validation Study Area
The Little Washita (W) watershed in Oklahoma

was selected for validation of the multiscale PTF
methodology. This watershed has been the focus of
a number of intensive field studies, including the
Southern Great Plains 1997 hydrology experiment
and the Soil Moisture Experiment 2002 campaign.
The SSURGO data for Oklahoma and the point-
scale soil property data from the LW watershed, col-
lected by Mohanty et al. (2002), were used together
in our validation study (Fig. 2). The LW region has
rolling topography with a variety of vegetative covers.
As such, the spatial distribution of point-scale data
across the LW watershed was in sharp contrast to the
local conditions (small spatial extent and limited soil

variety) of the Las Cruces trench site. These site-spe-  locations.

0
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Fic. 2. Validation study area in Oklahoma and Little Washita (LW) watershed data
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The SSURGO data pool available for the Rio Grande—
Mimbres subwatershed containing the Las Cruces trench
site consisted of 6685 sets of values. Each data set consisted
of the training inputs (sand, silt, and clay content and oven-

dry bulk density) and the corresponding target outputs (6,

0,, and Op). One thousand random sets of data values were
.0

selected for the ANN training from this data pool by means

% Sand Por po f
Ll)n
% Silt > i
5 z
bl]l.ll
% Clay > f b
%3
Bulk Density o > f
44
%u
Input Hidden Output
Layer Layer Layer

Fic. 3. Artificial neural network model: w represents the layer weights, b the bias,
fis the transfer function, and 6 is the output (water content). After Demuth et al.

(2005).

study to evaluate their performance in estimating nonlinear soil
water retention functions. The algorithms for the three transfer
functions used here are (Demuth et al., 2005)

1
og = logsig(n) == g (1]
Tan = tansig(n) = 2 (2]
1+ exp(—2n)
Lin = purelin(z) = » (3]

A “feed-forward backpropagation” type neural network has been
used previously to develop PTFs (Pachepsky et al., 1996; Schaap
etal., 1998; Sharma et al., 2006). A feed-forward network is one
in which the flow of data through the network is in one direction
only. Backpropagation refers to the process of feeding the output
of a neuron back to itself so that it may learn. The backpropaga-
tion network learns by examples in small steps. A set of inputs
and corresponding outputs are given to the network to train it
in recognizing the desired results. By adjusting the weights itera-
tively, the network is trained for each input—output combination
until the overall error decreases below a predetermined value.

Using SSURGO data, we trained the ANNs for estimat-
ing soil water contents at different pressure heads (0, 0,, and
0p). The variable learning rate algorithm “traingdx” was used
for backpropagation training of the ANNGs. This algorithm is
faster and more reliable than traditional “train” and “traingd”
algorithms in that it ensures stability of learning. Early stopping,
a technique to prevent overfitting of the data, was also enabled.
When early stopping is enabled, the ANN monitors the error on
the validation data set. If the ANN overfits the data, validation
errors rise. When the validation error increases for a specified
number of iterations, the training is terminated and the weights
and biases at the minimum of the validation error are returned.
In our study, we specified 5% (500 iterations) as the limit for rise
in validation error.

of a bootstrapping process that was terminated once the
required number (1000) of values had been reached. While
any random selection algorithm could be used to extract the
training data from this large data pool, we used bootstrap-
ping since our methodology was designed in part for appli-
cations where such a large data pool may not be available
(e.g., remotely sensed data). Conducting several replicated
model runs, we observed that further increase in the size of
the training data set (>1000 and within the available data
pool) did not provide any further improvement in the train-
ing. Moreover, by keeping a low ratio of selected to avail-
able data sets, we ensured randomness of the bootstrapped
selections. Five hundred random sets of data values were
further extracted for use as a validation data set to enable
early stopping in the ANN. Finally, using the trained neu-
ral networks with the SSURGO-based coarse-resolution data sets,
predictions of soil water contents (0, 0,, and 0) were made at the
point resolution for the Las Cruces trench site with 50 point data
sets of sand, silt, and clay contents and oven-dry bulk density at the
depth of 0 to 6 cm.

Using a hierarchical approach, we enhanced the data pool
for the ANN training from one subwatershed to the entire Rio
Grande river basin in 10 clusters. Table 1 shows the number of
available SSURGO data sets in the data pool for the clusters. At
each clustering level, 1000 sets of data were extracted by boot-
strapping and used to train the ANNs. Subsequently, ANN pre-
dictions of the soil water contents (0, 0, and 0) were made at
the point resolution for the Las Cruces trench site at each level of
clustering of the subwatersheds having different spatial extents.

The ANN predictions were evaluated using different statis-
tical indicators. Correlations between predicted and target values
for 0, 6, and O at the point scale were determined. Following
Ines and Hansen (2006), the prediction errors relative to the
target (measured) values were split into random and systematic
components. This was done to allow corrections in the predic-
tions due to systematic bias. Bias here refers to the systematic
component of the error and is not to be mistaken for bias in the
ANN architecture. According to Willmott (1982), the MSE,

TasLE 1. Number of values available for bootstrapping from the SSUR-
GO data pool at different cluster levels in the Rio Grande basin.

Cluster no. Area Values in SSURGO data pool
km? no.

1 4,133 6,396
2 12,430 12,721
3 20,001 15,031
4 31,875 17,625
5 39,912 18,730
6 46,749 19,379
7 55,060 24,890
8 67,159 28,956
9 78,696 32,694

10 90,294 36,022
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1. 2
MSE:_Z(%_JG‘) (4]
i=1
can be decomposed into a random component not correctable
by linear transformation,

1,
MSER:;§ (5,5, 5]
=1

and a systematic component,

MSEg = MSE — MSE (6]

where 7 is the number of samples, y; and ), are the target and
ANN-predicted parameter values respectively, and j,* is J;
after bias correction by linear regression. Such a bias correction
provides a proportional shifting and brings the mean of the ANN-
predicted values closer to that of the target values at the local scale.
Before applying the bias correction, we applied the Kolmogorov—
Smirnov algorithm to verify that the residuals between the target
and ANN-predicted water content values were normally distrib-
uted. Values of the correlation coefficient (R) and RMSE were used
for evaluating the transfer function model since they are generally
accepted measures of prediction accuracy.

Using point-scale data, previous studies (Schaap et al., 1998;
Tomasella et al., 2000; Nemes et al., 2003) attributed any bias in
the ANN prediction of the soil hydraulic properties to differences
in quality, textural composition, and origin of the data between
the training and target sets. In this study, using
two independent and characteristically differ-
ent (similar vs. different textural distributions at

the O value at a pressure head (y) of =300 cm using known
(ANN-predicted) values for 0, and 0. The iterative solver was
constrained within the parameter ranges (i.e., between upper
and lower limits) for the particular soil type (at the local scale).
Here, o was constrained between 0.001 and 0.5 while 7 was
constrained between 1 and 4.

Results and Discussion

The ANN was trained using soil texture (sand, silt, and clay
contents) and bulk density data from the SSURGO database
(1:24,000 scale) by clustering data from 10 hierarchical spatial
extents, and subsequently used for predicting the soil water con-
tents (0, 0, and O) for the point- or local-scale (1:1) inputs at
the Las Cruces trench site. Results are presented and discussed
individually for the saturated water content, the residual water
content, and the field capacity water content, reflecting the sig-
nificance of applying ANN-based PTFs across spatial scales as
the network is trained at one scale and rendered to predict soil
water content values at another scale.

Saturated Water Content

Table 2 shows the results of statistical analyses between the
observed and ANN-simulated values of 6_. The best correlation
between observed and simulated 6, was most often obtained when
we used the sigmoid transfer functions. This indicates that a lin-
ear transfer function is unable to capture the relationship between
the inputs and the saturated water content. The R value for the

TasLE 2. Statistical analysis of artificial neural network predicted fine-resolution saturated

volumetric water content values from the Las Cruces trench site.

the fine and coarse scales) from the Rio Grande

Transfer Random Systematic
basin and Little Washita watershed, we suggest ~ <" functiont Mean ~ SD R RMSE MSE error _error
that the systematic component of the error in —m3m3—

. . . f -2 —4
the simulated values is a function of the scale 1 Linear ~ 0.354 0.003 0193  256x102 6.553 x 10 785 215
3 £ the ob dd N hel Log 0.332  0.007 0.537 229x102 5234x10% 742 25.8
Of support ol the obscrved data. INevertheless, Tan 0.365 0041 0553  4.09x102 1673x103 223  77.7
we realize that the bias due to differences in 2 Linear  0.350 0.002  0.142  243x102 5890x10%4 889 1.1
the support scale may also include some of the Log 0.357 0.003 0558  263x102 6.910x10%  54.0 46.0
her si 6 din oth Tan 0.379 0.006 -0.256  4.46x102 1989x103 256 74.4
Other sie-specinic reasons as suggested 10 other 4 Linear ~ 0.339 0003 0089  231x102 5342x10% 992 08
studies. We trained the ANN using coarse-scale Log 0324 0008 0548 266x102 7.069x10% 537 46.3
(1:24,000) data and then used this training to Tan 0341 0003 0333 222x102 4948x10% 9638 3.2
estimate the soil hvdraulic properties at a finer Linear ~ 0.340 0.002 -0.012 232x102 5396x10%  99.1 0.9
yd properties - Log 0.374 0003 0246 3.90x102 1518x103  33.0 67.0
scale (1:1), resulting in a systematic bias. This is Tan 0337 0038 0520 328x102 1075x10°% 372 628
in line with findings in other geoscience applica- 5 Linear 0.342  0.003 0.043 231x102 5313x10%4 100.4 0.4
tions where a systematic bias was attributed to Log 0353 0007 0494  230x102 5309x107¢ 772 228
) Y X Tan 0.369 0009 0573  330x102 1.091x103 333 66.7
scaling (e.g., Kanamaru and Kanamitsu, 2007). ¢ Linear ~ 0.354 0002 -0.127  2.61x102 6832x104 769  23.1
Thus, we adopted model calibration by correct- Log 0.362 0.002 -0.072 3.06 x 10’2 9.335 x 10’2 57.1 42.9
. Iy . : . Tan 0.350 0.011 0562 206x102 4224x104 87.8 12.2
ing for th matic bi in imple linear

g for the systemauc bias using a stmple inea 7 Linear ~ 0.356 0.002 -0.013 270x102 7.284x10% 734 26.6
regression approach. The bias-corrected values Log 0.357  0.008  0.561 248x102 6.166x 104  60.6 39.4
for each parameter having the best correlation Tan 0336 0008 0451 215x102 4.637x104  93.0 7.0
: i . X . . 2 1.291x10°% 409 59.1

among the Log, Tan, and Lin transfer func- 8 Linear ~ 0.370 = 0002 0.107 35910
(, & & ? Log 0.373  0.001 0.521 3.86x102 1.493x103  26.4 73.6
tions) were then used to fit the van Genuchten Tan 0.353 0.006 0505 234x102 5469x104 729 27.1
model for the soil water characteristics curve, 9 Linear  0.352  0.002 -0.042 253x102 6.381x10%4 838 16.2
. Log 0.365  0.007 0.512 3.06x102 9.384x10% 424 57.6
1— Tan 0.355 0.009 0500 239x102 5733x104  70.3 29.7
1 " 10 Linear 0.355  0.002 0.117 264 x102 6.984x10% 754 24.6
6(1p) =0, + (95 - er) o [7] Log 0.356  0.009 0.513 242x102 5878x104  68.1 31.9
1+ (Oﬂb) Tan 0.371  0.008 0.544 354x102 1.256x1073 302 69.8

Target 0.342 0.023

The van Genuchten curve-shape parameters o
and 7 were estimated by iteratively solving for

T Log = log-sigmoid; Tan = tan-sigmoid.

www.vadosezonejournal.org - Vol. 6, No. 4, November 2007

872



best transfer function output at each cluster level was found to be
consistently >0.5, thus indicating a reasonably good performance
of the transfer function. The highest R value observed was 0.573
(Cluster 5 with the Tan transfer function). Also, in most cases,
we observed that the systematic errors were less than the random
errors. From a physical perspective this is quite intuitive in that the
saturated water content (which includes gravitational, capillary,
and hygroscopic water coexisting at saturation) depends on all of
the pore space created by the various components of soil texture
(sand, silt, and clay) and the bulk density, irrespective of the scale
of support of the input data.

Residual Water Content

The results of statistical analyses between the observed and
simulated values of 0, are tabulated in Table 3. Based on correla-
tion (R) between observed and simulated values, the Tan transfer
function yielded a relatively better output for 6 for most cases
of spatial clustering. The Lin function yielded better outputs in
two cases. We also found, however, that the R values for 0, were
generally low, with an overall highest value of 0.456 (for Cluster
8 with the Tan transfer function). On the other hand, the sys-
tematic errors were consistently much higher than the random
errors. This indicates that there is a bias between the observed
and simulated 0, values. This bias, attributed to the difference in
support scale between the training data and the application data,
was easily corrected by linear regression, as mentioned above.
Correcting for the bias brought the mean of the ANN-predicted
values closer to that of the target. A sample illustration is pro-

TasLE 3. Statistical analysis of artificial neural network predicted fine-resolution residual volumetric

soil water content values from Las Cruces trench site.

vided in Fig. 4. Note, however, that no changes are apparent in
the R values. In physical terms, this may suggest that the residual
water content, dominated by hygroscopic water, depends only
on the fine pore spaces created by certain fractions of soil particle
sizes (Arya and Paris, 1981). Soil texture (sand, silt, and clay
content) does not provide complete details of the particle size
distribution or, in turn, the pore size distribution, including the
arrangement, tortuosity, and connectivity of pores. This explains
the limited success in predicting the residual soil water retention.
It is noteworthy, however, that even when the R values are low at
the individual point locations, the ANN-linear regression based
PTF method provides a matching average prediction at the field
scale (i.e., the average across 50 points at the Las Cruces
trench site).

Water Content at Field Capacity

Performance analyses of ANN-based transfer functions for
Opare shown in Table 4. The best correlation for O was obtained
with the Lin transfer function model for all but two of the clus-
tering levels. For this parameter at an intermediate pressure range
of the nonlinear soil water retention curve, however, we observed
very low values of R compared with those for water contents
under wet () or dry (0,) conditions. In general, ranges of sys-
tematic errors or prediction bias for O fell somewhere between
those of O and 0. These findings further suggest that O predic-
tions have more uncertainty than those for 6 or 0, As with the
residual water content, limited success of the ANN for the water
content at field capacity can be attributed to having incomplete
soil particle size distribution data.

Opverall, using soil texture and bulk
density as inputs in the multiscale trans-

fer function models, better predictions

Transfer Random Systematic
Cluster nctiont  Mean sb R RMSE MSE aror ertor (as reflected by higher R values) were
—mim3— % obtained for 6 than for ¢ or 6. This is
1 Linear 0.052 0.007  0.173 3.08x102  9464x10%4 116 88.4 because of the fact that 0_depends on the
Log 0.052 0.006  -0.046 310x102  9631x10% 116 88.4 R .
Tan 0.055 0006 0054 275x102  7.582x104 1438 85.2 total pore space rather than specific pore
2 Linear 0.057 0.007  0.158  2.63x102  6.902x104  16.0 84.0 arrangements, as is the case for O¢and 0.
Log 0.049 0.006  0.285 3.30x102  1.088x 1073 9.5 90.5 The pore volume information is indi-
Tan 0.068 0.009  0.415 164x 102  2676x104 346 65.4 .
3 Linear 0058 0007 0176  254x102  6432x104 170  83.0 rectly available to the ANN through the
Log 0056 0006 0278 267x102  7.118x10% 146 85.4 bulk density input. Various pore sizes and
Tan 0.066 0.011 0.445 1.79 x 10*2 3.194 x 10*;1 28.1 71.9 their distribution, including structural
4 Linear 0.051 0.007  0.178 3.15 x 10~ 9.912 x 10~ 11.0 89.0 . .
Log 0.052 0005  0.164  298x102  8883x104 124 87.6 anomalfes’ can cause the field capacity
Tan 0.057 0004 0144  251x102  6322x104 175 825 and residual water content values to be
5 Linear 0.052 0.007  0.185  3.01x102  9.089x104  12.0 88.0 different, even within the same soil type.
Lo 0.055 0.006 0233  2.75x102  7539x10% 141 85.9 .
Tag 0.057 0.005 0287  253x102  6.394x104  16.2 83.8 The P resence.c’f organic matter may also
6 Linear 0.058 0.007 0.197 2.51 x 1072 6.285x 104 173 827 influence their values. The fact that our
Log 0.052 0006 0020 3.08x102 9510x10% 118 88.2 ANN training does not account for the
Tan 0.051 0.007  0.339 3.07x102  9.429x10%4 105 89.5
7 Linear 0.054 0.007 0.197 2.88 x 1072 8.289 x 104 13.1 86.9 p res,ence of macropores zfmd mesopores
Log 0.058 0.005 0.262 247x102  6.087x104 172 82.8 (which affect 6;) or organic matter could
Tan 0.069 0007 0395  150x102  2254x10% 419 58.1 further explain some of the reductions
8 Linear 0.054 0.007  0.198  2.85x102  8.139x104 133 86.7 in the correlation between observed and
Log 0.062 0.007  0.388  2.05x102  4.194x104 22.7 773 .
Tan 0.071 0.009 0.456 142x102  2.005x10%4 442 55.8 simulated values for 6yand 6.
9 Linear 0.056 0.007 0219  264x102  6.970x104 154 84.6 ) )
Log 0052 0005 0016  3.08x102  9457x 104 120 88.0 Construction of the Soil Water
Tan 0.076 0.007 0.448 1.06 x 1072 1.132x10% 786 21.4 Retention Curve
10 Linear 0.057 0.007 0.202 2.62 x 1072 6.842x10% 158 84.2
Log 0.056 0006 0092  267x102  7.104x104 157 84.3 Sample graphs for the fitted water
Tan 0.069 0.005  0.398 146 x102  2125x104  44.2 55.8 retention curves for several point loca-
Target 0.080 0.011 tions at the Las Cruces trench site are

1 Log = log-sigmoid; Tan = tan-sigmoid.

shown in Fig. 5. The “Observed” curve
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Bias Correction

Water Content
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sible choice. This argument is supported by the “tightness”
of the error bars on the ANN-predicted retention curve
at the local scale. Having narrow error bars (Fig. 5 and
6) indicates that there is little variation in the predicted
values of the water content with an increase in the area of
support from which the training inputs were selected.
Figures 7 to 11 show the evolution of average val-
ues of the estimated van Genuchten soil water reten-
o 0, and O at the local (field or

trench) scale using training data pooled from 10 clusters

tion parameters o, 7, 0

or spatial extents. Little variation was found in the aver-
age values of these parameters across these spatial extents.
In other words, the effect of the size of the training data

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Observation

——Target ——Before Bias Correction ——After Bias Correction

Fic. 4. lllustration of the effect of bias correction. Application of bias correction
by linear regression brings the mean of predicted values closer to the mean of

target values.

corresponds to the values measured at the point location (from
Wierenga et al., 1989). The “Target (vG3)” curve corresponds to
the van Genuchten equation fitted to the observed water con-
tent values using nonlinear regression. The “ANN-Pred (vG)”
curve corresponds to the van Genuchten equation fit based on
the ANN-predicted 0 0 and 0 values, averaged across the 10
spatial clustering levels. The error bars of the ANN-predicted
retention curve show the limits of the
variation in the predicted water content at
the particular pressure head across the 10

pool was minimal.
Validation of Methodology

The Rio Grande basin was the primary focal area for
our study; however, the Las Cruces trench site data have
the disadvantage of being very localized within the basin.
The trench covers an area <120 m? (26.4 m long by 4.5 m
wide). Consequently, there is not much variation in the soil
types encountered at the local (field or trench) scale. Hence, we
decided to validate the ANN methodology with independent
coarse- and fine-resolution data from a different region with dif-
ferent soil genesis and textural compositions.

The Little Washita (LW) watershed region in Oklahoma
was selected for this validation study. Bootstrapping was again
used to randomly select 1000 training data and 500 valida-

TaBLE 4. Statistical analysis of artificial neural network predicted fine-resolution field capacity volu-
metric water content values from the Las Cruces trench site.

different clusters of the training data. The

Transfer Random Systematic
ANN-predicted values closely matched — ClUster ;niony Mean — SD R RMSE MSE aror eror
the target van Genuchten curves and the —m3m3— %
error bars are quite Small' Figure 6 shows 1 Linear 0.134 0.006 0.178 1.49 x 102 2213 x 1074 71.6 28.4
the field-average soil water retention curve Log 0134 0010 0.167 1.65x102  2723x10% 595 405
) ) Tan 0.148  0.011  0.127 2.68x102  7.204x10%4 225 775
across the 50 sampling points (at 0-6-cm 5 Linear 0126 0007 0198 133x102  1757x10% 897 10.3
depth) at the Las Cruces trench site. It Log 0.131 0.005 0.013 1.42 x 1072 2.027 x 104 80.2 19.8
. . Tan 0.146  0.010  0.156 2.44 x 102 5.932 x 1074 26.7 73.3
can be inferred th‘f‘t the p fedlcmons based Linear  0.425 0006 0190 132x102  1750x10%  90.1 9.9
on an ANN trained with coarse-scale Log 0.126  0.005  0.141 131x102  1725x10% 92.4 76
SSURGO data matched the observations Tan 0.132  0.006 0.122 1.46 x 1072 2.132 x 1074 75.1 24.9
at the point to field scale. 4 Linear  0.126  0.006  0.196 1.31 x 10:2 1.720 x 10:‘1 91.6 8.4
. Log 0.128  0.005 0.195  1.28x 10 1.633 x 10 97.5 25
As mentioned above, the coarse- Tan 0.127  0.003  0.141 1.27 x 1072 1.610x 104 100.6 -0.6
scale (1:24,000) inputs to the ANN at 5 Linear 0129  0.007 0204 134x102  1793x10%4 877 12.3
the subwatershed scale are representa- Log 0137 0.007 0223 1.69x102  2853x10%4 547 453
. . Tan 0139 0005 0.146 1.77x102  3.141x10% 506 49.4
tive values of a number of observations ¢ Linear ~ 0.124  0.007 0200 1.34x102 1786x10%  88.0 12.0
in a particular soil map unit. These Log 0132 0006 0206 141x102  1.978x10%  80.0 20.0
values support a large spatial area. The Tan 0.134  0.010 -0.075 1.82x102  3301x10* 495 50.5
. . 7 Linear ~ 0.137  0.007  0.200 1.66 x 102 2.746 x 1074 57.3 427
point- or local-scale (1:1) inputs mea- Log 0135 0.005 0136 152x102  2312x10%  69.0 31.0
sured at a spacing of 0.5 m at the Las Tan 0145 0010 0028 242x102  5848x10%  27.8 722
Cruces trench site have a much smaller 8 Linear ~ 0.130  0.007 0203 137x102  1.879x10%  83.6 16.4
. Log 0141 0008 0.100 2.03x102  4.127x10%  39.0 61.0
support area. The factors that influence Tan 0144 0009 0070 228x102 5184x10%4 313 68.7
soil water retention at the smaller scale ¢ Linear 0076 0007 0.148 529x102  2.801x 1073 5.7 94.3
of support are different from those at the Log 0135 0003 0.145 151x102 2288x10%4 695 30.5
lar le of . Si the ANN Tan 0.149  0.009 0.134 2.70 x 1072 7.279 x 1074 21.9 78.1
arger scale of support. oince the 10 Linear 0134 0007 0203 147x102  2161x10% 727 27.3
model is not a physically based model, Log 0135 0.005 0200 150x102  2262x10%  69.1 30.9
however, the use of ANNs to apply PTFs Tan 0.148  0.007 0077 251x102  6.306x10% 256 74.4
Target 0.127 0.013

across different spatial scales of support
can be viewed as a reasonable and fea-

1 Log = log-sigmoid; Tan = tan-sigmoid.
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Fic. 5. Sample soil water retention curves: y is the pressure head and 0 the water content; NN-Pred are the neural network predicted values. Val-
ues at each point are averaged across 10 clustering levels. Error bars show deviation in 6(y) values across the clustering levels.

tion data from a pool of 36,000 SSURGO values from the
Little Washita region. The ANNs were trained using the soil
physical properties as the inputs and the soil water contents
as the targets for the coarse-scale SSURGO data. Using the
developed (trained and validated) ANNs with coarse-resolu-
tion data, the LW soil property data at 70 locations (Mohanty
et al., 2002) were used as the fine-scale inputs for the ANN
prediction. The outputs obtained were subjected to linear bias
correction after checking for normality of errors, while the soil
water retention curve was constructed (Fig. 12) using the same
procedure as described for the Rio Grande basin. It is evident
that the bias-corrected curve once again closely matches the
target values. This finding further attests to the validity of the
proposed method for different test sites involving different soil
genesis, topography, vegetation, and hydroclimatic conditions,
and varying extent of data coverage.

Any predictive model can only be as good as the input data
supplied to it. The error bars in the two figures (Fig. 12 and
13) also reflect this data dependency of the ANN model. The
error bars for the ANN-predicted and bias-corrected values at
LW (Fig. 12) are comparable to those of the target data. This
implies that the ANN is able to capture much of the variation
in the soil water content values. This ability is provided to the
ANN by the wide range of textures (soil types) present in the
simulation inputs from the LW region. On the other hand,
the soils at the Las Cruces trench site do not vary much from

one measurement location to the next (Table 5). Hence, there
is hardly any variation in the simulation inputs. This invari-
ance is then passed on to the predictions. The error bars in Fig.
13 are consequently much smaller for the ANN-predicted and
bias-corrected values compared with the target. The distribu-
tions of the soil physical properties for the LW region are given

Average over 50 points
100000.00

1000.00 -

10.00

W (cm H,0)

0.10

0.00 -
0.0 0.1 0.2 03 0.4
0(y) (cm/em?)

——ANN-Pred (vG) -=Target (vG) -—=Observed

Fic. 6. Average soil water retention curve for the Rio Grande region:
v is the pressure head and 6 the water content; NN-Pred are the
neural network predicted values. Values are averaged across 10
clustering levels and across the 50 ground points. Error bars show
deviation in 6(y) values across the clustering levels.
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in Table 6. It is evident that the fine-scale training data for the
LW watershed in the region of the Southern Great Plains 1997
hydrology experiment have much greater variability than the
fine-scale data of the Las Cruses trench site in the Rio Grande
basin. Furthermore, for the IW region, the statistics of the
fine-scale soil hydraulic properties are comparable to the statis-
tics of the coarse-scale data, leading to better predictions with
the multiscale PTFs.
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Fic. 7. Variation across clustering levels in estimated van Genuchten
o values averaged across 50 ground points.
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Fic. 8. Variation across clustering levels in estimated van Genuchten
n values averaged across 50 ground points.
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Fic. 9. Variation across clustering levels in estimated saturated volu-
metric water content (6,) values averaged across 50 ground points.

Conclusions
Using coarse-scale soil property data from the SSURGO
database and local-scale soil property data, it has been shown
that ANNSs can be applied across spatial scales for estimating
soil hydraulic properties at the local or field scale while being
trained on coarse-scale input data. The simulated soil hydrau-
lic parameters can be further corrected for bias by decomposing
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Fic. 10. Variation across clustering levels in estimated residual volu-
metric water content (6,) values averaged across 50 ground points.
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Fic. 11. Variation across clustering levels in estimated volumetric

water content at field capacity (6;) values averaged across 50 ground
points.
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Fic. 12. Average soil water retention curve for the Little Washita (LW)
watershed region: vy is the pressure head; 0 is the soil water content;
ANN-Pred are the artificial neural network predicted values before
bias correction; BC are the bias-corrected values. Values are aver-
aged across the 70 ground points. Error bars show deviation in 6(y)
values across the 70 ground points.
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the estimation errors into random and systematic components.
The systematic error, attributed to scale differences between the
training data set and the simulation application data set, can be
eliminated by linear regression. A limitation of the methodol-
ogy at present is that one would need to know a few “expected”
values to use in the bias correction process. The proposed meth-
odology was validated using information from two test sites with
different hydrologic characteristics, the Las Cruces trench site
in New Mexico and the Little Washita watershed in Oklahoma.
Further improvement in the ANN-based predictions across mul-
tiple spatial scales may be possible by using Bayesian statistical
techniques or genetic algorithms in the ANN training process.
Extension of our methodology to data with larger support scales
(e.g., using remote sensing techniques) could also help in bet-
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Rio Grande Region

1000.00
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>
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0.00

0.0 0.1 0.2 03 0.4
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—=—Target —ANN-Pred ——BC

Fic. 13. Average soil water retention curve for the Rio Grande region:
v is the pressure head; 6 is the soil water content; ANN-Pred are the
artificial neural network predicted values before bias correction; BC
are the bias-corrected values. Values are averaged across the 50
ground points. Error bars show deviation in 6(y) values across the 50
ground points.

TasLE 5. Soil physical properties at the coarse and fine scales for the
Rio Grande Basin.

SSURGO Sand Silt Clay Bulk density
data Mean SD Mean SD Mean SD Mean SD
0,

Cluster 1 4943 2149 2920 19.39 2137 10.87 1.60 0.12
Cluster 2 48.38 2148 30.79 13.94 20.83 10.38 1.66 0.19
Cluster 3 4771 2175 3179 1433 2041 10.05 156 0.14
Cluster 4 50.54 2150 30.05 14.70 19.41 955 1.55 0.13
Cluster 5 57.61 2150 26.17 1641 16.22 7.02 151 0.13
Cluster 6 49.30 21.09 3091 1449 19.79 9.32 154 0.13
Cluster 7 49.65 21.88 29.92 1458 2043 10.85 1.56 0.13
Cluster 8 50.05 21.53 30.12 1459 19.82 10.00 1.54 0.13
Cluster 9 48.77 2054 3131 1398 19.92 954 152 0.14
Cluster 10 50.05 19.52 30.33 13.34 19.62 8.67 152 0.14
Average 50.15 21.23 30.06 14.37 19.78 9.63 154 0.14
Las Cruces

trench site  81.46 1.67 9.76 1.17 878 120 1.66 0.05

point data

TaBLE 6. Soil physical properties at the coarse and fine scales for the
Little Washita watershed.

Data source Sand Silt Clay Bulk density
Mean SD Mean SD Mean SD Mean SD

%
SSURGO data 43.31 21.82 37.74 17.31 19.17 880 1.78 042
Point data 51.91 2111 3361 16.41 1448 6.04 140 0.10

ter understanding the effects of the scale difference and, subse-
quently, in creating a more generalized multiscale ANN pedo-
transfer model.
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