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ABSTRACT
With the advent of advanced geographical informational systems

(GIS) and remote sensing technologies in recent years, topographic
(elevation, slope, aspect, and flow accumulation) and vegetation attri-
butes are routinely available from digital elevation models (DEMs)
and normalized difference vegetation index (NDVI) at different spa-
tial (remote sensor footprint, watershed, regional) scales. Based on the
correlation of soil distribution and vegetation growth patterns across a
topographically heterogeneous landscape, this study explores the use
of topographic and vegetation attributes in addition to pedologic at-
tributes to develop pedotransfer functions (PTFs) for estimating soil
hydraulic properties in the Southern Great Plains of the USA. The
extensive Southern Great Plains 1997 (SGP97) hydrology experiment
database was used to derive these functions by using artificial neural
networks. Eighteen models combining bootstrapping technique with
artificial neural networks were developed in a hierarchical manner to
predict the soil water contents at eight different soil water potentials
(u at 5, 10, 333, 500, 1000, 3000, 8000, and 15000 cm) and the van
Genuchten hydraulic parameters (ur, us, a, n). The performance of the
neural network models was evaluated using the Spearman correlation
coefficient between the observed and the predicted values and root
mean square error (RMSE). Although variability exists within boot-
strapped replications, improvements (of different levels of statistical
significance) were achieved with certain input combinations of basic
soil properties, topography and vegetation information compared with
using only the basic soil properties as inputs. Topography (DEM) and
vegetation (NDVI) attributes at finer scales were useful to capture
the variations within the soil mapping units for the SGP97 region
dominated by perennial grass cover.

GLOBAL- AND REGIONAL-SCALE circulation models in-
cluding soil vegetation atmosphere transfer (SVAT)

schemes are routinely used by many for hydrologic and
climate forecasting. Besides, numerical models are used at
the catchment–watershed scales for simulating water and
chemical transport in surface, vadose zone, and ground
water systems. The accuracy of the input parameters used
in these models such as soil hydraulic properties has a
significant effect on model results. Lack of detailed in-
put data sets for these models is a major limitation for
simulation of hydrologic processes at the regional scales.
Direct measurements of soil hydraulic properties are
time-consuming and costly to characterize large regions.
They also require collecting large number of undisturbed
soil samples or in situ measurements to account for the

inherent spatial variability of soil properties. Indirect esti-
mation techniques using PTFs provide an effective alter-
native to the direct measurements. A number of studies
have been performed in the past decades in develop-
ing such functions and testing them against available
soil properties databases (e.g., Rawls et al., 1991; van
Genuchten and Leij, 1992; Pachepsky et al., 1999;Wösten
et al., 2001). Based on the model and the predicted out-
puts, the PTFs can be classified into “point regression
method” that predict the soil water content at fixed soil
water potentials in thewater retention curve based on em-
pirically derived regression equations (e.g., Rawls et al.,
1982; Ahuja et al., 1985; Tomasella et al., 2000) and “func-
tion parameter method” that predict the parameters of
the hydraulic property functions (e.g., Vereecken et al.,
1989; Schaap et al., 1998; Wösten et al., 2001) such as
those given by Brooks and Corey (1964), Campbell
(1974), and vanGenuchten (1980). Both approaches have
been widely employed for various soil databases. Para-
metric approach was found to be usually preferable than
predicting water retention at specific potentials, as it gen-
erates a continuous function of the u(h) relationship. Wa-
ter retention at any potential can be estimated with these
functions. In a recent study, both the point-based and
parameter-based methods were used simultaneously for
colocated information on soil basic properties and water
retention data for Brazilian soils encompassing diverse
textural classes (Tomasella et al., 2003). Comparison of
results between the two methods indicated better per-
formance for point-based approach over parameter-based
approach suggesting water content in Brazilian soils was
controlled by different independent variables at different
water potentials including soil structure, texture, and or-
ganic matter. In other words, some basic soil properties
are more important in the wet range of water retention
curve, while other properties control the water retention
variability in the dry range. Contrarily, shape parameters
of the analytical water retention curve describe its be-
havior both in wet and dry range resulting in poor per-
formance of parameter-based approach because of its
inaccuracy to capture the complexity of the soil system.

Soil texture has been widely used to predict the soil
hydraulic properties. Using detailed particle-size distri-
butions (PSD) has been shown to increase the accuracy
of soil hydraulic parameters predictions (Schaap et al.,
1998) comparedwith predictions from textural class alone
(Clapp and Hornberger, 1978). Most commonly used soil
physical properties for prediction of the soil hydraulic
properties are soil texture, organic carbon (OC), and bulk
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density (rb). Additional parameters were rarely used in
developing PTFs (Wösten et al., 2001). Recently, Pachep-
sky et al. (2001) and Leij et al. (2004) included more-
readily available topographical attributes in addition to
soil physical parameters to develop PTFs for hill-slopes
inMaryland, USA, and Basilicata, Italy, respectively. The
results of their studies indicated improvement in the per-
formance of PTFs in predicting soil hydraulic properties
by the inclusion of topographical attributes such as slope,
elevation, curvature, aspect, and potential solar radiation.
Pachepsky et al. (2001) developed regression equations
relating topographical variables calculated from DEM
across a 3.7-ha gently sloping land to soil water retention
at 10, 33, and 100 KPa, the results of which showed the
potential of using topographical attributes as input pa-
rameters in these functions. Leij et al. (2004) developed
relationships for van Genuchten fitting parameters (a, n,
us, ur, Ks) and water retention at 5 and 1200 KPa using
both basic soil properties and topographical attributes
on a 5 km-long hill-slope transect. While the results from
both studies are promising, the main limitations are that a
soil sample were taken along one or more transects and
thus were limited to a specific hillslope or catchment scale.
With the increasing availability of remote sensing prod-

ucts from air- and space-borne sensors at different spatial
resolutions, additional land surface parameters can be
explored for their utility in developing/improving catch-
ment- or regional-scale PTFs. Based on relationships of
soil OC with land use and vegetation cover, we explored
the usefulness of remotely sensed NDVI in addition to
soil physical and topographical attributes for the estima-
tion of soil hydraulic properties across the southernGreat
Plains region of the USA, dominated by perennial grass
cover. The influence of vegetation attributes such as vege-
tation type, density, and uniformity on soil (moisture re-
tention) properties have been observed and recognized
in the past (Reynolds, 1970; Hawley et al., 1983). More
recently, Mohanty et al. (2000) showed the influence of
vegetation dynamics controlling the intraseasonal soil
moisture spatial structure. Mohanty and Skaggs (2001)
also showed that the combination of soil properties, topo-
graphic features, and vegetation attributes jointly govern
the temporal structures (including central tendency and
distribution) of soil moisture during the SGP97 remote
sensing hydrology experiment. In this study, we hypoth-
esize that vegetation has indirect effect on soil hydraulic
properties and soil pore development and thus has the
potential of being used as a possible input for PTFs along
with soil and topographical attributes. A novel feature of
this study is to extend PTFs to PTVTFs by addition of
information on topography using DEM and vegetation
information from NDVI. The primary objective of the
study is to develop and examine the performance of hier-
archical PTVTFs for the Southern Great Plains region
of USA using ground-based (soil), DEM-based (topog-
raphy), and remotely sensed (vegetation) databases col-
lected during theSGP97hydrology experiment. This study
also demonstrates the differences in the mapping of hy-
draulic parameters for LWwatershed based on the type of
inputs used for transfer functions. Note that disparity in
measurement/support scales between soil hydraulic prop-

erties (,10 cm) and county soil survey (30 m), DEM
(30m), or NDVI (30m) databases is not the main focus of
this paper and is thus ignored.

MATERIALS AND METHODS

General Site Description

Soil property data from SGP97 remote sensing hydrology
experiment was used in the study. The data are the result of an
extensive soil property campaign performed concurrently with
large scale multi platform remote sensing measurements that
make it possible to develop PTVTFs for the region. The SGP97
remote sensing hydrology experiment was sponsored by the
National Aeronautic and Space Administration (NASA) and
cosponsored by United States Department of Agriculture–
Agricultural Research Service (USDA-ARS), National Oce-
anic and Atmospheric Administration (NOAA), Department
of Energy (DOE), National Science Foundation (NSF), and
other federal and state agencies. The experiment covered a
region of approximately 40 km by 250 km (10000 km2) within
the central part of the U. S. Great Plains in the subhumid en-
vironment of Oklahoma with a north-south precipitation gra-
dient (Famiglietti et al., 1999). Soils include a wide range
of textures with large areas of both coarse and fine textures
(STATSGO database, National Resources Conservation Ser-
vice [NRCS]; county soil survey). The topography of the region
is moderately rolling. Rangeland and pasture with significant
areas of winter wheat and other crops dominate land use. Ad-
ditional background information on the Little Washita (LW)
watershed in the southern part of the SGP97 region can be
found in Allen and Naney (1991) and Jackson and Schiebe
(1993). Other relevant surface hydrometeorological, vegeta-
tion, soil, and topographic information for the SGP97 region
can be accessed at http://daac.gsfc.nasa.gov/fieldexp/SGP97
(verified 3 May 2006).

Soil Attributes

We collected soil cores from different depths at represen-
tative (soil, topography, and vegetation) sites based on a priori
information (gleaned from digital maps and overlays, http://
www.cei.psu.edu/nasa_lsh/) and concurrent site inspection. Al-
though in the database (Mohanty et al., 2002) we provided
more detailed and unbounded site classifications for future
studies reference, various combinations among soil texture
(12 USDA classes, Fig. 15–03, Gee and Bauder, 1986), relative
position (valley, hill-slope, hill-top), and vegetation type (grass,
shrub, crop) were used as the primary groups for our site
selection protocol. A total of 157 soil cores (in brass cylin-
ders, 5.3 cm diameter and 5.9 cm height) were collected from
46 quarter sections (800 m 3 800 m) matching the air-borne
electronically scanned thinned array radiometer (ESTAR)
footprints within the Little Washita (LW), El Reno (ER), and
Central Facility (CF) intensive study areas (Fig. 1). While most
soil cores were collected near the soil surface (3- to 9-cm
depth), a few cores were collected at deeper depths (within top
1 m) to encompass the entire root zone important for avail-
able water for the plant growth. Soil cores were analyzed in
the laboratory for PSD, bulk density, OC, soil water retention,
dynamic outflow, and saturated and unsaturated hydraulic con-
ductivities. Details of the sampling plan, field procedures,
and laboratory measurement methods are given in Mohanty
et al. (2002) and available online at http://daac.gsfc.nasa.gov/
fieldexp/SGP97. Soil texture distribution across LW, ER and
CF intensive study areas based on the particle size distribution
measurements of soil samples are shown in Fig. 2.
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Topographic Attributes

The topography of the study site was characterized with
DEMs of 30 m by 30 m resolution for LW, ER and CF areas
(http://www.cei.psu.edu/nasa_lsh/). The topographic attributes
including elevation, slope, aspect, and flow accumulation were
calculated using Arc View software (ver 3.2). Other secondary
attributes like profile/plan curvature were omitted due to their
low order of magnitudes (1023). The slope (in degree) rep-
resents the maximum rate of change of elevation between each
cell and its neighbors. Aspect represents the direction of slope.
It identifies the maximum rate of change in down-slope direc-
tion. The flow accumulation represents the volume of water
that is collected in the study cell/grid. Areas with stream chan-
nels have maximum flow accumulation while the ridges reflect
zero flow accumulation. Using raster GIS, flow accumulation
for each cell/grid is simply determined by the number of adja-
cent cells/grids flowing into it.

Vegetation Attribute

The NDVI was used to quantify the vegetation in each
remote sensing footprint/pixel. The NDVI is a greenness in-
dex that is related to the proportion of photosynthetically ab-
sorbed radiation and reflects the chlorophyll activity in plant.
Within a remote sensing footprint/pixel, an increase in NDVI
value signifies an increase of green vegetation. During the
SGP97 remote sensing hydrology experiment, NDVI for the

Fig. 2. Soil texture distribution across the Little Washita (LW), El Reno
(ER), and Central Facility (CF) focus regions based on particle size
distribution (PSD) measurements of 157 samples.

Fig. 1. Geographical location of Southern Great Plains 1997 (SGP97) Hydrology Experiment in Oklahoma.
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study region was derived using Landsat-7 Thematic Mapper
(TM) on 25 July 1997 at a spatial resolution of 30 m by 30 m.
The SGP97 remote sensing/ground vegetation datasets can be
located at http://daac.gsfc.nasa.gov/data/sgp97/vegetation/ndvi/.
In this study area, dominated by perennial grass cover, we as-
sumed that the vegetation distribution across the SGP region
remained constant across time based on the 25 July 1997 TM
snap shot. The value of NDVI ranges from21 to11 with vege-
tated areas typically having values greater than zero. The NDVI
estimates can be considered as an indirect indicator of amount
of biomass added to the soil surface which may be related to
theOC content of the soil. Changes in NDVI also correspond to
the changes in the vegetation health thus hinting at the plant
available water, and in turn the bulk density, pore size/structure
evolution, and the hydraulic properties (soil water retention and
hydraulic conductivity) of soil.

Neural Network Analysis

Information from the elevation, slope, aspect, flow accumu-
lation, and NDVI grids was interpolated and combined with soil
information collected from the soil cores by utilizing the Grid
Utility functions in ArcView. Different models using different
combination of soil-topography-vegetation attributes as input
were developed to predict soil hydraulic parameters for the
widely used van Genuchten (1980) functional relationship and
water content at eight different soil water matric potentials (i.e.,
5, 10, 333, 500, 1000, 3000, 8000, 15000 cm). The vanGenuchten
soil hydraulic function (van Genuchten, 1980) is defined as:

u(h) 5 ur 1
us 2 ur

[1 1 (ah)n]m
[1]

where h is the soil water matric potential [L], u is the soil water
content [L3L 23], ur is the residual water content of the soil
[L3L 23], us is the saturated water content of the soil [L3L 23], a
is a shape factor, approximately equal to the inverse to the air
entry value [L21], n is a pore-size distribution index [-], and m
is an empirical constant that canbe related ton (e.g.,m5 12 1/n).
Table 1 shows the basic statistics of the input and output variables
including van Genuchten parameters (a, n, us, and ur) and water
content at different matric potentials (u at 5, 10, 333, 500, 1000,
3000, 8000, and 15000 cm) predicted by the PTVTFs.

Feedforward and backpropagation type of neural networks
are generally used to develop PTFs (Pachepsky et al., 1996;
Schaap et al., 1998; Koekkoek and Booltink, 1999). Pedo-
transfer functions for different hierarchical levels of input pa-
rameters were also developed using neural networks (Schaap
et al., 1998). In this study, neural network analysis was per-
formed using theNeuropathSoftware (Minasny andMcBratney,
2002). A neural network comprises of a set of simple comput-
ing elements (neurons), which are organized as layers and are
linked together by weights. A neural network typically consists
of an input layer, an output layer and one or more hidden layers
linking the two layers. The hidden layer extracts useful infor-
mation from inputs and uses them to predict the outputs. Fol-
lowing Schaap et al. (1998), the number of neurons in the hidden
layer was set to six. The mathematical representation of a neu-
ral network model consists of a set of simple functions linked
together by weights. A network with an input vector of elements
xl (l 5 1, …, Ni) is transmitted through a connection that is
multiplied byweightWjl to give the hidden unit zj (j5 1,…,Nh):

zj 5 ONi

l51
wjl 1 w0 [2]

where Nh is the number of hidden units and Ni is the num-
ber of input units. The hidden units consist of the weighted

input (wjl) anda bias (w0).Abias of input equal to 1 that serves as
a constant added to the weight. These inputs are passed through
a layer of activation function f, which are designed to accommo-
date the nonlinearity in the input-output relationships. The func-
tion used in Neuropath is the sigmoid or hyperbolic tangent:

f (z) 5 tanh(z) 5 1 2
2

1 1 exp(2z)
[3]

The outputs from hidden units pass another layer of filters with
weights (ukj) and bias (u0) and are fed into another activation
function F to produce output y (k 5 1, …, No):

yk 5 F ONh

j51
ukjf1O

Nl

l51
wjl 1 wo2 1 uo

#"
[4]

The weights are adjustable parameters of the network and are
determined froma set of data through theprocess of training.The
NL2SOL adaptive nonlinear least squares algorithm (Dennis
et al., 1981) implemented in the Neuropath software was used
for training of networks by minimizing the sum of squares of the
residuals between the measured and predicted outputs.

O(W ,U) 5 ONs
i51
ONo
k51

(Pik
P (Xi) 2 Pik)

2 [5]

whereNs is the number of samples, No is the number of outputs,
W and U are weights of the hidden and the output layer, re-
spectively, Pik is the measured output and PP (X) is the predicted
output [i.e., ur, us, a, n, or u(h)] from the inputs X.

Neural networks have been combined with the bootstrap
method in the software. The bootstrap method (Efron and
Tibshirani, 1993) helps to obtain an estimate of the uncertainty
in the predictions of neural networks by resampling the train-
ing and validation data. Bootstrap assumes that the training data
set is a representationof the population, andmultiple realizations
of the population can be simulated from a single dataset. This is
donebyrepeated ‘samplingwith replacement’of theoriginaldata-
set of sizeN to obtainB bootstrap data sets, eachwith the sizeN.
Further details of the combined neural network-bootstrapping
approach adopted here can be found in Schaap et al. (1998).

A total of 140 (out of 157) soil samples containing all the in-
put information of soil, topography and vegetation attributes

Table 1. Basic statistics of the inputs and outputs parameters.

Mean
Standard
deviation Minimum Median Maximum

SAND % 45.193 24.115 1.480 37.858 94.043
SILT % 37.228 17.800 3.457 43.699 65.179
CLAY % 17.579 9.275 0.636 16.687 43.750
BD g cm23 1.408 0.104 1.074 1.411 1.711
NDVI ratio 0.271 0.248 20.380 0.350 0.630
DEM m 378.319 43.891 302.000 392.965 444.000
OC % 0.782 0.488 0.130 0.665 2.140
SLOPE, degree 0.035 0.029 0.000 0.036 0.111
ASPECT, degree 165.878 87.859 0.000 167.0 347.0
FLOWACC 29.631 195.624 0.00 2.0 2128.0
ur 0.088 0.049 0.000 0.084 0.211
us 0.372 0.051 0.251 0.367 0.703
A 0.016 0.010 0.002 0.014 0.077
N 1.721 0.909 1.102 1.507 7.513
u5 0.358 0.039 0.249 0.355 0.473
u10 0.356 0.039 0.249 0.353 0.469
u333 0.228 0.066 0.049 0.243 0.382
u500 0.208 0.067 0.044 0.219 0.368
u1000 0.180 0.065 0.036 0.185 0.357
u3000 0.146 0.060 0.026 0.143 0.318
u8000 0.128 0.053 0.021 0.127 0.311
u15000 0.126 0.056 0.021 0.121 0.309
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were chosen for this study. The data was split into two sets (i.e.,
training and validation). Each training set of 100 soil samples
was obtained from a total of 140 by random resampling and
the other 40 soil samples were used as the validation set. Thirty
random replications of training and validation sets were used
for bootstrapping. The final output was generated by bootstrap
aggregation in Neuropath, which averages each bootstrap esti-
mates from all the iterations. The number of iterations for each
prediction was set to 100. The 5 and 95 percentiles of the esti-
mates calculated by Neuropath was used to determine the un-
certainty of the predictions.

Separate sets of neural network models were used to predict
the van Genuchten hydraulic parameters (ur, us, a, n) and the
water contents at different matric potentials u(h). This is be-
cause PTFs that showed improved predictions for one of the
vanGenuchten parameters does not necessarily perform better
in predicting the water contents at different matric potentials
(Schaap et al., 1998). This was attributed to the nonlinear na-
ture of the hydraulic functions.

Based on the preliminary analysis of correlation coeffi-
cients (Tables 2 and 3), 18 different neural network models
following a hierarchical approach of inputs were developed for
the van Genuchten hydraulic parameters and soil water con-
tents at different matric potentials. The model inputs were
arranged in hierarchy as shown in Table 4. The inputs for
Model 1 to 3 were based solely on basic soil properties (i.e.,
%sand, %silt, %clay, OC, and bulk density). Model 4 to 13
used an additional single topographic or vegetation attribute
along with basic soil properties. Model 14 to 17 were built by
combining one topographic feature with vegetation and soil
properties. Finally, Model 18 was formed by including all the
soil, vegetation and topographic attributes for prediction of
hydraulic parameters and water content at different matric
potentials. Performance of the neural network models was
evaluated by spearman’s correlation coefficient (r) and root

mean square error (RMSE) between themeasured and the esti-
mated values.

RMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ON
i51

(yi 2 yi9)
2

N

vuuut
[6]

where N is the number of samples, yi and yi9are the optimized/
measured (based on lab measurements of field samples) and
predicted (by neural networks) output variables, respectively.

RESULTS AND DISCUSSION
Table 2 shows the correlation coefficients between

the different predictors and the van Genuchten hydrau-
lic parameters (ur, us, a, n). Residual water content,
ur, showed significant correlation only with %clay and
NDVI. Physically, thismay illustrate the inherent relation-
ship between the fine particles, small pore sizes, adsorbed
water, and available water (between field capacity and
permanent wilting point/residual water content) to the
plants as reflected in their greenness. On the contrary, sat-
urated water content, us, showed significant correlation
with all the basic soil properties (i.e.,%sand,%silt,%clay,
OC, and bulk density) and with slope and flow accumu-
lation among the topographic attributes. This finding sug-
gests a relationship of us as a function of soil PSD and
depositional pattern across the landscape as a result of soil
genesis and/or anthropogenic changes. The fitting param-
eter,a, did not showany significant correlationwith any of
the input parameters except elevation. On the other hand,
fitting parameter n followed the same trend as us and

Table 2. Correlation coefficients (r) between the input and output hydraulic parameters.†

SAND SILT CLAY OC BD NDVI DEM SLOPE ASPECT FLCC ur us a n

SAND 1.000 20.866 20.790 20.375 0.311 20.163 0.252 0.572 0.067 20.336 20.142 20.371 0.059 0.575
SILT 1.000 0.484 0.476 20.470 0.096 20.377 20.486 20.038 0.334 0.129 0.340 20.164 20.479
CLAY 1.000 0.239 20.089 0.151 20.052 20.392 20.117 0.124 0.247 0.361 0.090 20.581
OC 1.000 20.442 20.118 20.145 20.133 20.085 0.110 0.161 0.339 20.062 20.375
BD 1.000 20.079 0.181 0.177 0.077 20.182 20.102 20.593 20.162 0.114
NDVI 1.000 0.096 20.253 0.102 0.173 0.213 0.125 0.091 20.077
DEM 1.000 20.111 0.339 20.206 0.129 20.051 0.215 0.040
SLOPE 1.000 20.288 20.103 0.042 20.271 20.096 0.299
ASPECT 1.000 20.079 20.027 20.110 0.082 0.007
FLOWACC 1.000 0.067 0.219 20.051 20.164
ur 1.000 0.068 20.068 0.083
us 1.000 0.337 20.320
a 1.000 20.222
n 1.000

† Significant correlations are underlined.

Table 3. Correlation coefficients (r) between the inputs and output water contents at matric potentials.†

u5 u10 u333 u500 u1000 u3000 u8000 u15000

SAND 20.439 20.445 20.444 20.449 20.402 20.378 20.360 20.282
SILT 0.401 0.406 0.445 0.444 0.391 0.354 0.317 0.262
CLAY 0.354 0.354 0.330 0.345 0.313 0.31 0.310 0.208
OC 0.308 0.312 0.293 0.278 0.220 0.163 0.139 0.218
BD 20.145 20.144 20.330 20.348 20.324 20.276 20.245 20.221
NDVI 0.017 0.034 0.182 0.231 0.253 0.296 0.327 0.189
DEM 20.010 20.016 0.068 0.071 0.101 0.123 0.152 0.109
SLOPE 20.319 20.325 20.408 20.394 20.371 20.339 20.331 20.249
ASPECT 20.053 20.055 0.208 0.181 0.165 0.166 0.150 0.156
FLOWACC 0.171 0.164 0.037 0.056 0.089 0.110 0.118 0.158

† Significant correlations are underlined.
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showed significant correlations with basic soil properties
and slope. Theoretically, this finding may reflect the sig-
nificance of a (related to the bubbling pressure or biggest
pore that may in turn be associated with relative land-
scape position) as opposed ton (related to entire pore-size
distribution as per the textural composition). For all hy-
draulic parameters except a, basic soil properties (based
on same support size) showed the most significant corre-
lations. The low correlations of soil hydraulic parameters
with topographic and vegetation attributes could be a
result of different spatial resolution (support size) of topo-
graphic attributes (e.g., Famiglietti et al., 1998) and vege-
tation indices (NDVI)with respect to hydraulic properties
measurement scale. The low correlations of topographic
attributes with hydraulic parameters are in agreement
with previous studies (Leij et al., 2004,Moore et al., 1993).
Table 3 shows correlations between predictors and

water contents at different matric potentials. Most of the
basic soil properties appear to be significantly correlated
to water content at different matric potentials with ex-
ception to OC and water content at 3000 and 8000 cm
and to bulk density and water content near saturation
(5 and 10 cm). In particular, elevation (DEM) did not
show any significant correlations to the water contents at
any matric potentials as found in a previous study by
Pachepsky et al. (2001). Slope showed significant correla-
tions to water contents across the pressure range whereas
flow accumulation and aspect could be correlated only
to wet through intermediate range of water contents at
(5 and 500 cm).NDVIwas significantly correlated towater
contents at matric potentials between 333 (i.e., field ca-
pacity) and 15000 cm (i.e., permanent wilting point). Note
that this finding reconfirms our previous observation of
significant correlation between NDVI and available water
content (u333–u15000) for the plants.

Hydraulic Parameters
Hierarchical inputs used for different neural network

models are shown in Table 4. Tables 5 and 6 show the
correlations between the fitted and predicted hydraulic

parameters and water contents at different matric po-
tentials by the neural network models, respectively. In
general, correlation coefficients were greater for the
u(h) than for (ur, us, a, n). This observation may be due
to the fitted nature of van Genuchten hydraulic param-
eters to the nonlinear u(h) function. In addition, RMSE
values for both hydraulic parameters and soil water
content at different matric potentials are presented in
Tables 7 and 8 illustrating the goodness of fit of indi-
vidual neural network models. These are useful to quan-
tify the uncertainty or the spread of the predicted data
from the measured parameters and are useful for sto-
chastic modeling of hydrologic processes.

Using only the information from soil texture (Model 1)
resulted in low correlation coefficients compared with
the rest of the neural network models for all the hy-
draulic parameters (0.445 for a, 0.531 for n, 0.487 for
ur, 0.708 for us). Correlations increased from Model 1
to Model 3 for all the parameters except for ur where
the correlation dropped statistically insignificantly from
Model 1 to 2. The increase in correlation is due to increase
in information regarding the PSDwith the addition of OC
and rb. Addition of vegetation information (Models 4 and
5) also showed an increase in correlation compared with
Models 1 and 2 for all parameters except for us where

Table 4. Inputs used for different models used for developing
parametric and point PTFs.

Model Inputs†

Model 01 ssc
Model 02 ssc-bd
Model 03 ssc-oc-bd
Model 04 ssc-ndvi
Model 05 ssc-bd-ndvi
Model 06 ssc-dem
Model 07 ssc-bd-dem
Model 08 ssc-slp
Model 09 ssc-bd-slp
Model 10 ssc-asp
Model 11 ssc-bd-asp
Model 12 ssc-flwa
Model 13 ssc-bd-flwa
Model 14 ssc-bd-dem-ndvi
Model 15 ssc-bd-slp-ndvi
Model 16 ssc-bd-asp-ndvi
Model 17 ssc-bd-flwa-ndvi
Model 18 ssc-bd-spl-asp-flwa-ndvi

† ssc, %sand-%silt-%clay; bd, bulk density; oc, organic C; slp, slope; asp,
aspect; flaw, flow accumulation; dem, digital elevation model; ndvi, nor-
malized different vegetation index.

Table 5. Correlation coefficients between the measured and the
predicted hydraulic parameters.

Correlations ur us a n

Model 01 0.487 0.708 0.445 0.531
Model 02 0.484 0.779 0.454 0.623
Model 03 0.547 0.860 0.491 0.662
Model 04 0.512 0.745 0.468 0.558
Model 05 0.632 0.764 0.472 0.682
Model 06 0.437 0.716 0.299 0.514
Model 07 0.526 0.794 0.356 0.652
Model 08 0.568 0.642 0.237 0.406
Model 09 0.559 0.774 0.397 0.572
Model 10 0.576 0.788 0.462 0.559
Model 11 0.554 0.750 0.423 0.589
Model 12 0.437 0.717 0.446 0.534
Model 13 0.437 0.859 0.514 0.579
Model 14 0.709 0.822 0.501 0.672
Model 15 0.739 0.761 0.516 0.601
Model 16 0.667 0.757 0.395 0.611
Model 17 0.511 0.815 0.453 0.603
Model 18 0.774 0.822 0.369 0.491

Table 6. Correlation coefficients between the measured and the
predicted water contents.

Correlations u5 u10 u333 u500 u1000 u3000 u8000 u15000

Model 01 0.451 0.461 0.653 0.684 0.662 0.662 0.636 0.574
Model 02 0.502 0.511 0.693 0.728 0.728 0.740 0.749 0.637
Model 03 0.499 0.504 0.676 0.723 0.711 0.710 0.700 0.569
Model 04 0.523 0.517 0.735 0.751 0.747 0.758 0.757 0.585
Model 05 0.558 0.563 0.767 0.788 0.784 0.797 0.808 0.636
Model 06 0.511 0.518 0.704 0.738 0.738 0.737 0.834 0.602
Model 07 0.524 0.530 0.720 0.731 0.728 0.719 0.831 0.592
Model 08 0.511 0.516 0.738 0.725 0.704 0.687 0.663 0.593
Model 09 0.563 0.564 0.752 0.763 0.746 0.720 0.714 0.603
Model 10 0.455 0.461 0.694 0.713 0.702 0.713 0.694 0.651
Model 11 0.529 0.537 0.769 0.775 0.759 0.752 0.742 0.703
Model 12 0.450 0.461 0.658 0.692 0.665 0.652 0.619 0.558
Model 13 0.481 0.492 0.698 0.737 0.712 0.689 0.670 0.596
Model 14 0.569 0.570 0.788 0.829 0.828 0.838 0.858 0.561
Model 15 0.592 0.592 0.778 0.800 0.783 0.767 0.767 0.632
Model 16 0.415 0.440 0.507 0.561 0.491 0.414 0.388 0.374
Model 17 0.564 0.562 0.794 0.796 0.795 0.795 0.800 0.652
Model 18 0.553 0.556 0.816 0.817 0.822 0.814 0.806 0.639
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correlation dropped around 0.779 (Model 2) to 0.764 for
us (Model 5). Since NDVI does not show any significant
correlation to any other input parameters, this suggests
its high potential for being used as a predictor for the
hydraulic parameters. Addition of topographic variables
showed a mixed response for different hydraulic param-
eters. Adding elevation (DEM) as input (Model 6) to the
soil texture resulted in a decrease in correlation coeffi-
cients for all parameters except for us where a statistically
insignificant increase in correlation (from 0.708 to 0.716)
was observed. Effects of adding elevation (DEM) and the
bulk density jointly (Model 7) showed increasing correla-
tion trends for all parameters except for a as compared
with Model 2. This finding suggests the significance of
relative landscape position resulting from soil erosion/
depositional patterns that in turn relates to the soil hy-
draulic properties. Adding slope as a predictor showed
decreasing correlation trends for all the parameters as
illustrated (Model 8 vs. 1 and 9 vs. 2) except for the pa-
rameter ur. One of the possible explanations for this be-
havior could be the generally low values of slope across
the study area, which resulted inmasking of the properties
of the other input parameters. Addition of aspect to the
inputs of Model 1 resulted in Model 10, which showed
increasing correlation trends for all the hydraulic param-

eters. However, aspect along with bulk density (Model
11) resulted in lowering of correlation coefficients of all
the hydraulic parameters except for ur when compared
with Model 2. Including flow accumulation information
resulted inmixedmodel performances for various hydrau-
lic parameters (Model 12 vs. 1 and 13 vs. 2).

Different combinations of topographic and vegetation
information (Model 14 to 17) produced different model
performance. Combining elevation and NDVI inputs to-
gether in Model 14 showed increased correlation coef-
ficients for all the hydraulic parameters except for n
when compared with Model 5 and 7. Combination of
flow accumulation and NDVI (Model 17) on the other
hand showed decreased correlations for all the hydrau-
lic parameters. For slope and aspect combinations with
NDVI (Model 15 and 16), the correlation coefficients in-
creased for ur, us, and a when compared with Model 2.
Although the results of including topographic and vege-
tation parameters were mixed for individual combina-
tions, a general increase was observed in correlations in
comparison with other models without these inputs.

Combination of all the inputs together (Model 18)
showed the maximum correlation coefficient for the re-
sidual water content (ur) with respect to all the neural
network models. For water content at saturation (us)
performance of Model 18 was moderate, whereas the
model showed poorest performance for predicting a and
n. This could be the result of over-parameterization of
Model 18 because of maximum number of inputs used.

Volumetric Water Content at Different
Matric Potentials

In general, performance of neural network models for
water contents at different matric potential u(h) were
better than for the hydraulic parameters (Tables 5 vs. 6
and 7 vs. 8). This behavior reflects the fact water contents
are directly measured and are not fitted parameters as
the hydraulic parameters. The correlation coefficients for
all the models were relatively small at the wet end (matric
potentials of 5 and 10 cm) and at the dry end (matric
potential 15000 cm) of the soil water retention curve. The
maximum correlations were observed at the intermediate
matric potential range for all the models. This feature
may reflect the nonlinearity and change in slope of u(h)
and thus its sensitivity to model inputs across the matric
potential range (h). Addition of topographic, vegetation
or combination of topographic and vegetation informa-
tion resulted in increased correlation coefficients for all
models, compared with models using only the basic soil
properties (Model 1 through Model 3). Exceptions to
these observations were Model 12 and Model 13 with
flow accumulation as input, in which the performance
decreased for matric potentials at 5, 3000, and 8000 cm.
Using all the input parameters together in Model 18 did
not result in maximum correlation coefficients for the
water contents u(h) which could again be attributed to
possible over-parametrizing of the models.

Combination of topographic attributes and vegetation
information produced mixed effect on model perfor-
mance. For example, Model 16 with the combination of

Table 7. Root Mean Square Error between the measured and the
predicted hydraulic parameters.

RMSE ur us a n

Model 01 0.037 0.05 0.006 0.67
Model 02 0.037 0.044 0.006 0.64
Model 03 0.036 0.039 0.005 0.55
Model 04 0.036 0.048 0.006 0.66
Model 05 0.033 0.046 0.006 0.54
Model 06 0.038 0.052 0.006 0.65
Model 07 0.036 0.043 0.006 0.59
Model 08 0.035 0.053 0.006 0.80
Model 09 0.035 0.046 0.006 0.60
Model 10 0.035 0.048 0.006 0.61
Model 11 0.035 0.048 0.006 0.61
Model 12 0.038 0.051 0.006 0.67
Model 13 0.038 0.039 0.005 0.68
Model 14 0.031 0.043 0.005 0.56
Model 15 0.030 0.047 0.005 0.59
Model 16 0.032 0.046 0.006 0.59
Model 17 0.026 0.043 0.006 0.61
Model 18 0.029 0.042 0.006 0.70

Table 8. Root Mean Square Errors between the measured and the
predicted water contents.

RMSE u5 u10 u333 u500 u1000 u3000 u8000 u15000

Model 01 0.029 0.029 0.051 0.051 0.052 0.051 0.050 0.049
Model 02 0.028 0.028 0.048 0.047 0.047 0.045 0.044 0.047
Model 03 0.028 0.028 0.049 0.048 0.048 0.048 0.046 0.049
Model 04 0.028 0.028 0.044 0.044 0.043 0.042 0.043 0.049
Model 05 0.027 0.027 0.042 0.042 0.039 0.039 0.039 0.047
Model 06 0.028 0.027 0.046 0.044 0.046 0.047 0.038 0.048
Model 07 0.028 0.027 0.045 0.047 0.047 0.047 0.039 0.049
Model 08 0.028 0.028 0.043 0.047 0.048 0.049 0.048 0.048
Model 09 0.027 0.026 0.043 0.043 0.045 0.047 0.046 0.048
Model 10 0.029 0.028 0.048 0.048 0.049 0.048 0.046 0.045
Model 11 0.028 0.027 0.041 0.042 0.043 0.042 0.045 0.043
Model 12 0.029 0.028 0.049 0.049 0.051 0.052 0.051 0.050
Model 13 0.029 0.028 0.046 0.045 0.048 0.048 0.047 0.048
Model 14 0.027 0.026 0.041 0.036 0.036 0.030 0.037 0.050
Model 15 0.027 0.026 0.041 0.039 0.042 0.041 0.043 0.048
Model 16 0.047 0.045 0.062 0.058 0.061 0.063 0.061 0.061
Model 17 0.027 0.027 0.039 0.039 0.039 0.040 0.041 0.044
Model 18 0.027 0.027 0.037 0.037 0.038 0.039 0.040 0.046

R
e
p
ro
d
u
c
e
d
fr
o
m

S
o
il
S
c
ie
n
c
e
S
o
c
ie
ty

o
f
A
m
e
ri
c
a
J
o
u
rn
a
l.
P
u
b
lis
h
e
d
b
y
S
o
il
S
c
ie
n
c
e
S
o
c
ie
ty

o
f
A
m
e
ri
c
a
.
A
ll
c
o
p
y
ri
g
h
ts

re
s
e
rv
e
d
.

1436 SOIL SCI. SOC. AM. J., VOL. 70, SEPTEMBER–OCTOBER 2006



NDVI and aspect produced poorer correlations com-
pared with the models using these inputs individually
along with basic soil properties (Model 4 and 10). In
contrast Model 14 with elevation and NDVI as inputs
performs better as compared with Model 5 and 7 for
water content at all matric potentials except at 15000 cm.
Correlations dropped in the dry range (1000 to 15000 cm)
using slope andNDVI as input (Model 15).Model 17with
flow accumulation and NDVI gave intermediate correla-
tion coefficients for water content at the matric potentials
of 100, 3000, and 8000 cm.
For hydraulic parameters as well as soil water content

at different matric potentials, RMSE shows the same
trends as shown by the correlation coefficients, lower
RMSE were obtained with higher correlations. Model
performance (correlation coefficient or RMSE) depends
on different input parameters and their correlations be-
tween each other. The maximum number of input pa-
rameters did not necessarily result in the best model
performance and hence care has to be taken while choos-
ing the different predictors. Not a single individual neural
network model was able to produce the best result for
all the output variables. This suggests that to obtain the
best possible estimation, different combinations of input
parameters have to be used for different output variables.

The use of ancillary topographic and vegetation data has
been found helpful to increase the correlation coefficients
for soil hydraulic properties but a general trend is hard to
establish. Although physical reasoning/understanding for
these findings can at best be speculative at present, further
designed experiments isolating specific attribute combi-
nations could help unravel the intricate relationships be-
tween specific soil, topography, and vegetation properties
at different scales.

Uncertainty Analysis
Results indicated considerable uncertainties in pre-

dicted output variables as observed in other studies (e.g.,
Schaap et al., 1998). Table 9 and 10 show the 5 (lower)
and 95 (upper) percentiles from bootstrapping of the
replicate estimates for hydraulic parameters and water
contents at different matric potentials. The range be-
tween two percentiles represents the general spread or
uncertainties of the model predictions. For the hydraulic
parameters, the uncertainty levels varied proportional to
the magnitude of the parameter (e.g., n vs. a). A general
decrease in the uncertainty values are observed with the
corresponding hierarchical increase in inputs except for
models with flow accumulation as input. Although the

Table 9. 90% Confidence intervals of the hydraulic parameters using Bootstrap Technique.

ur us a n

Lower Upper Lower Upper Lower Upper Lower Upper

Model 01 0.05740 0.10733 0.34146 0.39245 0.01101 0.01986 1.24858 2.32331
Model 02 0.06340 0.10348 0.34682 0.39001 0.01067 0.02038 1.36729 2.34242
Model 03 0.06274 0.10685 0.34601 0.38828 0.01172 0.01982 1.42664 2.35241
Model 04 0.06405 0.09982 0.35072 0.38745 0.01105 0.01965 1.43293 2.19218
Model 05 0.06252 0.10768 0.35010 0.38954 0.01193 0.01905 1.43703 2.17430
Model 06 0.06246 0.10853 0.34306 0.39140 0.01267 0.01936 1.42542 2.18157
Model 07 0.06734 0.10249 0.34896 0.38706 0.01342 0.01871 1.45518 2.19390
Model 08 0.06101 0.10960 0.34510 0.39117 0.01106 0.01980 1.41767 2.30932
Model 09 0.06345 0.10585 0.34845 0.39084 0.01154 0.01866 1.39848 2.29406
Model 10 0.06104 0.10856 0.34606 0.38923 0.01148 0.01947 1.29616 2.27060
Model 11 0.06732 0.10440 0.34548 0.38956 0.01123 0.01876 1.35747 2.28342
Model 12 0.06107 0.10999 0.34368 0.39284 0.01114 0.02001 1.24426 2.34226
Model 13 0.06470 0.10415 0.35068 0.39228 0.01056 0.02000 1.35832 2.28853
Model 14 0.06814 0.10220 0.35503 0.38938 0.01281 0.01960 1.48562 2.21543
Model 15 0.06927 0.09847 0.35238 0.38968 0.01321 0.01881 1.51927 2.15137
Model 16 0.05745 0.11093 0.34326 0.39452 0.01057 0.02020 1.29176 2.34584
Model 17 0.06732 0.10440 0.35298 0.38747 0.01243 0.01902 1.38253 2.05260

Table 10. 90% Confidence intervals of the predicted water contents at different matric potentials predicted using Bootstrap Technique.

u5 u10 u333 u500 u1000 u3000 u8000 u15000

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

Model 01 0.3204 0.3893 0.3185 0.3871 0.1915 0.2512 0.1732 0.2287 0.1482 0.1981 0.1194 0.1631 0.0707 0.1781 0.0688 0.1770
Model 02 0.3206 0.3888 0.3188 0.3867 0.1955 0.2552 0.1775 0.2329 0.1526 0.2022 0.1232 0.1666 0.0756 0.1800 0.0700 0.1826
Model 03 0.3210 0.3890 0.3192 0.3867 0.1945 0.2519 0.1767 0.2300 0.1514 0.1990 0.1218 0.1635 0.0807 0.1704 0.0737 0.1741
Model 04 0.3212 0.3891 0.3194 0.3868 0.1962 0.2543 0.1781 0.2321 0.1528 0.2013 0.1233 0.1660 0.0776 0.1773 0.0766 0.1734
Model 05 0.3215 0.3898 0.3197 0.3876 0.1979 0.2568 0.1797 0.2345 0.1545 0.2037 0.1248 0.1678 0.0782 0.1796 0.0730 0.1785
Model 06 0.3211 0.3896 0.3193 0.3873 0.1953 0.2544 0.1771 0.2320 0.1519 0.2013 0.1224 0.1658 0.0751 0.1791 0.0711 0.1759
Model 07 0.3190 0.3861 0.3172 0.3840 0.1931 0.2490 0.1751 0.2268 0.1502 0.1965 0.1212 0.1621 0.0820 0.1680 0.0796 0.1668
Model 08 0.3208 0.3896 0.3190 0.3874 0.1967 0.2568 0.1782 0.2341 0.1530 0.2032 0.1232 0.1671 0.0732 0.1820 0.0682 0.1820
Model 09 0.3207 0.3887 0.3189 0.3864 0.1947 0.2527 0.1764 0.2302 0.1516 0.1999 0.1224 0.1649 0.0781 0.1752 0.0708 0.1773
Model 10 0.3206 0.3889 0.3186 0.3865 0.1910 0.2492 0.1726 0.2265 0.1474 0.1958 0.1184 0.1608 0.0741 0.1716 0.0724 0.1713
Model 11 0.3200 0.3875 0.3181 0.3852 0.1920 0.2497 0.1740 0.2274 0.1490 0.1968 0.1200 0.1620 0.0775 0.1708 0.0733 0.1745
Model 12 0.3207 0.3894 0.3188 0.3872 0.1960 0.2561 0.1775 0.2334 0.1520 0.2023 0.1223 0.1665 0.0709 0.1833 0.0686 0.1807
Model 13 0.3219 0.3897 0.3200 0.3875 0.1944 0.2530 0.1765 0.2309 0.1514 0.2003 0.1218 0.1648 0.0751 0.1764 0.0693 0.1779
Model 14 0.3204 0.3873 0.3185 0.3850 0.1952 0.2516 0.1767 0.2287 0.1511 0.1976 0.1215 0.1624 0.0836 0.1663 0.0754 0.1710
Model 15 0.3218 0.3890 0.3199 0.3868 0.1965 0.2542 0.1781 0.2316 0.1529 0.2008 0.1235 0.1655 0.0805 0.1738 0.0735 0.1774
Model 16 0.1940 0.5237 0.1947 0.5236 0.0134 0.2185 20.004 0.1869 20.048 0.1151 20.093 0.0344 20.098 0.0125 20.044 0.0476
Model 17 0.3220 0.3898 0.3202 0.3875 0.1948 0.2521 0.1767 0.2299 0.1516 0.1991 0.1222 0.1639 0.0804 0.1710 0.0747 0.1722
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results from correlation coefficients and RMSE are not
exactly replicated for all the bootstrap sets generated,
the general trends of uncertainties observed are in agree-
ment to the results discussed in the previous sections.
For water contents, all the models show large spreads
at the wet end (matric potentials of 5 and 10 cm) and at
the dry end (matric potential 15000 cm) of the soil water
retention curve, which is also supported by the small cor-
relation coefficients obtained at these potentials. Using
only the basic soil properties resulted in generally large
ranges for water content at the small and large matric
potentials and small ranges for water content at inter-
mediate matric potentials of the water retention curves.
Note that joint inclusion of elevation and NDVI as pre-
dictors (Model 14) gave lowest while joint inclusion of
aspect and NDVI as predictors (Model 16) gave highest
uncertainty (range) consistently for all the matric po-
tentials. Mixed model responses were obtained for the
other combinations of topographic attributes and vege-
tation information with the basic soil properties. Figure 3
shows the water contents at different matric potentials
obtained from the Models 3, 7, and 14 along with the lab
measurements for one soil sample (Sample ID # 15)
from the validation data set. The result clearly demon-

strates the reduction in the uncertainty levels with the
addition of elevation and NDVI as inputs. However, sta-
tistical comparison (one way ANOVA test at signifi-
cance level a 5 0.05) of the bootstrapped replications
between the four neural network models (1, 3, 7, and 14)
showed insignificant differences with a range of statis-
tical power/confidence (0.236–0.999; see Table 11).

Application of the Neural Network Models
Neural network Model 14 (%sand-%silt-%clay-bulk

density-DEM-NDVI) andModel 1 (%sand-%silt-%clay)
were used to generate hydraulic parameter maps for the
LW watershed of the study region at 1 km spatial reso-
lution. The values for %sand, %silt, and %clay were ob-
tained from the STATSGO database (1: 250000 scale).
Elevation and NDVI values were obtained from DEM
and the clipped NDVI images of 30 m resolution. A pixel
scale of 1 km was chosen to overcome the resolution mis-
match between the different inputs used. The output hy-
draulic parameters forLWwatershedwere generated using
the weights assigned to the model inputs after training.

Figure 4 shows the estimated hydraulic parameters
(ur, us, a, n) from Model 1. The watershed is divided
into zones that correspond to the soil mapping units of
STATSGO database. Each map unit represents a unique
value of sand, silt and clay percentages and hence only
a single estimate of hydraulic parameters could be ob-
tained for each zone. The estimated hydraulic param-
eters fromModel 14 (Fig. 5, averaged over 800m3 800m
pixels matching the air-borne passive microwave remote
sensor footprints used during SGP97 experiment) exhibit
a wider range compared with those generated from
Model 1. This is due to the fine resolution of topography
and vegetation inputs compared with the basic soil prop-
erties. The variation within soil mapping units of the es-
timated hydraulic parameters is visible due to the fine
resolution and the indirect effects of the ancillary topog-
raphy and vegetation parameters.

CONCLUSIONS
Vegetation and topography have been known to af-

fect the soil hydrologic phenomena and properties. This
study was designed to examine the effect of including
topographic and vegetation attributes on the prediction

Fig. 3. Lower and upper confidence intervals of three different neural
network models for water content at different matric potentials.

Table 11. Statistical significance (of similarity) between predictions using four different neural network models at a 5 0.05 (with one-way
ANOVA test).

ur us a n u5 u10

Model 1 3 7 14 1 3 7 14 1 3 7 14 1 3 7 14 1 3 7 14 1 3 7 14

1 1 0.874 0.780 0.873 1 0.741 0.798 0.694 1 0.236 0.569 0.498 1 0.339 0.976 0.642 1 0.973 0.651 0.843 1 0.975 0.655 0.838
3 1 0.904 0.999 1 0.940 0.950 1 0.537 0.611 1 0.355 0.623 1 0.627 0.822 1 0.633 0.814
7 1 0.905 1 0.890 1 0.914 1 0.664 1 0.794 1 0.808
14 1 1 1 1 1 1

u333 u500 u1000 u3000 u8000 u15000

Model 1 3 7 14 1 3 7 14 1 3 7 14 1 3 7 14 1 3 7 14 1 3 7 14

1 1 0.865 0.980 0.851 1 0.831 0.998 0.877 1 0.855 0.988 0.915 1 0.833 0.963 0.939 1 0.905 0.949 0.955 1 0.902 0.973 0.971
3 1 0.846 0.986 1 0.829 0.954 1 0.867 0.939 1 0.920 0.944 1 0.956 0.950 1 0.929 0.931
7 1 0.831 1 0.875 1 0.927 1 0.976 1 0.995 1 0.998
14 1 1 1 1 1 1
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of near-surface soil hydraulic properties. Specifically, we
explored the usefulness of topographic attributes from
DEMand remotely sensedNDVI in addition to soil physi-
cal attributes in developing and improving catchment- or
regional-scale PTFs where vegetation cover is dominantly
perennial. Artificial neural networks were used to de-
velop 18 models to predict the van Genuchten hydraulic
parameters (ur, us, a, n) and water contents at different
matric potentials, u(h). Improvements (of different statis-
tical significance) were found for certain soil water reten-
tion parameters and soil water contents using different
combinations of basic soil properties along with topog-
raphy and vegetation attributes as inputs. The pixel-scale
hydraulic parameters predicted using the developedmod-
els demonstrate the usefulness of incorporating topo-
graphic and vegetation information along with the basic
soil properties. Although, the basic soil properties showed
the maximum correlation to the hydraulic parameters,
the spatial resolution of available soil data is usually not
suitable enough for distributed hydrologic modeling at
watershed or regional scale. The indirect influence of
topographic and vegetation properties on soil hydraulic
properties, and their availability at finer resolution using

advanced ground/remote sensing techniques (e.g., DEM
and NDVI) demonstrate the suitability of developing
PTVTFs at the landscape scales. The addition of the re-
motely sensed NDVI has been found useful in increasing
the correlation coefficients for soil hydraulic properties,
although a conclusive trend is hard to establish. Further
studies isolating specific attribute combinations could help
unravel the intricate relationships between specific soil,
topography, and vegetation properties at different scales.
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