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Abstract 

Solutions of the Richards equation for water flow in variably saturated porous media are 
increasingly being used in water resources evaluation and environmental management. Besides 
the accuracy of  solution, also of concern is the required computational effort, especially when 
highly nonlinear soil hydraulic properties and dry initial conditions are involved. In this paper 
we evaluate the performance of  different convergence criteria when the modified Picard 
iteration method is used for solving the mixed-form Richards equation. Results are compared 
in terms of computer processing (CPU) time and number of  iterations. A new nonlinear 
convergence criterion derived using a Taylor series expansion of the water content was 
implemented in the mixed-form numerical algorithm. The computational efficiency of the 
new criterion was evaluated against two widely used convergence criteria for different soil 
types, boundary conditions, initial conditions, and layered soils. Whereas all three criteria 
produced nearly identical results in terms of calculated water content, pressure head, and 
water flux distributions, all with negligible mass balance errors, the required CPU times were 
significantly different. In general, the new nonlinear convergence criterion was found to be 
computationally much more efficient than the other two criteria. The new criterion was also 
more robust (i.e. the solution remained convergent) for highly nonlinear flow problems for 
which the other two convergence criteria failed. Results of this study indicate that the new 
convergence criterion, when implemented in the modified Picard solution of  the mixed-form 
Richards equation, produces a very efficient and accurate method for simulating variably 
saturated water flow in soils. 

1. Introduction 

N u m e r i c a l  mode l s  a re  i m p o r t a n t  tools  in env i ronmen ta l  s tudies  to assess the  risks 
o f  g r o u n d w a t e r  c o n t a m i n a t i o n  f rom chemicals  re leased in  the  unsa tu r a t ed  zone.  The  
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extreme variability and complexity of geological materials, dry initial conditions, and 
varying boundary conditions can make the flow and transport problem difficult to 
solve within acceptable limits of accuracy and computational effort. Most of the 
currently available numerical methods have sacrificed either accuracy or computa- 
tional efficiency. For example, infiltration into relatively coarse-textured soils is 
generally difficult to model because of highly nonlinear hydraulic characteristics. 
Dry initial conditions and highly nonlinear hydraulic properties often require the 
use of very fine spatial and temporal discretizations to avoid numerical instabilities. 
These conditions cause numerical algorithms to become CPU-intensive, especially 
when long-term and/or multi-dimensional problems must be simulated. Hence, 
efforts to achieve the best numerical algorithm should involve optimizing both the 
accuracy and robustness of the scheme, as well as minimizing the required 
computational time. 

The objective of this paper is to improve the computational efficiency of the mixed- 
form algorithm of Celia et al. (1990) for solving variably saturated flow problems. 
Improvements were made by accelerating the rate of convergence through a new 
nonlinear convergence criterion. The proposed criterion will be evaluated by 
comparing its performance with two other popularly used convergence criteria. 

2. Background 

One-dimensional vertical flow of water in a variably saturated rigid soil under 
isothermal condition is generally described with the Richards equation (Richards, 
1931), which may be written in terms of either the pressure head, i.e. 

cob o (KOh K) - S 
Ot -- O-z \ -~z -- ] (1) 

or the water content, i.e. 

Ot - Oz Oz - -~z - S (2) 

where h is the pressure head (L), 0 is the volumetric water content (L 3 L-3), t is time 
(T), z denotes the vertical distance from the soil surface downward ILl, C = dO/dh  is 
the specific water content capacity (L-l), K is the hydraulic conductivity (L T-l), 
D = K / C  is the soil water unsaturated diffusivity (L 2 T-l), and S is a source/sink term 
(r-l). 

Until recently, most numerical studies have used either the h- or 0-based form of the 
Richards equation to describe flow in a variably saturated soil (e.g. Davis and 
Neuman, 1983; Huyakorn et al., 1983, 1989; Hills et al., 1989; Kool and Van 
Genuchten, 1991; Kirkland et al., 1992). Water-content-based schemes using Eq. 
(2) may be written in a mass-conservative form and hence should in most cases 
conserve mass within the computation domain regardless of time step and grid 
spacing (Hills et al., 1989). Huyakorn and Pinder (1983) showed that it is 
advantageous to use such schemes for initially dry homogeneous soils. A limitation 
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of the 0-based formulation is that this form cannot be used to describe flow in the 
saturated zone, and flow in layered soils is also not easily simulated. Furthermore, 
0-based algorithms may suffer from mass balance errors at the boundaries even 
when this formulation accurately conserves mass in the interior of the flow system. 
The h-based formulation (1) is considered to be more useful for practical problems 
involving flow in layered or spatially heterogenous soils, as well as for variably 
saturated flow problems. Unfortunately, simulation of infiltration in dry and/or 
high nonlinear soils using the h-based formulation often faces difficulties in 
conserving mass. A more detailed discussion of the relative advantages and 
disadvantages of h-based and 0-based forms of the Richards equation has been 
given by Hills et al. (1989). 

Several researchers have explored alternative numerical techniques for solving the 
h- or 0-based forms of the Richards equation. The objectives of these studies include 
obtaining more stable numerical algorithms, speeding up the calculations, minimizing 
mass balance errors, and achieving more accurate solutions for different soil types or 
initial and boundary conditions. For example, Milly (1985) presented a mass- 
conservative solution procedure in which an effective element soil water capacity 
term was used. This approach, coupled mass lumping (Neuman, 1973), effectively 
insures global mass balance with the h-based equation. Rathfelder and Abriola (1994) 
developed similar mass-conservative solutions for the h-based equation by expanding 
and discretizing the soil water capacity. Others have used Kirchhoff type transforma- 
tions (e.g. Ross and Bristow, 1990) or alternative functions (Ross, 1990; Pan and 
Wierenga, 1995) to facilitateless nonlinear flow descriptions. In a different approach, 
Gottardi and Venutelli (1992) used a moving finite-element method in which grid 
points move along the wetting front, thereby permitting fewer nodes without sacrific- 
ing numerical accuracy. The moving grid method, however, has several limitations 
when applied to layered systems or used with time-varying boundary conditions. This 
method was also found to be less mass-conservative than conventional fixed-grid 
formulations. E1-Kadi and Ling (1993) proposed Peclet and Courant number criteria 
for spatial and temporal discretizations, to describe the accuracy and efficiency of 
numerical schemes solving the Richards equation. By introducing a source term, Hills 
et al. (1989) successfully solved the problem involving one-dimensional water flow 
into layered soils with the 0-based algorithm. Kirkland et al. (1992) subsequently 
developed a 0-based algorithm involving a transformation of variable to model 
variably saturated flow in two dimensions. More recently, Huang et al. (1994) 
proposed a method-of-characteristics based particle tracking technique to solve the 
h-based Richards equation for highly nonlinear infiltration problems. 

Perceiving the drawbacks of existing h- and 0-based solutions of the Richards 
equation, many have tried to combine the advantages of the two methods. The 
mixed form of the Richards equation was thought to maintain the mass conservative 
property inherent in the 0-based equation, while providing solutions in terms of the 
pressure head, h. The mixed-form formulation of Richards equation is written as 

oo o ,  ,/KOh  oK 
o--7 = Oz \ o---£ - s (3)  
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Brutsaert (1971) was one of the first to use the mixed-form Richards equation for 
solving saturated-unsaturated flow. He combined a finite difference approximation 
of the mixed-form equation with a Newton iteration scheme to deal witk steep wetting 
fronts effectively. Allen and Murphy (1985, 1986) used a mixed form of the Richards 
equation in their collocation finite element algorithm with 'quasi-Newton' iteration. 
More recently, Celia et al. (1987) and Celia et al. (1990) proposed a mass-conservative 
numerical scheme to solve the mixed-form Richards equation (3) using 'modified 
Picard iteration'. Because of a perfect mass balance, the modified Picard iteration 
technique proved to be a major improvement over earlier Picard methods. The 
modified Picard iteration method also showed much promise in modeling 
unsaturated flow with steep wetting fronts (Celia et al., 1990; Celia and Bining, 
1992). Ray and Mohanty (1992) subsequently revisited the mixed-form algorithm 
and showed its advantages over h-based schemes by means of several numerical 
experiments. 

Similarly to the h- and 0-based algorithms, the modified Picard iteration scheme of 
Celia et al. (1990) is based on a fully implicit (backward Euler) time approximation of 
Eq. (3) as follows: 

[ nhn+ 1,m+ 1 \ OKn+ l,m 0n+l'm+lAt - o n  Ozz0[ Kn+l'mv ~z )-F -~z - 0  (4) 

where the superscripts n and m denote time level and iteration level, respectively, and 
where for simplicity the sink term, S, has been ignored. However, instead of directly 
solving the discretized equation, the water content at the new time step and iteration 
level (0 ~+l'm+l) is replaced with a truncated Taylor series expansion with respect to h 
about the expansion point h n+l'm, i.e. 

-- (d~)n+l'm(hn+l'm+l-hn+l'm)+ O[(6m) 2] (5) on+l, m+l __ on+l, m ..~ 

where 

~m = hn+l,m+l __ hn+l,m (6) 

is the difference between the solved pressure heads at the m and m + 1 iteration levels. 
Neglecting the higher-order terms in (5) and substituting this equation into (4) gives 

Cn+lmhn+l,m l_hn+l,m,+l,m_ o I (Ohn+l,m+')] 
At ~ At Oz Kn+l'm " ~ 1 = 0 (7) 

which can be rewritten as 

0 (Kn+l, m i5~ m 

OKn+l,m 0n+l,m _ 0 ~ 

0 [ Oh n+l'm\ 
= - - ~  Kn+l 'm0z -~z')  

Oz At (8) 
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Eq. (8) defines the modified Picard approximation of Celia et al. (1990) as applied to 
the mixed-form Richards equation. It should be noted that 6 m in (8) is now the 
unknown dependent variable rather than the pressure head h n+l'm+l . Once 6m is 
solved by any standard technique such as finite elements or finite differences, the 
desired solution for the pressure head h ~+l'm+l can be obtained from (6). The last 
term on the right-hand side of Eq. (8) corresponds to the time derivative and is a key 
term to obtaining perfect mass balance. 

Celia et al. (1990) claimed that the mass-conservative property of Eq. (8) holds for 
all types of boundary conditions and all numerical approximations that maintain 
spatial symmetry. However, they also pointed out that as the left-hand side of (8) 
for the modified Picard scheme is identical to that of the original Picard formulation 
involving the h-based Richards equation, the computational effort for both forms 
should be identical, and hence there should be no computational advantage of using 
the mixed-form algorithm as opposed to the h-based formulation. Our study is 
designed to implement a new nonlinear convergence criterion in conjunction with 
the above mixed-form algorithm of Celia et al. (1990) to improve further the 
computational efficiency as compared with standard convergence criteria used in 
most current numerical studies. 

3. Proposed convergence criterion 

In numerical simulations using the h-based form of the Richards equation, the 
value of the pressure head at a new time level is usually guessed at first, and 
subsequently improved iteratively. The iterative process continues until the 
difference between the calculated values of the pressure head between two successive 
iteration levels becomes less than a preset tolerance 6a, i.e. until the following 
inequality is satisfied at all nodes: 

16ml = I hn+a'm+l - hn+l 'm I ~< 6a (9) 

This convergence criterion has been relatively standard in numerical studies, with the 
value of 6a varying widely. For example, while simulating three-dimensional 
unsaturated flow in a soil slab using finite elements, Huyakorn and Wadsworth 
(1985) adopted 6a = 0.01 cm and 0.001 cm as the convergence tolerances for Picard 
iteration and slice successive over-relaxation (SSOR) matrix subiteration, 
respectively, but used 6a = 1 cm for drainage simulations. The soils in their examples 
were initially relatively wet. Although it is generally true that more accurate solution 
can be obtained with smaller values of the convergence tolerance, 6a, the 
computational time required to reach a convergent solution using small values of 
6a can become excessive, especially for very nonlinear infiltration problems. 

In efforts to reduce the computational requirements associated with a small 
tolerance, 6a, in (9), several workers (e.g. Cooley, 1983; Kaluarachchi and Parker, 
1989; Kool and Van Genuchten, 1991) suggested the use of an empirical convergence 
criterion which involves both an absolute error (ra) and a relative error (rr) as 
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follows: 

16ml = Ih n+l,m+l - h++]'m I <<, 6rlhn+l'm+l I + 6 a (10) 

This convergence criterion is referred to hereafter as the mixed convergence criterion. 
Values adopted for the relative tolerance, 6r, have generally ranged from 0.001 to 0.01 
depending upon the desired accuracy. Eq. (10) shows that the relative part 6rlh"+l'm+t I 
can become large in comparison with the absolute part 6a when the absolute value of 
the pressure head h n+l'm+l is high. Although this suggests that convergent solutions 
are now more easily obtained as compared with the standard convergence criterion 
(9), the converged solutions using (10) may be substantially different from those 
predicted with the standard criterion. Because of a less strict convergence criterion, 
errors in the calculated pressure head using (10) may become unacceptable for certain 
applications where accurate estimates of the pressure head or fluid flux are required, 
such as near sharp moisture fronts. For such applications, the mixed criterion will 
serve to reduce the number of iterations, in particular when the pressure head changes 
significantly but the water content only little. 

Celia et al. (1990), and subsequently others, invoked the standard convergence 
criterion (9) to judge the convergence status of their mixed-form algorithm. As 
discussed above, this standard criterion is valid for h-based algorithms, but may be 
used also for the mixed-form algorithm of Celia et al. (1990), as this scheme actually 
solves for the pressure head h n+l 'm+l  , a s  for the h-based formulation. However, a 
different formulation arises if one considers the Taylor series expansion (5) of 
0 ~+l'm+l as the core of the modified Picard iteration method. This expansion suggests 
that the entire storage term (Cn+l'm6 m) of the right-hand side of (5), rather than only 
the absolute error 6 m, should be included in the convergence criterion. In other words, 
instead of (9), we propose to use the following criterion for the mixed-form algorithm 
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Fig. 1. Typical soil water retention and capacity curves for a coarse-textured soil. 
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of Celia et al. (1990): 

Cn+l'ml ml = [ 0n+l'm+l -0n+ l 'ml  ~ O  (11) 

This new criterion seems more appropriate than both (9) and (10) from a mathemati- 
cal point of view, and because of physical considerations. Figs. l(a) and l(b) present 
typical soil water retention and water capacity curves, respectively, for a relatively 
coarse-textured soil. Considering the AB part of the retention curve at the lower water 
contents, one may expect that if the pressure head changes significantly within this 
range, many iterations will be required to obtain a convergent solution with standard 
criterion (9) using a value of, for example, 1 crn for 6a. On the other hand, O within this 
range changes only minimally, resulting in a very small or nearly zero value of the soil 
water content capacity, C (Fig. l(b)). Thus, even though I~ml is relatively large, the 
product (c"÷]~l~ml) is still small to the point of  being negligible in Taylor series 
expansion (5). In other words, the number of iterations, and hence the computational 
effort, should be reduced by allowing a relatively large absolute error I~ml for regions 
where the soil is dry but changes in the water content are still small. A similar 
reasoning applies to the 0 range very close to saturation, although the advantages 
of the new criterion may not be immediately obvious here because of a much smaller 
range in pressure heads within this region. More interesting results can be found 
within the 0 range BC where the water content changes dramatically with small 
changes in the pressure head. The water capacity term generally reaches a maximum 
within this region, usually of the order of 10 -4 ,-~ 10 -] cm -1 depending upon soil type. 
Numerical results for the standard criterion become now very sensitive to the value of 
the tolerance, 6a. For example, if 6a = 1 cm is used, convergence will be relatively 
rapid, but a large error in 0 is now likely. Hence, a much smaller 6a should be used in 
the BC region to avoid large errors in 0. By contrast, the proposed nonlinear criterion 
will avoid some of these difficulties by specifying a tolerance on 0, e.g. 80 = 0.0001, 
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thereby automatically requiring I~ml to reduce to an appropriate value when the water 
capacity C becomes relatively large. As opposed to the curves for the coarse-textured 
soil in Fig. 1, the soil water retention and capacity curves for a typical fine-textured 
soil (Fig. 2) are less nonlinear, such that the advantages of  the proposed criterion may 
not be as significant as for a coarse-textured soil. 

We will now evaluate for several example problems the performance of the new 
criterion (11) in terms of  solution accuracy and, particularly, computational 
efficiency. 

4. Numerical experiments 

Several hypothetical infiltration problems were simulated for the purpose of 
evaluating the relative performance of the different convergence criteria. Numerical 
experiments were conducted for soils with different hydraulic characteristics. We also 
studied the effects of different initial and boundary conditions, as well as soil layering, 
on the results. For simplicity, we solved (7) instead of  (8) to obtain directly solutions 
for the pressure head using the mass-lumped Galerkin finite element method. The soil 
water retention and hydraulic conductivity were described by Van Genuchten (1980) 
a s  

0 - O, 1 
Se = Os - Or [1 + (o4ht)n] l-1/n (12) 

K = KsS~/2[1 - (1 - sn / (n- l ) ) l - l /n]  2 (13) 

where Se is effective saturation; 0, and 0~ are the residual and saturated water contents 
(L 3 L -3), respectively; Ks is the saturated hydraulic conductivity (L T- 1); a ( L -  1 ) and 
n are shape parameters. Except where mentioned otherwise, we fixed the hydraulic 
parameters for all numerical experiments at Ks = 100 cmday -1, 0~ = 0.45, and 
0, = 0.05. In each case we used a relative tolerance 6r = 0.001, an absolute tolerance 
6 a = 1 cm, and 6o = 0.0001. 

Two types of boundary conditions were used at the soil surface (z = 0): (1) a flux 
boundary condition assuming a constant infiltration rate of 50 cm day-l ;  (2) a 
ponding boundary condition with zero head. All examples were run with a free- 
drainage or unit-gradient condition (McCord, 1991) at the bottom boundary. For 
simplicity, each simulation assumed a uniform initial pressure head in the soil profile. 
Numerical results were obtained by implementing the different convergence criteria 
into the computer code HYDRUS (Version 5.0) (Vogel et al., 1995), which is a revised 
and updated version of the original HYDRUS code developed by Kool and Van 
Genuchten (1991). The updated code simulates one-dimensional water flow, solute 
transport, and heat movement in variably saturated porous media using a linear finite 
element algorithm. The flow problem was solved using the modified Picard iteration 
method applied to the mixed-form Richards equation. All simulations invoked a 
solution domain of 200 cm, constant spatial increments (Az) of 2 crn, and a 
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maximum permitted number of iterations of 20. Although the initial, minimum and 
maximum values of the time steps were the same for all numerical experiments, the 
actual time step, At, was automatically updated according to the convergence history 
during a simulation run. Simulations were run on a 486/33 MHz 16 bit personal 
computer. Real-run (CPU) times reported in this paper include times for reading 
and writing files (generally only a very small fraction of the total CPU time). 

The three convergence criteria for the mixed-form algorithm were evaluated in 
terms of solution quality (including mass balance error (MBR) and solution 
accuracy) and computational efficiency (CPU time and total number of iterations 
during the simulations). For comparison purposes, we considered the numerical 
solution obtained using the absolute convergence criterion with 6a set at 1 cm to be 
the 'exact solution'. This solution was in most or all cases indistinguishable from 
results obtained with a tolerance 6a of 0.01 cm. The accuracy and computational 
efficiency of the solutions using the mixed and proposed criteria were then evaluated 
by comparisons with the exact results. Based on the flow continuity equation, the 
mass balance error (MBR) was defined as the difference of the net amount of water 
added to the system and the change in the amount of water stored in the system after a 
given elapsed time. 

5. Results and discussion 

Figs. 3(a), 3(b), and 3(c) show simulated water content (8), pressure head (h), and 
Darcian fluid flux (q) distributions, respectively, using three convergence criteria, i.e. 
the proposed nonlinear criterion 60 given by Eq. (11), the mixed criterion (rrlh] + 6a) 
given by (10), and the standard criterion 8a given by (9). The distributions are for 
infiltration at a constant flux of 50 cm day -1 in a coarse-textured soil with hydraulic 
parameters 0r = 0.05, 0s = 0.45, Ks = 100 cm day -1, n = 5.0 and a = 0.2 (Exp. 4, 
Table 1). Essentially the same numerical results were obtained for all three 
convergence criteria. The closeness of results for different convergence criteria was 
found to be a general rule rather than an exception. Moreover, when the mixed-form 
algorithm of Celia et al. (1990) was used, the three criteria in all cases produced 
perfect mass balances (]MBR[ < 10-14). Although a zero mass balance error does 
not necessarily imply a correct numerical solution, mass conservation is at a minimum 
a requisite for an accurate numerical solution. As the solutions in all cases were very 
close and consistent, and had correct mass balances, we shall further compare the 
performance of the three convergence criteria only in terms of the required CPU times 
and total number of iterations for the simulations. CPU times for the example of Fig. 
3, which involved a total simulation time of t = 1.2 day, were 208, 358, and 714 s for 
our proposed criterion (11), the mixed criterion (10), and the standard criterion (9), 
respectively. The corresponding total numbers of iterations were 2025, 4247, and 
13048, respectively. In the sections below we shall make more comprehensive com- 
parisons of the CPU times used by the different convergence criteria for various soil 
types, initial conditions, inlet boundary conditions, for infiltration in a layered soil, 
and for a two-dimensional flow problem. 
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5.1. Performance for different soil hydraulic characteristics 

Fig. 4 presents the simulation results for ponded infiltration into two different soils, 
a relatively fine-textured soil (a  = 0.015 and n = 1.5), and a relatively coarse-textured 
soil (t~ = 0.2 and n = 5), both having a uniform initial pressure distribution of  
hi = - 1 0 4  cm. Values for 0r, Os, and Ks were the same as before. The three 
convergence criteria again produced essentially the same pressure head distributions 
at all times (Fig. 4). Very consistent solutions among the three convergence criteria 
were also found for the water content and the Darcian flux distributions (results not 
further presented here). However, some differences were observed in CPU time and 
total number of  iterations. For  the fine-textured soil (Fig. 4(a)), the computational 
requirements for the proposed nonlinear criterion (CPU time was 35 s and total 
number of  iterations 2241) were comparable with those for the mixed criterion (34 
s and 1901 iterations), but much less than those for the standard criterion (77 s and 
5008 iterations). By comparison, the new criterion was found to be far more 
economical for the coarse-textured soil (Fig. 4(b)), for which the CPU times were 
72, 240, and 500 s using the proposed, mixed, and standard criteria, respectively. 

Very similar results were obtained for flux-controlled infiltration in different soils 
having the same initial condition (-104 cm) as before. As the nonlinear nature of  the 
soil hydraulic properties is mostly represented in the values of  a and n, we decided to 
vary only these two parameters while keeping the same Or (0.05), 0s (0.45), and Ks 
(100 cm day-l) .  Infiltration was assumed to occur at a rate of q0 --- 50 cm day -1 (i.e. 
one-half of Ks) at the soil surface. Our comparisons of  CPU times for different 
convergence criteria always involved the same spatial discretization, initial time 
step, maximum number of  iterations allowed during a particular time step, and 
total simulation time. Table 1 shows that CPU time and the total number of  
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Fig. 4. Simulated pressure head distributions using the proposed, standard, and mixed convergence criteria 
for ponded infiltration (h0 = 0) into (a) a relatively fine-textured soil (n = 1.5, cz = 0.015 cm-J),  and (b) a 
relatively coarse-textured soil (n = 5.0, t~ = 0.2 cm-l ) .  
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iterations for the three criteria generally increased with increasing values of a and n. 
However, the degree at which CPU time increased differed significantly among the 
three criteria. CPU time for the proposed criterion increased only little with n and/or 
a, whereas the CPU times for both the mixed and standard criteria increased 
dramatically. It should be noted from Table 1 that the CPU time and the total 
number of iterations were always smallest for the proposed nonlinear criterion, 
highest for the standard criterion, and intermediate for the mixed criterion. 

Fig. 5 shows that improvements in computational efficiency of the proposed 
criterion were especially dramatic for relatively large n values typical of soils having 
relatively narrow pore-size distributions (mostly coarse-textured soils). Actually, the 
standard and mixed criteria failed to yield convergent solutions for n > 5. Fig. 6 
presents predicted water content, pressure head, and volumetric flux distributions 
for a soil having extremely nonlinear soil hydraulic properties, i.e. a = 0.25 cm -l 
and n = 10. Numerical simulation of infiltration into such soils can be very difficult as 
shown by, among others, Huang et al. (1994). This example illustrates the robustness 
of the proposed criterion for flow problems involving highly nonlinear hydraulic 
properties. 

5.2. Performance f o r  different initial conditions 

Accurate solutions for infiltration into dry soils are often difficult to obtain with 
standard numerical schemes (Zaidel and Russo, 1992) because of steep pressure head 
distributions and rapid advancement of the wetting front. Such problems usually 
require very small time increments and large numbers of iterations..We' examined 
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Fig. 5. C P U  t ime vs. soft hydraul ic  parameter  n fo r  the ~ numerical experiments l isted in Table 1. 
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the performance of the proposed convergence criterion for infiltration in different 
soils under different initial conditions; results are summarized in Table 2. Two types 
of soils were selected: a medium-textured soil (a = 0.015 and n = 2.5) and a relatively 
coarse-textured soil (c~ = 0.15 and n = 4.0). The example simulated ponded infiltra- 
tion with zero pressure head at the soil surface. Initial pressure heads ranged from 
-1000 cm of water to -500 000 cm for the medium-textured soil, and from -1000 to 
-50 000 cm for the coarse-textured soil. Figs. 7(a) and 7(b) show calculated pressure 
head profiles for the medium-textured soil having initial pressure heads of 
h i = - - 1 0 4  cm and -105 cm, respectively. The three convergence criteria in both 
cases produced nearly identical solutions, but at the cost of significantly different 
computer times. For hi = - - 1 0 4  cm, the standard criterion required about three 
times more CPU time than the proposed criterion (89 vs. 30 s). As the initial pressure 
head decreased (drier soil), the difference in computational efficiency between the 
standard and proposed criteria became even more pronounced: CPU time using 
the standard criterion (896 s) for hi = - 1 0 5  cm became eight times that of the 
proposed criterion (112 s). Except for the relatively wet initial condition 
(h i = - 1 0 0 0  c m ) ,  CPU times for the mixed criterion were found to be between 
those needed for the proposed and the standard criteria. Although the CPU times 
generally increased with decreasing initial soil water pressure head (drier soils), the 
rates of increase were greatly different among the three convergence criteria (Figs. 
8(a) and 8(b)), with the proposed criterion being the least sensitive to the value of hi. 

P r e s s u r e  Head,  h (cm) Pressure  Head,  h (era) 

0 -2000 -4000 -6000 -6000 -10000 0 -20000 -40000 -60000 .60000-100000 

Standard h i - -1 0" cm I h I - -10 s • ~ .xed • ~ M,xedStandard cm 

so ~t,,O.1 d ~ s t-0.1 d 

Q ~ A  

,~ . __ 0.5 

_ 

(a) (b) 

Fig. 7. Calculated pressure head profiles using the proposed, standard,  and mixed convergence criteria for 
constant  head infiltration (h0 = 0) in a soil having n = 2.5 and c~ = 0.015 cm -I and with an uniform initial 
pressure head of  (a) h / =  -104 cm and (b) hi = -105 cm. 
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These findings indicate a significant advantage  o f  the proposed  nonl inear  convergence 
criterion over t radi t ional  criteria for  infiltration problems involving extremely dry  
initial soil condit ions.  

5.3. Performance f o r  a layered soil profile 

The relative pe r fo rmance  o f  the three convergence criteria for infiltration into a 
layered soil was also investigated. Numer ica l  experiments were conducted  for  
infiltration in a soil profile consisting o f  three distinct soil horizons:  a relatively 
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coarse-textured soil (Ks = 100 cmday  -1, 0s =0 .4 ,  0r =0.05 ,  a =0.15 ,  n =4 .0 )  
between 0 and 40 cm depth; a fine-textured soil (Ks = 10 cmday  -1, 0s = 0.45, 
Or = 0.05, a = 0.015, n = 1.5) between 40 and 100 cm; and a medium-textured soil 
(Ks = 50 cmday  -1, 0s = 0.4, Or = 0.05, a = 0.015, n = 2.5) between 100 and 200 cm. 
We assumed pending with zero pressure head at the soil surface and a uniform initial 
pressure head o f - 1 0 5  cm. As for the homogeneous soil, calculated results for 0, h, 
and q were again essentially the same among the three different convergence criteria. 
Fig. 9 presents calculated pressure head distributions at three times. It should be 
noted that, as expected, a fully saturated zone developed in the upper coarse-textured 
soil overlying the fine-textured layer. The wetting front itself was always very steep 
because of  the very dry initial condition. Numerical simulation for this example 
required approximately 8, 15, and 19 min for the proposed, mixed, and standard 
convergence criteria, respectively. We note here that, as compared with a homo- 
geneous soil, numerical simulation of  infiltration in a layered soil generally requires 
more CPU time, irrespective of  the invoked convergence criterion. Several additional 
numerical experiments (not further reported here) for the same solution domain and 

Pressure Head, h (cm) 

50 0 -200 -400 -600 -800 -1000 -100000 
I i , j = ~  , I , I , I , I , 

I " I  - Proposed Coarse - "  ~ "  I A Standard 
. . . . . .  ~ • Mixed 

Fine ",~. I ~ , ~ -  t=0.1 d 

Medium 

15o 0.5 

2O0 

N 

Fig. 9. Pressure head distributions calculated using the proposed, standard, and mixed convergence criteria 
for ponded infiltration (h0 = 0~ in a soil having three layers: a coarse-textured layer 1 (0-40 cm), a fine- 
textured layer 2 (40-100 cm), and a medium-textured layer 3 (note the different scales of the h-axis for 
different ranges in the pressure head). 
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the same total number of finite element nodes indicated that CPU time generally 
increased with the number of soil layers for all three convergence criteria. In each 
case, however, the new convergence criterion was found to require less computer time 
than the other two criteria. 

The examples above show that the proposed convergence criterion always required 
the least amount of CPU time, irrespective of the type of boundary condition (flux or 
ponding) invoked at the soil surface. Numerical experiments were also conducted for 
different bottom boundary conditions, i.e. free draining and Dirichlet type con- 
ditions. Results of these simulations again indicated the superiority of the proposed 
nonlinear criterion as compared with the other two criteria (figures not further 
presented here). Results obtained thus far for the proposed convergence criterion 
always used a value of 0.0001 for 6o in (11). A large number of numerical experiments 
involving different hydraulic properties and initial and boundary conditions showed 
that CPU times could be further decreased somewhat, without appreciably affecting 

A E D 
m m m  
I l l l l  

I l l  
I I I  
I I I  
I I I  
I I I  

III 
Ul 
III 
lU 
III 
III 
III 
Ul 
III 
III 

B C 
Fig. 10. Finite element mesh for the two-dimensional infiltration events. Zero-flux boundary conditions 
were used except as noted. The initial pressure head was - l O  4 cm for all simulations. 
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the numerical accuracy, by increasing 60 to a value of about 0.001 depending upon the 
specific infiltration problem being simulated. Much higher values for 6o (e.g. 0.01 or 
higher) eventually produced inaccurate (mostly oscillating) results or even divergent 
solutions. 

5.4. Performance for two-dimensional variably Saturated flow 

Computational efforts for multi-dimensional variably saturated flow problems 
should be far more demanding as compared with the one-dimensional case. The 
simulations presented below provide additional tests of the proposed convergence 
criterion for cases of flow in a vertical two-dimensional soil profile. The problem 
domain was taken to be of 125 cm width and 130 cm depth; the associated finite 
element mesh used for the ponded infiltration numerical experiment is illustrated in 
Fig. 10. All sides of the flow region were considered to be impervious, except for a 
strip of 17 cm length at the surface where ponded infiltration with zero pressure head 
was imposed. The solution domain was discretized into 342 quadrilateral elements 
involving 380 nodes. To minimize numerical errors, relatively small elements were 
implemented near the soil surface, with the size of elements gradually increasing with 
depth. Finer spatial increments were also implemented near the right edge of the 
ponding area where sharp gradients were expected to develop. Numerical simula- 
tions were carried out with the SWMS_2D code of Sim/mek et al. (1994), but properly 
modified to account for the different convergence criteria. 

Both a layered and a homogeneous soil profile were considered for the two- 
dimensional problem. For the layered soil we considered a field soil profile in the 
Hupselse Beck watershed in the Netherlands (Simfinek et al., 1994) consisting of two 
layers: a surface clayey soil layer (0-40 cm) and a subsurface loamy soil layer (40- 
130cm). Soil hydraulic parameters of the two soil layers as estimated by Hopmans 
and Stricker (1989) are listed in Table 3. The invoked boundary conditions are listed 
in Table 3. We assumed a uniform initial pressure head (h; = -104 cm) distribution 
across the profile. Numerical simulations were performed using both the standard 
and proposed convergence criteria given by (9) and (11), respectively. Fig. 11 shows 
contour plots of the pressure head after 72 h of infiltration. Calculated results for both 
criteria were found to be almost indistinguishable. However, the standard criterion 

Table 3 
Hydraulic parameters and boundary conditions for the two-dimensional flow experiment 

Hydraulic parameters 

Upper  layer Lower layer 

Boundary conditions 

Os 0.399 0.339 Oh 0 
Or 0.0001 0.0001 - -  - 
K s (era day -1) 29.8 45.4 Onl'AaCOE-- 
ct (em -1) 0.0174 0.0139 hl~-g = 0 
n 1.3757 1.6024 
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Fig. 11. Pressure head contours after 72 h of infiltration into a layered soil consisting of a fine-textured 
upper layer and a medium-textured lower layer, as calculated using the proposed criterion (continuous 
lines) and the standard criterion (dashed lines), respectively. Soil hydraulic properties are given in Table 3. 

required more than twice as much CPU time (78 min) as the proposed criterion 
(37 min) for simulating the 3 day infiltration event. 

We also simulated the same two-dimensional problem assuming a homogeneous 
soil profile, but with somewhat more nonlinear hydraulic properties: Or = 0.05, 
0 s = 0.45, K~ = 72 cmday -1, n = 2.5 and a = 0.1 cm -1. Initial and boundary 
conditions were the same as for the layered soil example. Calculations for the 4 h 
infiltration event used less than 1 h (54.5 min) of CPU time with the proposed 
criterion and 47.5 h with the standard criterion, indicating a more than 50 times 
improvement in efficiency for the proposed criterion. Several other tests, not further 
reported here, for two-dimensional flow using different soil hydraulic parameters 
produced similar findings of improved computational efficiency when the proposed 
nonlinear convergence criterion was adopted. 

6. Summary and conclusions 

A new nonlinear convergence criterion is proposed for the mixed-form algorithm of 
Celia et al. (1990) for solving the variably saturated flow equation. The nonlinear 
convergence criterion (11), derived using a Taylor series expansion of the water 
content 0 "+I'm+l, consists of a term containing the absolute error of pressure head, 
and a term involving the soil water capacity. The proposed criterion was successfully 
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applied to a large number of  infiltration problems involving a variety of  soil types, 
boundary conditions, initial conditions, homogeneous and layered soil profiles, and 
one- and two-dimensional flow problems. The performance of  the proposed criterion 
was evaluated against a popularly used standard criterion involving the absolute error 
of  pressure head only, and a mixed criterion consisting of  absolute and relative errors. 
The following conclusions were drawn from our numerical experiments: 

(1) although insuring perfect mass balance, the new criterion produced results 
which, for all numerical experiments, were very close to those obtained with the 
standard and mixed convergence criteria in terms of  simulated water content, 
pressure head, and water flux distributions. 

(2) Computational efforts (CPU time and total number of  iterations) using the 
proposed criterion were always considerably less than those using the standard and 
mixed criteria for all scenarios tested. 

(3) Reductions in computational effort using our proposed criterion were particu- 
larly significant for infiltration into relatively coarse-textured soils (high n and o~ 
values), infiltration in initially dry soils, and multidimensional infiltration problems. 

(4) The proposed nonlinear criterion was found to be more robust than the 
standard and mixed criteria when the soil hydraulic characteristics were extremely 
nonlinear (high n and c~) and/or when very dry initial soil conditions existed. 
Numerical solutions for these extreme conditions using the standard and mixed 
criteria failed to converge, or produced unstable and slowly convergent solutions 
(two-dimensional case). 

We conclude that implementation of  the proposed nonlinear convergence criterion 
will make the mixed-form algorithm of Celia et al. (1990) much more efficient and 
robust. 

References 

Allen, M.B. and Murphy, C.L., 1985. A finite element collocation method for variably saturated flows in 
porous media. Numer. Methods Partial Differential Equations, 1: 229-239. 

Allen, M.B. and Murphy, C.L., 1986. A finite element collocation method for variably saturated flow in two 
space dimensions. Water Resour. Res., 22: 1537-1542. 

Brutsaert, W.F., 1971. A functional iteration technique for solving the Richards equation applied to two 
dimensional infiltration problems. Water Resour. Res., 7: 1583-1596. 

Celia, M.A. and Bining, P., 1992. A mass-conservative numerical solution for two-phase flow in porous 
media with application to unsaturated flow. Water Resour. Res., 28: 2819-2828. 

Celia, M.A., Ahuja, L.R. and Pinder, G.F., 1987. Orthogonal collocation and alternating-direction pro- 
cedures for unsaturated flow problems. Adv. Water Resour., 10: 178-187. 

Celia, M.A., Bouloutas, E.T. and Zarba, R.L., 1990. A general mass-conservative numerical solution for 
the unsaturated flow equation. Water Resour. Res., 26: 1483-1496. 

Cooley, R.L., 1983. Some new procedures for numerical solution of variably saturated flow problems. 
Water Resour. Res., 19: 1271-1285. 

Davis, L.A. and Neuman, S.P., 1983. Documentation and user's guide: UNSAT2--variable saturated flow 
model. NUREG/CR-3390, US Nuclear Regulatory Comm., Washington, DC. 

E1-Kadi, A.I. and Ling, G., 1993. The Courant and Peclet number criteria for the numerical solution of the 
Richards equation. Water Resour. Res., 29: 3485-3494. 

Gottardi, G. and VenuteUi, M., 1992. Moving finite element model for one-dimensional infiltration in 
unsaturated soil. Water Resour. Res., 28: 3259-3267. 



K. Huang et al. / Journal of Hydrology 178 (1996) 69-91 91 

Hills, R.G., Porro, I., Hudson, D.B. and Wierenga, P.J., 1989. Modeling one-dimensional infiltration into 
very dry soils 1. Model development and evaluation. Water Resour. Res., 25: 1259-1269. 

Hopmans, J.W. and Stricker, J.N.M., 1989. Stochastic analysis of soil water regime in a watershed. J. 
Hydrol., 105: 57-84. 

Huyakorn, P.S. and Pinder, G.F., 1983. Computational Methods in Subsurface Flow. Academic Press, 
Orlando, FL. 

Huyakorn, P.F. and Wadsworth, T.D., 1985. FLAMINCO: a three-dimensional finite element code for 
analyzing water flow and solute transport in saturated-unsaturated porous media. GeoTrans, Inc., 
Herndon, VA. 

Huyakorn, P.S., Thomas, S.D., Mercer, J.W. and Lester, B.H., 1983. SATURN: a finite element model for 
simulating saturated-unsaturated flow and radionuclide transport. Electric Power Research Institute, 
Palo Alto, CA. 

Huyakorn, P.S., Kool, J.B. and Robertson, J.B., 1989. VAM2D--variably saturated analysis model in two 
dimensions (Version 5.0 with hysteresis and chain decay transport): documentation and user guide. 
NUREG/CR-5352, HGL89-01, Nuclear Regulatory Comm., Washington, DC. 

Huang, K., Zhang, R. and van Genuchten, M.Th., 1994. An Eulerian-Lagrangian approach with an 
adaptively corrected method of characteristics to simulate variably saturated flow. Water Resour. 
Res., 30(2): 499-507. 

Kaluarachchi, J.J. and Parker, J.C., 1989. An efficient finite element method for modeling multiphase flow. 
Water Resour. Res., 25: 43-54. 

Kirkland, M.R., Hills, R.G. and Wierenga, P.J., 1992. Algorithms for solving Richards equation for 
variably saturated soils. Water Resour. Res., 28: 2049-2058. 

Kool, J.B. and van Genuchten, M.Th., 1991. HYDRUS: one-dimensional variably saturated flow and 
transport model, including hysteresis and root water uptake. Re s. Rep. 124, US Salinity Laboratory, 
USDA, ARS, Riverside, CA. 

McCord, J.T., 1991. Application of second-type boundaries in unsaturated flow modeling. Water Resour. 
Res., 27: 3257-3260. 

Milly, P.C.D., 1985. A mass-conservative procedure for time-stepping in models of unsaturated flow. Adv. 
Water Resour., 8: 32-36. 

Neuman, S.P., 1973. Saturated-unsaturated flow seepage by finite element. Proc. ASCE, J. Hydraul. Div., 
99(HY12). 

Pan, L. and Wierenga, P.J., 1995. A transformed pressure head-based approach to solve Richards' equation 
for variably saturated soils. Water Resour. Res., 31: 925-931. 

Rathfelder, K. and Abriola, L.M., 1994. Mass conservative numerical solutions of the head-based Richards 
equation. Water Resour. Res., 30: 2579-2586. 

Ray, C. and Mohanty, B.P., 1992. Some numerical investigations of the Richards equation. ASAE Paper 
92-2586. ASAE, St. Joseph, MI. 

Richards, L.A., 1931. Capillary conduction of liquids in porous mediums. Physics, 1:318-333. 
Ross, P.J., 1990. Efficient numerical methods for infiltration using Richards equation. Water Resour. Res., 

26: 279-290. 
Ross, P.J. and Bristow, K.L., 1990. Simulating water movement in layered and gradational soils using the 

Kirchhoff transform. Soil Sci. Soc. Am. J., 54: 1519-1524. 
Sim/mek, J., Vogel, T. and van Genuchten, M.Th., 1994. The SWMS_2D code for simulating water flow 

and solute transport in two-dimensional variably saturated media. Res. Rep. 132, US Salinity Labora- 
tory, USDA, ARS, Riverside, CA. 

Van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsa- 
turated soils. Soil Sci. Soc. Am. J., 44: 892-898. 

Vogel, T., Huang, K., Zhang, R. and van Genuchten, M.Th., 1995. The HYDRUS (Version 5.0) code for 
simulating one-dimensional water flow, solute transport, and heat movement in variably-saturated 
media. Res. Rep. 135, US Salinity Laboratory, USDA, ARS, Riverside, CA. 

Zaidel, J. and Russo, D., 1992. Estimation of finite difference interblock conductivities for simulation of 
infiltration into initially dry soils. Water Resour. Res., 28: 2285-2295. 


