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[1] In this note, some analytical solutions for steady state vertical infiltration are
presented. The forms of unsaturated hydraulic conductivity function used in the study are
the rational power model of the form K(y) = KS/[1 + (ay)b] and the Brooks and Corey
[1964] model. The work presented in this note complements Warrick’s [1988] solutions
for evaporation and provides analytical solutions for vertical infiltration. INDEX TERMS:

1875 Hydrology: Unsaturated zone; 1866 Hydrology: Soil moisture; 1836 Hydrology: Hydrologic budget

(1655); 1829 Hydrology: Groundwater hydrology; KEYWORDS: Steady state infiltration, unsaturated hydraulic

conductivity, rational power model, Brooks and Corey model

1. Introduction

[2] One-dimensional steady state vertical flow is a prac-
tical assumption in many soil hydrologic studies because the
gradients would be relatively very small in the horizontal
direction. The one-dimensional Richards’ equation was
solved by Warrick [1988] to consider evaporation from a
shallow water table. Two types of unsaturated hydraulic
conductivity functions were used in his study, i.e., the
rational power model of Gardner’s [1958] type with all
real power values and the Brooks and Corey [1964] model.
Warrick’s [1988] solutions are not suitable for the case of
infiltration (i.e., downward flux q). The analytical solutions
were derived by Warrick [1991] and Gardner [1958] for the
relatively simple exponential hydraulic conductivity func-
tion of Gardner [1958]. To the best of our knowledge, there
are no analytical solutions available in the literature for the
infiltration case. There are only a few approximate solutions
available for the problem. Among them, Salvucci [1993]
obtained an approximate solution with explicit expressions
for capillary tension as a function of depth for both
evaporation and infiltration using the rational power model.
More recently, Basha [1999] presented an approximate
solution of the steady infiltration with arbitrary plant with-
drawal for the rational power model. We now extend
analytical solutions to the infiltration case, and this work
serves to fill in the existing gap in terms of analytical
solution.

2. One-Dimensional Steady State Infiltration

[3] The capillary tension profile can be determined by the
Darcy’s equation where one-dimensional steady state infil-
tration can be expressed as

�q ¼ K yð Þ dy
dz

� 1

� �
; ð1Þ

where q is the infiltration rate, K is the unsaturated hydraulic
conductivity, y is the capillary tension, and z is the vertical

distance (positive upward) with z = 0 at the water table
where y = 0. Then equation (1) leads to

z ¼
Zy
0

K yð Þdy
K yð Þ � q

: ð2Þ

2.1. Rational Power Model

[4] Following Gardner [1958], we employ the following
unsaturated hydraulic conductivity model to relate the
capillary tension to the reduction of hydraulic conductivity
from its saturated value KS:

K yð Þ ¼ KS

1þ ayð Þb
: ð3Þ

Substitution of equation (3) to equation (2) leads to

z ¼
Zy
0

K yð Þdy
K yð Þ � q

¼ 1

1� q0

Zy
0

dy

1� q0 ayð Þb= 1� q0ð Þ
; ð4Þ

where q0 is the normalized infiltration flux, q0 = q/KS.
[5] After the introduction of a new variable,

v ¼ 1� q0 ayð Þb

1� q0

" #�1

�1;

that is,

dy ¼ a
b

q0

1� q0

� �1=b

v1=b�1 1þ vð Þ�1�1=b
dv;

we can write the integration as follows:

z ¼ aq01=b

b 1� q0ð Þ bþ1ð Þ=b

Zv

0

v1=b�1dv

1þ vð Þ1=b
: ð5Þ

It can be integrated further [cf. Gradshteyn and Ryzhik,
1994, equation (3.194), p. 333] to

z ¼ aq01=b

1� q0ð Þ bþ1ð Þ=b v
1=b

2F1 1=b; 1=b; 1þ 1=b;�vð Þ

¼ aq01=b

1� q0ð Þ bþ1ð Þ=b
v

vþ 1

� �1=b

2F1 1=b; 1; 1þ 1=b;
v

vþ 1

� �
; ð6ÞCopyright 2002 by the American Geophysical Union.
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where 2F1 is the hypergeometric function. The function may
be expressed in a series form, and the solution can be
written in the following form:

z ¼ aq01=b

1� q0ð Þ bþ1ð Þ=b
v

vþ 1

� �1=b X1
j¼0

bj; ð7Þ

where the terms in the series can be calculated in the
following recursive way:

b0 ¼ 1 ð8aÞ

bjþ1 ¼
jþ 1=bð Þvbj

jþ 1þ 1=bð Þ vþ 1ð Þ j � 0: ð8bÞ

2.2. Brooks and Corey Model

[6] The Brooks and Corey model has the following form:

K yð Þ ¼ KS

ayð Þl ‘þ2ð Þþ2
¼ Ks ayð Þ�b ay > 1 ð9aÞ

K yð Þ ¼ Ks ay 	 1; ð9bÞ

where, b = l(‘ + 2) + 2, l is the pore size distribution
parameter in the Brooks and Corey retention function, and ‘
is the pore connectivity parameter in the relative hydraulic
conductivity model proposed by Mualem [1976].
[7] If a y 	 1, the relationship between y and z is simply

z ¼ KSy
KS � q

¼ y
1� q0

:

If ay>1, then the integration in equation (2) can be written
as

z ¼
Zy
0

K yð Þdy
K yð Þ � q

¼
Z1=a
0

dy
1� q0

þ
Zy
1=a

dy

1� q0 ayð Þb

¼
Z1=a
0

dy
1� q0

þ
Zy
0

dy

1� q0 ayð Þb
�

Z1=a
0

dy

1� q0 ayð Þb

¼
Zy
0

dy

1� q0 ayð Þb
þ

Z1=a
0

dy
1� q0

� dy

1� q0 ayð Þb

" #

¼
Zy
0

dy

1� q0 ayð Þb
þ q0

1� q0

Z1=a
0

1� ayð Þb

1� q0 ayð Þb
dy: ð10Þ

The first term in equation (10) can be carried out in a similar
way with rational power model case, which can be written as

Zy
0

dy

1� q0 ayð Þb
¼ 1

a
s

q0 1þ sð Þ

� �1=b
2F1

1

b
; 1; 1þ 1

b
;

s

1þ s

� �
;

ð11Þ

where s = [1 - q0(ay)b]�1 �1. The second integration in
equation (10) can be carried out with a change of variable, x =
(ay)b. It leads to

Z1=a
0

1� ayð Þb

1� q0 ayð Þb
dy ¼ 1

ab

Z1

0

x1=b�1 1� xð Þ 1� q0xð Þ�1
dx: ð12Þ

The integration can be carried out in terms of the b function
and the hypergeometric function [cf.Gradshteyn and Ryzhik,
1994, equation (3.197), p. 335]:

Z1=a
0

1� ayð Þb

1� q0 ayð Þb
dy ¼ 1

ab
B 1=b; 2ð Þ 2F1 1; 1=b; 2þ 1=b; q0ð Þ

¼ b
a 1þ bð Þ 2F1 1; 1=b; 2þ 1=b; q0ð Þ: ð13Þ

Therefore the combination of these two terms results in the
following complete solution for Brooks and Corey model:

z ¼ y= 1� q0ð Þ ay 	 1 ð14aÞ

z ¼ bq0

a 1� q0ð Þ 1þ bð Þ
X1
j¼0

ej þ y
X1
j¼0

fj ay > 1 ð14bÞ

with

e0 ¼ 1; ð15aÞ

ejþ1 ¼
jþ 1=bð Þq0ej
jþ 2þ 1=bð Þ j � 0; ð15bÞ

f0 ¼ 1; ð16aÞ

fjþ1 ¼
jþ 1=bð Þsfj

jþ 1þ 1=bð Þ 1þ sð Þ j � 0: ð16bÞ

We would like to point out a probable typo in Warrick’s
[1988, p. 64] paper. The second part of his equation (25)
should read as

ajþ1 ¼
2þ jð Þgaj

2þ jþ 1=nð Þ½ � j � 0:

[8] The solutions presented in this paper can be easily
extended to the case where the capillary tension (yL) is
given at the lower boundary (zL) by the following simple
manipulation:

z� zL ¼
Zy
yL

K yð Þdy
K yð Þ � q

¼
Zy
0

K yð Þdy
K yð Þ � q

�
ZyL

0

K yð Þdy
K yð Þ � q

: ð17Þ

The results we developed earlier can then be used to
evaluate each term in the equation (17).

3. Sample Results

[9] In the dry range the rational power model closely
mimics the Brooks and Corey model. In the wet range the

Table 1. Representative Values for the Brooks and Corey and the

Rational Power Model Soil Parameters and Normalized Flow Rate

KS, cm s�1 a, cm�1 b q0

Clay 3.4 � 10�5 0.0111 3.3 0.1
Silt-loam 3.4 � 10�4 0.0222 5.64 0.01
Sand-loam 3.4 � 10�3 0.0400 11.88 0.001
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Figure 1. Capillary tension profiles versus distance above water table. (a) For the rational power model.
(b) For the Brooks and Corey model.
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rational power model smoothes out the discontinuity present
in the Brooks and Corey model. In the sample calculations
we choose the input values for KS, a, b, and q0 from
Salvucci [1993] and Bras [1990] for three soil textures.
They are listed in Table 1.
[10] The capillary tension profiles for the three soil

textures are shown in Figure 1a for the rational power
model and in Figure 1b for the Brooks and Corey model.
The results for the two models compare quite similarly
except for the clay case where the capillary tension for the
Brooks and Corey model is slightly larger than that for the
rational power model. This is because the rational power
model noticeably smoothes out the discontinuity existing in
the Brooks and Corey model, resulting in larger differences
between these two models for clayey soil than those for
sand-loam and silt-loam soils.
[11] Salvucci [1993] developed an approximate solution

for the rational power model by expanding and truncating
the integrand in the analytical expression as follows:

az ¼ 1

1� q0
ayð Þ�b� q0

1� q0

� ��1=b

: ð18Þ

In Figure 2 we show comparison between our results and
Salvucci’s results for the clay case at three different
infiltration rates. It is apparent that Salvucci’s approximate
solutions consistently overestimated the depth for the steady
state infiltration. The way this solution was derived
contributes to the fact that it overestimated the depth z. In
Salvucci’s [1993, equation (12)] solution the term ( y + 1)�1/b

was approximated by y�1/b in the integrand to obtain z, which
was obviously an overestimation. As we can see, the
overestimation could be fairly significant for the fine-
textured soil (clay).

4. Concluding Remarks

[12] For soils with their unsaturated hydraulic conductiv-
ity characterized by Gardner’s [1958] rational power model
or the Brooks and Corey model, we developed analytical
solutions for the steady state one-dimensional infiltration in
terms of the relationships between the capillary tension and
the distance above the water table. These solutions comple-
ment Warrick’s [1988] solutions for evaporation and may be
used either for calculations of capillary tension profiles or
for checking numerical computations.

Figure 2. Comparison between the results of this study and Salvucci [1993] for the clay soil case at
three different infiltration rates.
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