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Soil hydraulic properties are needed in global- and regional-
scale circulation models for hydrologic and climate forecast-

ing. They are also necessary in point- and nonpoint-source con-
taminant transport models. Prediction accuracy of these models 
is highly dependent on the quality of the model parameters. 
Collecting the required soil hydraulic parameters by direct mea-
surement at any model grid scale is expensive and time consum-
ing. Also, to capture the variability of these spatially distributed 
parameters, a large number of samples needs to be collected. All 
of these factors make it highly impractical to match direct mea-
surements of the soil hydraulic parameters to the invoked model 
grids. For these reasons, pedotransfer functions (PTFs) have 
been advocated to estimate the required soil hydraulic param-
eters from other available or more easily measurable soil data.

A large number of studies have been performed in the recent 
past to develop such PTFs and test them against available soil prop-

erties databases (e.g., Rawls et al., 1991; van Genuchten and Leij, 
1992; Schaap et al., 1998; Pachepsky et al., 1999; Wösten et al., 
2001; Sharma et al., 2006). “Point regression” PTFs use empiri-
cally derived regression equations to predict the soil water content 
at fi xed soil water potentials (e.g., Rawls et al.., 1982; Ahuja et 
al., 1985; Tomasella et al., 2000). On the other hand, “function 
parameter” PTFs predict the parameters of the water retention 
and hydraulic conductivity functions (e.g., Vereecken et al., 1989; 
Schaap et al., 1998; Wösten et al., 2001), such as those given by 
Brooks and Corey (1964), Campbell (1974), and van Genuchten 
(1980). Both approaches have been widely utilized for various soil 
databases. Arguably, function parameter PTFs were preferred to 
point regression PTFs since they generate the complete function of 
the relationship between the water content and the pressure head. 
This made it easy to construct the entire soil water retention curve 
useful for modeling studies. It was recently shown, however, that 
point regression PTFs perform better than function parameter PTFs 
(Tomasella et al., 2003). Since the relationship between soil physi-
cal properties and soil water retention parameters is rather compli-
cated, the variability in the retention parameters is controlled by 
different subsets of soil physical properties at different ranges of soil 
water pressure. Tomasella et al. (2003) suggested that the reason 
for the relatively poor performance of function parameter PTFs is 
due to their inability to accurately describe these complex physical 
relationships at all pressure heads from wet to dry conditions.

Soil texture (sand, silt, and clay percentages) has been pop-
ularly used for predicting soil hydraulic properties. It has been 
shown that the use of detailed particle-size distributions can 
increase the accuracy of soil hydraulic parameter predictions 
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Parametric soil water retention and hydraulic conductivity functions are often used for predicting soil hydrologic behavior using 
hydrologic, hydroclimatic, and contaminant transport models. The prediction accuracy of any such model is critically depen-
dent on the quality of the input parameters. Limited availability of (detailed) soil hydraulic data for large-scale hydroclimatic 
models (with grids ranging from several kilometers to several hundred kilometers) is a major challenge. To address this need, 
pedotransfer functions (PTFs) have been used to estimate the required soil hydraulic parameters from other available or easily 
measurable soil properties. While most previous studies derive and adopt these parameters at matching spatial scales (1:1) of 
input and output data, we have developed a methodology to derive soil water retention functions at the point or local scale using 
the PTFs trained with coarser scale input data. This study was a novel application of an artifi cial neural network (ANN)-based 
PTF scheme across two spatial support scales within the Rio Grande basin in New Mexico. The ANN was trained using soil 
texture and bulk density data from the SSURGO database (scale 1:24,000) and then used for predicting soil water contents at 
different pressure heads with point-scale data (1:1) inputs. The resulting outputs were corrected for bias before constructing 
the soil water characteristic curve using the van Genuchten equation. A hierarchical approach with training data derived from 
multiple clustered subwatersheds (with varying spatial extent) was used to study the effect of the increase in spatial extent. The 
results show good agreement between the soil water retention curves constructed from the ANN-based PTFs and fi eld obser-
vations at the local scale near Las Cruces, NM. The robustness of the multiscale PTF methodology was further tested with a 
separate data set from the Little Washita watershed region in Oklahoma. Overall, ANN coupled with bias correction was found 
to be a suitable approach for deriving soil hydraulic parameters at a fi ner scale from soil physical properties at coarser scales and 
across different spatial extents. The approach could potentially be used for downscaling soil hydraulic properties.
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(Schaap et al., 1998) compared with using soil textural class 
alone as input (Clapp and Hornberger, 1978); however, detailed 
particle size data are not easily available in all cases. The most 
commonly used soil physical properties for PTF applications are 
soil texture, organic C, and bulk density. Other parameters such 
as topography and vegetation have rarely been used in developing 
PTFs (Wösten et al., 2001). Recently, Pachepsky et al. (2001), 
Leij et al. (2004), and Sharma et al. (2006) included certain avail-
able topographical and vegetation attributes, in addition to soil 
physical parameters, for developing PTFs. While the inclusion of 
more input parameters for the PTFs provided some improvement 
in the performance of the transfer function models, the basic soil 
properties had by far the most effect on the hydraulic properties 
predictions. Increasing the number of model input parameters 
also means increasing the complexity of the model, including 
inherent uncertainties associated with the input data.

Most previous PTF studies have derived and adopted soil 
hydraulic parameters at matching spatial scales of the input and 
target data. The primary objective of this study was to develop 
and test a methodology to derive soil water content values (at 
saturation, θs, residual, θr, and fi eld capacity, θf ) and the van 
Genuchten soil water retention function at the point 
or local (1:1) scale using artifi cial neural network 
(ANN)-based PTFs trained with coarser (1:24,000) 
scale SSURGO soil textural data. A secondary objec-
tive was to investigate improvements, if any, in the 
performance of the ANN-based PTF scheme to pre-
dict soil water contents at the local or point scale by 
including training data from larger spatial extents 
(scales) in a hierarchical fashion within the Rio 
Grande basin, New Mexico.

Materials and Methods
Study Area

The Rio Grande basin, from its headwaters in 
southern Colorado to the New Mexico–Texas border, is 
the focus of fi eld and modeling studies by the National 
Science Foundation’s Science and Technology Center 
for Sustainability of Semi-Arid Hydrology and Riparian 
Areas and Los Alamos National Laboratory (Winter et 
al., 2004). This region, having an area of approximately 
90,000 km2 in New Mexico, was used for our case study 
(Fig. 1). We used point-scale (1:1) soil physical and 
hydraulic properties measured at the Las Cruces trench 
site (Wierenga et al., 1989), situated within the Rio 
Grande–Mimbres subwatershed region, for our data at 
the local or point scale. We developed a multiscale soil 
physical and hydraulic properties database by compil-
ing (i) the point-scale (1:1) data from the Las Cruces 
trench site, and (ii) coarse-scale (1:24,000) SSURGO 
soil survey data for the Rio Grande river basin from the 
NRCS. The database was developed in Geodatabase 
format, thus making the spatial data accessible through 
the ESRI ArcMap software (ESRI, Redlands, CA).

Point- or Local-Scale Soil Properties Data

The Las Cruces trench is located at New Mexico 
State Ranch, roughly 65 km northeast of the city of Las 

Cruces (Fig. 1). The trench is 26.4 m long, 4.5 m wide, and 6 m 
deep, and is situated in undisturbed soil. Using in situ and labo-
ratory methods, Wierenga et al. (1989) developed a comprehen-
sive database of fi ne-scale (1:1) soil properties using 594 disturbed 
soil samples and 594 associated soil cores taken from nine distinct 
soil layers identifi ed along the north wall of the trench. Additional 
samples were taken from three vertical transects along this wall. The 
data set included saturated hydraulic conductivity, the soil water 
retention function, particle size distribution, and the bulk density 
of each layer. Besides Las Cruces trench site data, no other complete 
soil properties data set was available for the Rio Grande river basin 
at this scale (Jana et al., 2005), thus limiting our model test bed to 
the Las Cruces location. For point- or local-scale testing of the hier-
archical PTFs developed using the coarse-scale soil properties across 
clustered subwatersheds up to the Rio Grande river basin, we used 
replicated values across the 26-m-long trench.

Coarse-Scale Soil Properties Data

The coarse-resolution (1:24,000) soil properties data were 
derived from the Soil Survey Geographic (SSURGO) database 
(Soil Survey Staff, 2007). SSURGO is the most detailed soil map-

FIG. 1. Study area showing the Rio Grande Basin in New Mexico and location of the 
city of Las Cruces (trench site).
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ping database compiled by the NRCS, containing georeferenced 
spatial and attribute data for soils. Since the database covers a 
large areal extent, the soil property data in SSURGO are based on 
soil type rather than the spatial location. The SSURGO database 
was created by fi eld methods, using observations along soil delin-
eation boundaries and traverses, and by determining map unit 
composition using fi eld transects. Aerial photographs were inter-
preted and used as the fi eld map base, while multiple readings 
were taken for each property within each map unit. The number 
of readings differ between map units based on such factors as 
size of the soil polygon, variations in topography, and changes in 
vegetation, among others. Low, high, and representative values 
for the observed readings were then entered into the database for 
that particular soil type or map unit. The procedure is in line 
with the specifi cations of the USDA-NRCS National Soil Survey 
Handbook (Natural Resources Conservation Service, 2001). 
Maps were made at scales ranging from 1:12,000 to 1:31,680 
(www.il.nrcs.usda.gov/technical/soils/soilfact.html [verifi ed 9 
Oct. 2007]). In our study, we used representative values for all 
parameters from the maps with a scale of 1:24,000. The initial 
SSURGO data were measured at the point scale, but the values 
reported in the database are averaged values. Although recent 
studies (Zhu and Mohanty, 2002a,b; Mohanty and Zhu, 2007) 
have indicated that appropriate (site-specifi c) upscaling schemes 
are necessary for deriving effective soil parameters at larger scales, 
averaging multiple sample values across soil map units to arrive 
at the spatially representative parameter values for the 1:24,000 
scale is a simple form of upscaling adopted by SSURGO. Hence, 
the available SSURGO database arguably provides a generic form 
of upscaled (coarse-resolution) values for the parameters.

The hydraulic parameters used from the SSURGO database 
are the water content at satiation (θs), the water content at a 
pressure of 1.5 MPa (θr), and the water content at 33.3 kPa (θf ). 
Retention measurements closest to 33.3 kPa at the Rio Grande 
trench site were taken at −300 cm pressure. Hence, the water 
content at that value was used for θf, while other water contents 
are for the same pressure heads as those of SSURGO. 
Furthermore, the values used from the SSURGO 
database were for the topsoil layer (0–6 cm). To com-
pare similar data from the two scales (coarse and fi ne) 
at matching depths, only values from corresponding 
layers were used from the Las Cruces trench site.

Validation Study Area

The Little Washita (LW) watershed in Oklahoma 
was selected for validation of the multiscale PTF 
methodology. This watershed has been the focus of 
a number of intensive fi eld studies, including the 
Southern Great Plains 1997 hydrology experiment 
and the Soil Moisture Experiment 2002 campaign. 
The SSURGO data for Oklahoma and the point-
scale soil property data from the LW watershed, col-
lected by Mohanty et al. (2002), were used together 
in our validation study (Fig. 2). The LW region has 
rolling topography with a variety of vegetative covers. 
As such, the spatial distribution of point-scale data 
across the LW watershed was in sharp contrast to the 
local conditions (small spatial extent and limited soil 
variety) of the Las Cruces trench site. These site-spe-

cifi c differences, and the availability of spatially distributed local- 
or fi ne-scale soil hydraulic properties data, made the LW region 
ideal for validating the multiscale PTF approach. Seventy point-
scale measurements at 3- to 9-cm depth were chosen across the 
LW watershed to form the fi ne-scale (1:1) data. SSURGO data 
from Caddo, Comanche, and Grady counties in Oklahoma were 
used for the coarse-scale (1:24,000) data.

Artifi cial Neural Network–Linear Regression Based 
Pedotransfer Function

In this study, the ANN analysis was performed using the 
Neural Network Toolbox of MATLAB (The MathWorks, Natick, 
MA). The networks were designed with one input layer, one hid-
den layer, and an output layer. Although ANN techniques have 
been well established, for the sake of completeness, a brief descrip-
tion of the ANN approach adopted here is given below.

A neural network typically consists of an input layer, an out-
put layer, and one or more hidden layers linking these two. The 
hidden layer extracts useful information from inputs and uses 
them to predict the outputs. The ANN is schematically repre-
sented in Fig. 3. The input layer consists of four input param-
eters (soil physical properties). These are fed to the hidden layer, 
consisting of four neurons. The inputs are multiplied by the 
layer weights w and summed with the layer bias b. This summa-
tion is then fed to the transfer function f. Outputs from the hid-
den-layer transfer functions are subjected to the same treatment 
at the output layer. The output-layer transfer function produces 
the required output, the soil water content.

Neurons may use any differentiable transfer function to 
generate their output. The log-sigmoid (Log), tan-sigmoid 
(Tan), and linear (Lin) transfer functions are the more popu-
larly used functions. These three functions are generally used 
as they are mathematically convenient and allow the ANN to 
model both strong and weakly nonlinear relationships. Because 
of the complexity of soil hydraulic properties across scales, we 
adopted all three (Log, Tan, and Lin) transfer functions in this 

FIG. 2. Validation study area in Oklahoma and Little Washita (LW) watershed data 
locations.
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study to evaluate their performance in estimating nonlinear soil 
water retention functions. The algorithms for the three transfer 
functions used here are (Demuth et al., 2005)

1Log log sig( )
1 exp( )

n
n

= =
+ −

 [1]

2Tan tansig( )
1 exp( 2 )

n
n

= =
+ −

 [2]

Lin purelin( )n n= =  [3]

A “feed-forward backpropagation” type neural network has been 
used previously to develop PTFs (Pachepsky et al., 1996; Schaap 
et al., 1998; Sharma et al., 2006). A feed-forward network is one 
in which the fl ow of data through the network is in one direction 
only. Backpropagation refers to the process of feeding the output 
of a neuron back to itself so that it may learn. The backpropaga-
tion network learns by examples in small steps. A set of inputs 
and corresponding outputs are given to the network to train it 
in recognizing the desired results. By adjusting the weights itera-
tively, the network is trained for each input–output combination 
until the overall error decreases below a predetermined value.

Using SSURGO data, we trained the ANNs for estimat-
ing soil water contents at different pressure heads (θs, θr, and 
θf ). The variable learning rate algorithm “traingdx” was used 
for backpropagation training of the ANNs. This algorithm is 
faster and more reliable than traditional “train” and “traingd” 
algorithms in that it ensures stability of learning. Early stopping, 
a technique to prevent overfi tting of the data, was also enabled. 
When early stopping is enabled, the ANN monitors the error on 
the validation data set. If the ANN overfi ts the data, validation 
errors rise. When the validation error increases for a specifi ed 
number of iterations, the training is terminated and the weights 
and biases at the minimum of the validation error are returned. 
In our study, we specifi ed 5% (500 iterations) as the limit for rise 
in validation error.

The SSURGO data pool available for the Rio Grande–
Mimbres subwatershed containing the Las Cruces trench 
site consisted of 6685 sets of values. Each data set consisted 
of the training inputs (sand, silt, and clay content and oven-
dry bulk density) and the corresponding target outputs (θs, 
θr, and θf). One thousand random sets of data values were 
selected for the ANN training from this data pool by means 
of a bootstrapping process that was terminated once the 
required number (1000) of values had been reached. While 
any random selection algorithm could be used to extract the 
training data from this large data pool, we used bootstrap-
ping since our methodology was designed in part for appli-
cations where such a large data pool may not be available 
(e.g., remotely sensed data). Conducting several replicated 
model runs, we observed that further increase in the size of 
the training data set (>1000 and within the available data 
pool) did not provide any further improvement in the train-
ing. Moreover, by keeping a low ratio of selected to avail-
able data sets, we ensured randomness of the bootstrapped 
selections. Five hundred random sets of data values were 
further extracted for use as a validation data set to enable 
early stopping in the ANN. Finally, using the trained neu-

ral networks with the SSURGO-based coarse-resolution data sets, 
predictions of soil water contents (θs, θr, and θf) were made at the 
point resolution for the Las Cruces trench site with 50 point data 
sets of sand, silt, and clay contents and oven-dry bulk density at the 
depth of 0 to 6 cm.

Using a hierarchical approach, we enhanced the data pool 
for the ANN training from one subwatershed to the entire Rio 
Grande river basin in 10 clusters. Table 1 shows the number of 
available SSURGO data sets in the data pool for the clusters. At 
each clustering level, 1000 sets of data were extracted by boot-
strapping and used to train the ANNs. Subsequently, ANN pre-
dictions of the soil water contents (θs, θr, and θf ) were made at 
the point resolution for the Las Cruces trench site at each level of 
clustering of the subwatersheds having different spatial extents.

The ANN predictions were evaluated using different statis-
tical indicators. Correlations between predicted and target values 
for θs, θr, and θf at the point scale were determined. Following 
Ines and Hansen (2006), the prediction errors relative to the 
target (measured) values were split into random and systematic 
components. This was done to allow corrections in the predic-
tions due to systematic bias. Bias here refers to the systematic 
component of the error and is not to be mistaken for bias in the 
ANN architecture. According to Willmott (1982), the MSE,

FIG. 3. Artifi cial neural network model: w represents the layer weights, b the bias, 
f is the transfer function, and θ is the output (water content). After Demuth et al. 
(2005).

TABLE 1. Number of values available for bootstrapping from the SSUR-
GO data pool at different cluster levels in the Rio Grande basin.

Cluster no. Area Values in SSURGO data pool
km2 no.

1 4,133 6,396
2 12,430 12,721
3 20,001 15,031
4 31,875 17,625
5 39,912 18,730
6 46,749 19,379
7 55,060 24,890
8 67,159 28,956
9 78,696 32,694

10 90,294 36,022
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can be decomposed into a random component not correctable 
by linear transformation,
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and a systematic component,

S RMSE MSE MSE= −  [6]

where n is the number of samples, yi and ˆ iy  are the target and 
ANN-predicted parameter values respectively, and ˆ *iy  is ˆ iy  
after bias correction by linear regression. Such a bias correction 
provides a proportional shifting and brings the mean of the ANN-
predicted values closer to that of the target values at the local scale. 
Before applying the bias correction, we applied the Kolmogorov–
Smirnov algorithm to verify that the residuals between the target 
and ANN-predicted water content values were normally distrib-
uted. Values of the correlation coeffi cient (R) and RMSE were used 
for evaluating the transfer function model since they are generally 
accepted measures of prediction accuracy.

Using point-scale data, previous studies (Schaap et al., 1998; 
Tomasella et al., 2000; Nemes et al., 2003) attributed any bias in 
the ANN prediction of the soil hydraulic properties to differences 
in quality, textural composition, and origin of the data between 
the training and target sets. In this study, using 
two independent and characteristically differ-
ent (similar vs. different textural distributions at 
the fi ne and coarse scales) from the Rio Grande 
basin and Little Washita watershed, we suggest 
that the systematic component of the error in 
the simulated values is a function of the scale 
of support of the observed data. Nevertheless, 
we realize that the bias due to differences in 
the support scale may also include some of the 
other site-specifi c reasons as suggested in other 
studies. We trained the ANN using coarse-scale 
(1:24,000) data and then used this training to 
estimate the soil hydraulic properties at a fi ner 
scale (1:1), resulting in a systematic bias. This is 
in line with fi ndings in other geoscience applica-
tions where a systematic bias was attributed to 
scaling (e.g., Kanamaru and Kanamitsu, 2007). 
Thus, we adopted model calibration by correct-
ing for the systematic bias using a simple linear 
regression approach. The bias-corrected values 
for each parameter having the best correlation 
(among the Log, Tan, and Lin transfer func-
tions) were then used to fi t the van Genuchten 
model for the soil water characteristics curve,

( ) ( )
( )

11

r s r
1

1

n

n
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[7]

The van Genuchten curve-shape parameters α 
and n were estimated by iteratively solving for 

the θf value at a pressure head (ψ) of −300 cm using known 
(ANN-predicted) values for θs and θr. The iterative solver was 
constrained within the parameter ranges (i.e., between upper 
and lower limits) for the particular soil type (at the local scale). 
Here, α was constrained between 0.001 and 0.5 while n was 
constrained between 1 and 4.

Results and Discussion

The ANN was trained using soil texture (sand, silt, and clay 
contents) and bulk density data from the SSURGO database 
(1:24,000 scale) by clustering data from 10 hierarchical spatial 
extents, and subsequently used for predicting the soil water con-
tents (θs, θr, and θf ) for the point- or local-scale (1:1) inputs at 
the Las Cruces trench site. Results are presented and discussed 
individually for the saturated water content, the residual water 
content, and the fi eld capacity water content, refl ecting the sig-
nifi cance of applying ANN-based PTFs across spatial scales as 
the network is trained at one scale and rendered to predict soil 
water content values at another scale.

Saturated Water Content

Table 2 shows the results of statistical analyses between the 
observed and ANN-simulated values of θs. The best correlation 
between observed and simulated θs was most often obtained when 
we used the sigmoid transfer functions. This indicates that a lin-
ear transfer function is unable to capture the relationship between 
the inputs and the saturated water content. The R value for the 

TABLE 2. Statistical analysis of artifi cial neural network predicted fi ne-resolution saturated 
volumetric water content values from the Las Cruces trench site.

Cluster Transfer 
function† Mean SD R RMSE MSE Random 

error
Systematic

error
— m3 m−3 — ——— % ———

1 Linear 0.354 0.003 0.193 2.56 × 10−2 6.553 × 10−4 78.5 21.5
Log 0.332 0.007 0.537 2.29 × 10−2 5.234 × 10−4 74.2 25.8
Tan 0.365 0.041 0.553 4.09 × 10−2 1.673 × 10−3 22.3 77.7

2 Linear 0.350 0.002 0.142 2.43 × 10−2 5.890 × 10−4 88.9 11.1
Log 0.357 0.003 0.558 2.63 × 10−2 6.910 × 10−4 54.0 46.0
Tan 0.379 0.006 −0.256 4.46 × 10−2 1.989 × 10−3 25.6 74.4

3 Linear 0.339 0.003 0.089 2.31 × 10−2 5.342 × 10−4 99.2 0.8
Log 0.324 0.008 0.548 2.66 × 10−2 7.069 × 10−4 53.7 46.3
Tan 0.341 0.003 0.333 2.22 × 10−2 4.948 × 10−4 96.8 3.2

4 Linear 0.340 0.002 −0.012 2.32 × 10−2 5.396 × 10−4 99.1 0.9
Log 0.374 0.003 0.246 3.90 × 10−2 1.518 × 10−3 33.0 67.0
Tan 0.337 0.038 0.520 3.28 × 10−2 1.075 × 10−3 37.2 62.8

5 Linear 0.342 0.003 0.043 2.31 × 10−2 5.313 × 10−4 100.4 −0.4
Log 0.353 0.007 0.494 2.30 × 10−2 5.309 × 10−4 77.2 22.8
Tan 0.369 0.009 0.573 3.30 × 10−2 1.091 × 10−3 33.3 66.7

6 Linear 0.354 0.002 −0.127 2.61 × 10−2 6.832 × 10−4 76.9 23.1
Log 0.362 0.002 −0.072 3.06 × 10−2 9.335 × 10−4 57.1 42.9
Tan 0.350 0.011 0.562 2.06 × 10−2 4.224 × 10−4 87.8 12.2

7 Linear 0.356 0.002 −0.013 2.70 × 10−2 7.284 × 10−4 73.4 26.6
Log 0.357 0.008 0.561 2.48 × 10−2 6.166 × 10−4 60.6 39.4
Tan 0.336 0.008 0.451 2.15 × 10−2 4.637 × 10−4 93.0 7.0

8 Linear 0.370 0.002 0.107 3.59 × 10−2 1.291 × 10−3 40.9 59.1
Log 0.373 0.001 0.521 3.86 × 10−2 1.493 × 10−3 26.4 73.6
Tan 0.353 0.006 0.505 2.34 × 10−2 5.469 × 10−4 72.9 27.1

9 Linear 0.352 0.002 −0.042 2.53 × 10−2 6.381 × 10−4 83.8 16.2
Log 0.365 0.007 0.512 3.06 × 10−2 9.384 × 10−4 42.4 57.6
Tan 0.355 0.009 0.500 2.39 × 10−2 5.733 × 10−4 70.3 29.7

10 Linear 0.355 0.002 0.117 2.64 × 10−2 6.984 × 10−4 75.4 24.6
Log 0.356 0.009 0.513 2.42 × 10−2 5.878 × 10−4 68.1 31.9
Tan 0.371 0.008 0.544 3.54 × 10−2 1.256 × 10−3 30.2 69.8

Target 0.342 0.023

† Log = log-sigmoid; Tan = tan-sigmoid.
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best transfer function output at each cluster level was found to be 
consistently >0.5, thus indicating a reasonably good performance 
of the transfer function. The highest R value observed was 0.573 
(Cluster 5 with the Tan transfer function). Also, in most cases, 
we observed that the systematic errors were less than the random 
errors. From a physical perspective this is quite intuitive in that the 
saturated water content (which includes gravitational, capillary, 
and hygroscopic water coexisting at saturation) depends on all of 
the pore space created by the various components of soil texture 
(sand, silt, and clay) and the bulk density, irrespective of the scale 
of support of the input data.

Residual Water Content

The results of statistical analyses between the observed and 
simulated values of θr are tabulated in Table 3. Based on correla-
tion (R) between observed and simulated values, the Tan transfer 
function yielded a relatively better output for θr for most cases 
of spatial clustering. The Lin function yielded better outputs in 
two cases. We also found, however, that the R values for θr were 
generally low, with an overall highest value of 0.456 (for Cluster 
8 with the Tan transfer function). On the other hand, the sys-
tematic errors were consistently much higher than the random 
errors. This indicates that there is a bias between the observed 
and simulated θr values. This bias, attributed to the difference in 
support scale between the training data and the application data, 
was easily corrected by linear regression, as mentioned above. 
Correcting for the bias brought the mean of the ANN-predicted 
values closer to that of the target. A sample illustration is pro-

vided in Fig. 4. Note, however, that no changes are apparent in 
the R values. In physical terms, this may suggest that the residual 
water content, dominated by hygroscopic water, depends only 
on the fi ne pore spaces created by certain fractions of soil particle 
sizes (Arya and Paris, 1981). Soil texture (sand, silt, and clay 
content) does not provide complete details of the particle size 
distribution or, in turn, the pore size distribution, including the 
arrangement, tortuosity, and connectivity of pores. This explains 
the limited success in predicting the residual soil water retention. 
It is noteworthy, however, that even when the R values are low at 
the individual point locations, the ANN–linear regression based 
PTF method provides a matching average prediction at the fi eld 
scale (i.e., the average across 50 points at the Las Cruces 
trench site).

Water Content at Field Capacity 

Performance analyses of ANN-based transfer functions for 
θf are shown in Table 4. The best correlation for θf was obtained 
with the Lin transfer function model for all but two of the clus-
tering levels. For this parameter at an intermediate pressure range 
of the nonlinear soil water retention curve, however, we observed 
very low values of R compared with those for water contents 
under wet (θs) or dry (θr) conditions. In general, ranges of sys-
tematic errors or prediction bias for θf fell somewhere between 
those of θs and θr. These fi ndings further suggest that θf predic-
tions have more uncertainty than those for θs or θr. As with the 
residual water content, limited success of the ANN for the water 
content at fi eld capacity can be attributed to having incomplete 

soil particle size distribution data.
Overall, using soil texture and bulk 

density as inputs in the multiscale trans-
fer function models, better predictions 
(as refl ected by higher R values) were 
obtained for θs than for θf or θr. This is 
because of the fact that θs depends on the 
total pore space rather than specifi c pore 
arrangements, as is the case for θf and θr. 
The pore volume information is indi-
rectly available to the ANN through the 
bulk density input. Various pore sizes and 
their distribution, including structural 
anomalies, can cause the fi eld capacity 
and residual water content values to be 
different, even within the same soil type. 
The presence of organic matter may also 
infl uence their values. The fact that our 
ANN training does not account for the 
presence of macropores and mesopores 
(which affect θf ) or organic matter could 
further explain some of the reductions 
in the correlation between observed and 
simulated values for θf and θr.

Construction of the Soil Water 
Retention Curve

Sample graphs for the fi tted water 
retention curves for several point loca-
tions at the Las Cruces trench site are 
shown in Fig. 5. The “Observed” curve 

TABLE 3. Statistical analysis of artifi cial neural network predicted fi ne-resolution residual volumetric 
soil water content values from Las Cruces trench site.

Cluster Transfer 
function† Mean SD R RMSE MSE Random 

error
Systematic 

error
— m3 m−3 — ——— % ———

1 Linear 0.052 0.007 0.173 3.08 × 10−2 9.464 × 10−4 11.6 88.4
Log 0.052 0.006 −0.046 3.10 × 10−2 9.631 × 10−4 11.6 88.4
Tan 0.055 0.006 0.054 2.75 × 10−2 7.582 × 10−4 14.8 85.2

2 Linear 0.057 0.007 0.158 2.63 × 10−2 6.902 × 10−4 16.0 84.0
Log 0.049 0.006 0.285 3.30 × 10−2 1.088 × 10−3 9.5 90.5
Tan 0.068 0.009 0.415 1.64 × 10−2 2.676 × 10−4 34.6 65.4

3 Linear 0.058 0.007 0.176 2.54 × 10−2 6.432 × 10−4 17.0 83.0
Log 0.056 0.006 0.278 2.67 × 10−2 7.118 × 10−4 14.6 85.4
Tan 0.066 0.011 0.445 1.79 × 10−2 3.194 × 10−4 28.1 71.9

4 Linear 0.051 0.007 0.178 3.15 × 10−2 9.912 × 10−4 11.0 89.0
Log 0.052 0.005 0.164 2.98 × 10−2 8.883 × 10−4 12.4 87.6
Tan 0.057 0.004 0.144 2.51 × 10−2 6.322 × 10−4 17.5 82.5

5 Linear 0.052 0.007 0.185 3.01 × 10−2 9.089 × 10−4 12.0 88.0
Log 0.055 0.006 0.233 2.75 × 10−2 7.539 × 10−4 14.1 85.9
Tan 0.057 0.005 0.287 2.53 × 10−2 6.394 × 10−4 16.2 83.8

6 Linear 0.058 0.007 0.197 2.51 × 10−2 6.285 × 10−4 17.3 82.7
Log 0.052 0.006 0.020 3.08 × 10−2 9.510 × 10−4 11.8 88.2
Tan 0.051 0.007 0.339 3.07 × 10−2 9.429 × 10−4 10.5 89.5

7 Linear 0.054 0.007 0.197 2.88 × 10−2 8.289 × 10−4 13.1 86.9
Log 0.058 0.005 0.262 2.47 × 10−2 6.087 × 10−4 17.2 82.8
Tan 0.069 0.007 0.395 1.50 × 10−2 2.254 × 10−4 41.9 58.1

8 Linear 0.054 0.007 0.198 2.85 × 10−2 8.139 × 10−4 13.3 86.7
Log 0.062 0.007 0.388 2.05 × 10−2 4.194 × 10−4 22.7 77.3
Tan 0.071 0.009 0.456 1.42 × 10−2 2.005 × 10−4 44.2 55.8

9 Linear 0.056 0.007 0.219 2.64 × 10−2 6.970 × 10−4 15.4 84.6
Log 0.052 0.005 0.016 3.08 × 10−2 9.457 × 10−4 12.0 88.0
Tan 0.076 0.007 0.448 1.06 × 10−2 1.132 × 10−4 78.6 21.4

10 Linear 0.057 0.007 0.202 2.62 × 10−2 6.842 × 10−4 15.8 84.2
Log 0.056 0.006 0.092 2.67 × 10−2 7.104 × 10−4 15.7 84.3
Tan 0.069 0.005 0.398 1.46 × 10−2 2.125 × 10−4 44.2 55.8

Target 0.080 0.011

† Log = log-sigmoid; Tan = tan-sigmoid.
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corresponds to the values measured at the point location (from 
Wierenga et al., 1989). The “Target (vG)” curve corresponds to 
the van Genuchten equation fi tted to the observed water con-
tent values using nonlinear regression. The “ANN-Pred (vG)” 
curve corresponds to the van Genuchten equation fi t based on 
the ANN-predicted θs, θf, and θr values, averaged across the 10 
spatial clustering levels. The error bars of the ANN-predicted 
retention curve show the limits of the 
variation in the predicted water content at 
the particular pressure head across the 10 
different clusters of the training data. The 
ANN-predicted values closely matched 
the target van Genuchten curves and the 
error bars are quite small. Figure 6 shows 
the fi eld-average soil water retention curve 
across the 50 sampling points (at 0–6-cm 
depth) at the Las Cruces trench site. It 
can be inferred that the predictions based 
on an ANN trained with coarse-scale 
SSURGO data matched the observations 
at the point to fi eld scale.

As mentioned above, the coarse-
scale (1:24,000) inputs to the ANN at 
the subwatershed scale are representa-
tive values of a number of observations 
in a particular soil map unit. These 
values support a large spatial area. The 
point- or local-scale (1:1) inputs mea-
sured at a spacing of 0.5 m at the Las 
Cruces trench site have a much smaller 
support area. The factors that infl uence 
soil water retention at the smaller scale 
of support are different from those at the 
larger scale of support. Since the ANN 
model is not a physically based model, 
however, the use of ANNs to apply PTFs 
across different spatial scales of support 
can be viewed as a reasonable and fea-

sible choice. This argument is supported by the “tightness” 
of the error bars on the ANN-predicted retention curve 
at the local scale. Having narrow error bars (Fig. 5 and 
6) indicates that there is little variation in the predicted 
values of the water content with an increase in the area of 
support from which the training inputs were selected.

Figures 7 to 11 show the evolution of average val-
ues of the estimated van Genuchten soil water reten-
tion parameters α, n, θs, θr, and θf at the local (fi eld or 
trench) scale using training data pooled from 10 clusters 
or spatial extents. Little variation was found in the aver-
age values of these parameters across these spatial extents. 
In other words, the effect of the size of the training data 
pool was minimal.

Validation of Methodology

The Rio Grande basin was the primary focal area for 
our study; however, the Las Cruces trench site data have 
the disadvantage of being very localized within the basin. 
The trench covers an area <120 m2 (26.4 m long by 4.5 m 
wide). Consequently, there is not much variation in the soil 

types encountered at the local (fi eld or trench) scale. Hence, we 
decided to validate the ANN methodology with independent 
coarse- and fi ne-resolution data from a different region with dif-
ferent soil genesis and textural compositions.

The Little Washita (LW) watershed region in Oklahoma 
was selected for this validation study. Bootstrapping was again 
used to randomly select 1000 training data and 500 valida-

FIG. 4. Illustration of the effect of bias correction. Application of bias correction 
by linear regression brings the mean of predicted values closer to the mean of 
target values.

TABLE 4. Statistical analysis of artifi cial neural network predicted fi ne-resolution fi eld capacity volu-
metric water content values from the Las Cruces trench site.

Cluster Transfer 
function† Mean SD R RMSE MSE Random 

error
Systematic 

error
— m3 m−3 — ——— % ———

1 Linear 0.134 0.006 0.178 1.49 × 10−2 2.213 × 10−4 71.6 28.4
Log 0.134 0.010 0.167 1.65 × 10−2 2.723 × 10−4 59.5 40.5
Tan 0.148 0.011 0.127 2.68 × 10−2 7.204 × 10−4 22.5 77.5

2 Linear 0.126 0.007 0.198 1.33 × 10−2 1.757 × 10−4 89.7 10.3
Log 0.131 0.005 0.013 1.42 × 10−2 2.027 × 10−4 80.2 19.8
Tan 0.146 0.010 0.156 2.44 × 10−2 5.932 × 10−4 26.7 73.3

3 Linear 0.125 0.006 0.190 1.32 × 10−2 1.750 × 10−4 90.1 9.9
Log 0.126 0.005 0.141 1.31 × 10−2 1.725 × 10−4 92.4 7.6
Tan 0.132 0.006 0.122 1.46 × 10−2 2.132 × 10−4 75.1 24.9

4 Linear 0.126 0.006 0.196 1.31 × 10−2 1.720 × 10−4 91.6 8.4
Log 0.128 0.005 0.195 1.28 × 10−2 1.633 × 10−4 97.5 2.5
Tan 0.127 0.003 0.141 1.27 × 10−2 1.610 × 10−4 100.6 −0.6

5 Linear 0.129 0.007 0.204 1.34 × 10−2 1.793 × 10−4 87.7 12.3
Log 0.137 0.007 0.223 1.69 × 10−2 2.853 × 10−4 54.7 45.3
Tan 0.139 0.005 0.146 1.77 × 10−2 3.141 × 10−4 50.6 49.4

6 Linear 0.124 0.007 0.200 1.34 × 10−2 1.786 × 10−4 88.0 12.0
Log 0.132 0.006 0.206 1.41 × 10−2 1.978 × 10−4 80.0 20.0
Tan 0.134 0.010 −0.075 1.82 × 10−2 3.301 × 10−4 49.5 50.5

7 Linear 0.137 0.007 0.200 1.66 × 10−2 2.746 × 10−4 57.3 42.7
Log 0.135 0.005 0.136 1.52 × 10−2 2.312 × 10−4 69.0 31.0
Tan 0.145 0.010 0.028 2.42 × 10−2 5.848 × 10−4 27.8 72.2

8 Linear 0.130 0.007 0.203 1.37 × 10−2 1.879 × 10−4 83.6 16.4
Log 0.141 0.008 0.100 2.03 × 10−2 4.127 × 10−4 39.0 61.0
Tan 0.144 0.009 0.070 2.28 × 10−2 5.184 × 10−4 31.3 68.7

9 Linear 0.076 0.007 0.148 5.29 × 10−2 2.801 × 10−3 5.7 94.3
Log 0.135 0.003 0.145 1.51 × 10−2 2.288 × 10−4 69.5 30.5
Tan 0.149 0.009 0.134 2.70 × 10−2 7.279 × 10−4 21.9 78.1

10 Linear 0.134 0.007 0.203 1.47 × 10−2 2.161 × 10−4 72.7 27.3
Log 0.135 0.005 0.200 1.50 × 10−2 2.262 × 10−4 69.1 30.9
Tan 0.148 0.007 0.077 2.51 × 10−2 6.306 × 10−4 25.6 74.4

Target 0.127 0.013

† Log = log-sigmoid; Tan = tan-sigmoid.
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tion data from a pool of >36,000 SSURGO values from the 
Little Washita region. The ANNs were trained using the soil 
physical properties as the inputs and the soil water contents 
as the targets for the coarse-scale SSURGO data. Using the 
developed (trained and validated) ANNs with coarse-resolu-
tion data, the LW soil property data at 70 locations (Mohanty 
et al., 2002) were used as the fi ne-scale inputs for the ANN 
prediction. The outputs obtained were subjected to linear bias 
correction after checking for normality of errors, while the soil 
water retention curve was constructed (Fig. 12) using the same 
procedure as described for the Rio Grande basin. It is evident 
that the bias-corrected curve once again closely matches the 
target values. This fi nding further attests to the validity of the 
proposed method for different test sites involving different soil 
genesis, topography, vegetation, and hydroclimatic conditions, 
and varying extent of data coverage.

Any predictive model can only be as good as the input data 
supplied to it. The error bars in the two fi gures (Fig. 12 and 
13) also refl ect this data dependency of the ANN model. The 
error bars for the ANN-predicted and bias-corrected values at 
LW (Fig. 12) are comparable to those of the target data. This 
implies that the ANN is able to capture much of the variation 
in the soil water content values. This ability is provided to the 
ANN by the wide range of textures (soil types) present in the 
simulation inputs from the LW region. On the other hand, 
the soils at the Las Cruces trench site do not vary much from 

one measurement location to the next (Table 5). Hence, there 
is hardly any variation in the simulation inputs. This invari-
ance is then passed on to the predictions. The error bars in Fig. 
13 are consequently much smaller for the ANN-predicted and 
bias-corrected values compared with the target. The distribu-
tions of the soil physical properties for the LW region are given 

FIG. 5. Sample soil water retention curves: ψ is the pressure head and θ the water content; NN-Pred are the neural network predicted values. Val-
ues at each point are averaged across 10 clustering levels. Error bars show deviation in θ(ψ) values across the clustering levels.

FIG. 6. Average soil water retention curve for the Rio Grande region: 
ψ is the pressure head and θ the water content; NN-Pred are the 
neural network predicted values. Values are averaged across 10 
clustering levels and across the 50 ground points. Error bars show 
deviation in θ(ψ) values across the clustering levels.
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in Table 6. It is evident that the fi ne-scale training data for the 
LW watershed in the region of the Southern Great Plains 1997 
hydrology experiment have much greater variability than the 
fi ne-scale data of the Las Cruses trench site in the Rio Grande 
basin. Furthermore, for the LW region, the statistics of the 
fi ne-scale soil hydraulic properties are comparable to the statis-
tics of the coarse-scale data, leading to better predictions with 
the multiscale PTFs.

Conclusions
Using coarse-scale soil property data from the SSURGO 

database and local-scale soil property data, it has been shown 
that ANNs can be applied across spatial scales for estimating 
soil hydraulic properties at the local or fi eld scale while being 
trained on coarse-scale input data. The simulated soil hydrau-
lic parameters can be further corrected for bias by decomposing 

FIG. 7. Variation across clustering levels in estimated van Genuchten 
α values averaged across 50 ground points.

FIG. 8. Variation across clustering levels in estimated van Genuchten 
n values averaged across 50 ground points.

FIG. 9. Variation across clustering levels in estimated saturated volu-
metric water content (θs) values averaged across 50 ground points.

FIG. 10. Variation across clustering levels in estimated residual volu-
metric water content (θr) values averaged across 50 ground points.

FIG. 11. Variation across clustering levels in estimated volumetric 
water content at fi eld capacity (θf) values averaged across 50 ground 
points.

FIG. 12. Average soil water retention curve for the Little Washita (LW) 
watershed region: ψ is the pressure head; θ is the soil water content; 
ANN-Pred are the artifi cial neural network predicted values before 
bias correction; BC are the bias-corrected values. Values are aver-
aged across the 70 ground points. Error bars show deviation in θ(ψ) 
values across the 70 ground points.
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the estimation errors into random and systematic components. 
The systematic error, attributed to scale differences between the 
training data set and the simulation application data set, can be 
eliminated by linear regression. A limitation of the methodol-
ogy at present is that one would need to know a few “expected” 
values to use in the bias correction process. The proposed meth-
odology was validated using information from two test sites with 
different hydrologic characteristics, the Las Cruces trench site 
in New Mexico and the Little Washita watershed in Oklahoma. 
Further improvement in the ANN-based predictions across mul-
tiple spatial scales may be possible by using Bayesian statistical 
techniques or genetic algorithms in the ANN training process. 
Extension of our methodology to data with larger support scales 
(e.g., using remote sensing techniques) could also help in bet-

ter understanding the effects of the scale difference and, subse-
quently, in creating a more generalized multiscale ANN pedo-
transfer model.
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