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ABSTRACT 
 
Satellite-based remote sensing of soil moisture is generally 
conducted with active (radar) and passive (radiometer) microwave 
measurements. During active microwave remote sensing the 
backscattering from the target i.e, the soil surface is adversely 
affected by the overlaying vegetation, consequently, sending 
degraded signal back to the radar sensor. This phenomena greatly 
compromise with the quality of soil moisture measurements. The 
proposed research presents an algorithm that averts usage of 
theoretical and empirical backscattering models. The algorithm 
uses Soil-Vegetation-Atmosphere-Transfer model for soil moisture 
estimation that is used to quantify the backscattering components 
of radar signals. The algorithm has simple and valid assumptions 
that convert the total radar backscattering equations for a particular 
temporal scale into a set of simple linear systems. The algorithm 
reasonably estimates the stochastic surface roughness and 
vegetation backscattering components.  
 

1. INTRODUCTION 
 
Microwave remote sensing is considered suitable to quantitatively 
measure soil moisture under variety of soil, topographic and 
vegetation conditions, and particularly the earth’s atmosphere is 
relatively transparent to microwave. Microwave (active/passive) 
remote sensing of soil moisture, however, remains an active area of 
investigation because of its dependency on variety of geophysical 
parameters (e.g., precipitation, soil type, topography, and 
vegetation) and sensor configuration (system parameters: 
frequency, incident angle, and polarization), and due to coarse 
spatial resolution of remote sensor that mask the underlying ground 
heterogeneity. 

Satellite-based passive microwave remote sensing is not 
adequate to meet the finer scale spatial resolution requirement for 
soil moisture in watershed, catchment, and field scale applications 
with the available configurations and associated limitations in 
terms of coarse resolution. The only satellite-based sensor that can 
meet the spatial resolution requirement for watershed and finer 
scale management is by using active microwave remote sensing 
techniques. Dobson and Ulaby [1]  in their study showed that using 
active microwave (radar) soil moisture (with ±3.5% vol/vol error) 
for spatial resolutions down to 1 km may be retrieved for soil 
surfaces with vegetation cover shorter than 15 cm. In active 
microwave remote sensing, the radar backscattering from the soil 
surface is adversely affected by the presence of vegetation. This is 
due to increased volume scattering and attenuation of 
electromagnetic signal. The overall impact of vegetation, surface 
roughness, and topography on radar signals results significantly 
higher root mean square error (RMSE) for soil moisture retrieval 

[1]. Studies have also demonstrated that SAR instruments at C-
band measure soil moisture for bare soil with nearly 3-4% vol/vol 
retrieval error. However, with SAR C-band it is difficult to map 
soil moisture accurately from the soil surface covered with 
vegetation. Many studies examined backscattering from soil under 
different vegetation conditions at various frequencies in L-, C-, and 
X-band at cross and like polarizations, and reported that 
backscattering is better related to soil moisture only at L-band 
frequency.  

At present, there is no operational L-band radar satellite 
system. The upcoming Soil Moisture Active Passive (SMAP) 
mission of National Aeronautic and Space Administration (NASA) 
is a pathfinder-class concept for global mapping of soil moisture. 
The SMAP will have onboard low-frequency L-band radiometer 
(1.42 GHz) and radar (1.26 GHz). It will have soil moisture 
product derived from ~40 km resolution brightness temperature 
from the L-band radiometer and ~3 km resolution backscattering 
coefficients from the L-band radar with a revisit period of 2-3 
days. The radar on SMAP platform is of particular interest here 
because it will provide a new perspective of L-band radar 
backscattering from a satellite platform. The study proposes a 
simple algorithm for determining stochastic surface roughness 
using synthetic radar data. The study also characterizes L-band 
radar backscattering coefficients under variety of terrain 
characteristics and vegetation conditions.  
 

2. MODELING ACTIVE MICROWAVE SENSING OF 
SURFACE SOIL MOISTURE 

 
We hypothesize that a reliable spatio-temporal distribution of soil 
moisture is important for probabilistic characterization of 
backscatter by surface features in active microwave remote 
sensing. The SVAT model [2] used in the study incorporates 
Dobson’s model that converts the modeled soil moisture to 
dielectric constant . Geophysical parameters (e.g., NDVI, soil 
texture, surface roughness) characterizing the study domain and 
estimated  from SVAT modeling provided synthetic radar total 
backscatter. The radar backscatter for a vegetation-covered soil 
layer in both HH and VV polarizations is expressed as [3], 

t = s exp(-2 o/cos ) + v + sv                          (1) 
where t represents the total radar scattering cross-section, s is the 
scattering contribution of the soil surface modified by the two-way 
vegetation attenuation, v is the scattering cross-section of the 
vegetation volume, and sv represents the multiple scattering 
interaction between the soil and vegetation. Subsequently the 
terminology, vegetation backscattering and soil-vegetation 
backscattering are interchangeably used with volume scattering 
and surface-volume scattering, respectively. 
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In practice, theoretical and empirical models are used to model the 
scattering components s, v, and sv. In case of the above-ground 
biomass (vegetation) is lesser than 0.5 kg/m2, the second and third 
terms ( v and sv) on the right side in eq. (1) become negligibly 
small. At radar L-band, the soil surface backscatter s can be 
modeled theoretically by Integral Equation Model (IEM). For a 
given radar configuration (i.e., wavelength, local incident angle 
and polarization), the IEM predicts the backscattering coefficient 
on a random surface depending on surface roughness (RMS height) 
s and its correlation length l, and the relative dielectric constant . 
For bare soil, there is a general confidence using the IEM in 
predicting L-band co-polarized backscattering signals (  and 

) of a random rough surface. Studies have also shown that the 
results from IEM deviated when compared to truck-mounted 
scatterometer and SAR (airborne and spaceborne) measurements. 
The theoretical models like IEM can rarely invert data measured 
from natural environment because of restrictive assumptions made 
during their derivation. Well established alternative empirical 
methods are used in this study to circumvent the difficulties for 
modeling the backscattering signatures of bare surfaces. The 
empirical models for backscattering coefficient of bare soil  
and  are derived from experimental data. Dubois, et al. [4]  
provide empirical expressions for  and  that is used in this 
study for the co-polarized backscatter,  
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where,  is radar incidence angle,  (cm) is the wavelength, k is the 
wave number, s is the surface RMS height, and  is the real part of 
the dielectric constant. The presence of vegetation biomass adds 
complexity and increase uncertainty in total radar backscattering. 
For radar backscatter modeling (unlike radiometric modeling) a 
uniform canopy assumption may not be adequate to describe the 
microwave-vegetation interactions.  In this study, over the spatial 
extent of the 3-km radar footprints, the models for the co- and 
cross-polarized backscatter from vegetation represented as 
randomly orientated-structures are evaluated as [5].  

Our numerical study uses a Soil-Vegetation-Atmosphere-
Transfer model [2] for soil moisture/dielectric constant modeling 
in conjunction with empirical models for s, v, and sv to 
characterize the spatial and temporal varibaility of microwave 
backscattering components. This synthetic data obtained from eq. 1 
is considered as the total backscattering received by the satellite-
based radar and is the basis for the characterization of uncertainty 
in radar backscattering and proposed algorithm (Section 3).  
 

3. A NEW ALGORITHM FOR ESTIMATING SURFACE 
ROUGHNESS AND VOLUME SCATTERING 

 
Using the synthetic radar backscattering data, the study uses a new 
algorithm to determine the surface roughness and vegetation 
backscattering components as an alternative to using any of the 
aforementioned empirical models. In the proposed algorithm, the 
surface roughness parameter (s) and the vegetation backscattering 
( v) are considered static for a small temporal scale (i.e., interstorm 
period). This is a resonable assumption based on the growth/decay 
status of vegetation in natural environment and soil surface getting 
modified after precipitation events. Also the parameters such as s 
and v are considered not very dynamic for pasture and herbaceous 

fields for small temporal scale. The backscattering due to soil-
vegetation interaction componenet ( sv) is the most dynamic 
because along with vegetation it is greatly influenced by the 
temporal status of dielectric constant which is highly correlated to 
soil moisture evolution. Based on these assumptions and 
conditions, a new approach is proposed here for determining 
surface roughness and backscatter components. For co-polarized 
radar backscattering from a specific region for a particular day (x) 
is given as 

                                        (4) 
where x = 1…n, represents a daily timestep within an interstrom 
period T. In other words the system has n sets of equations. By 
solving the n sets of equations simultaneously eliminated from 
all the equations as that component is considered constant across 
T. The backscattering from the soil surface  has two unknowns, 

x (dielectric constant for day x) and s in all the n equations. To 
compute dielectric constant reliable soil moisture at compatible 
resolution is essential. The SVAT model provides reasonable 
distribution of state variable i.e., soil moisture at soil surface for ~3 
km resolution. Subsequently Dobson's model relates soil moisture 
to equivalent dielectric constant. Now the system of n 
simultaneous equations comprise n+1 unknowns (i.e., s, 

…, ). To solve n simultaneous equations with n+1 
unknowns, we assumed . The rationale of  is 
that at the start of interstrom period and due to wet condition of 
soil surface the probability of  is high. The assumption 
is even more appropriate for the region having high vegetation and 
also the region with soil texture having high percentage of clay 
fraction that retains high soil moisture. This assumption reduced 
the number of unknowns to n, leading to computation of s, 

…, , for the interstrom period. The algorithm applied to 
certain regions for continuous interstrom periods could help study 
the temporal evolution and statistical characteristics of surface 
roughness s with changing season, precipitation, vegetation growth 
and vegetation water content.  
 

4. STUDY AREA AND DATA 
 
The Red-Arkansas river basin (Fig. 1) is selected for this study due 
to presence of diverse geophysical characteristics (topography, soil 
type and vegetation). Three specific regions (Fig. 1) are selected as 
focus areas: i) Northwestern mountainous region (50,000 km2), 
with elevation more than 1200 m from the sea level and having 
low vegetation (LAI between 0 and 1.2 m2/m2). ii) Central plains 
of farmlands/grasslands (38,000 km2) with moderate elevation 
between 150 m and 500 m of rolling topography and having highly 
variable LAI between 1 and 5 m2/m2, reaching its maximum during 
the summer months. iii) Eastern plains, of low lying (elevation: 40 
to 100 m) eastern region (38,000 km2). The landcover has 
moderate to high LAI of nearly 1 to 6 m2/m2. The other relevant 
datasets used in the study are summarized below: 

Soil: The requisite soil parameters (e.g., %sand, %clay, bulk 
density and saturated hydraulic conductivity) data were derived 
from CONUS-SOIL (http://www.soilinfo.psu.edu/) dataset. 

NDVI and LAI: MODIS derived 16-day composite data of 
NDVI and LAI at ~1 km spatial resolution were obtained and 
resampled to ~3 km for the study.  

Precipitation: Quality-controlled ~4 km precipitation data  
based on multi-sensor (radar WSR-88D and rain gauge) estimates 
from National Weather Service (NWS) River Forecast Centers 
(RFCs) and resampled to ~3 km (matching SMAP-based L-band 
radar spatial resolution) is used for the study.  
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Figure 1. Red-Arkansas River Basin with highlighted region 
showing three focus study area: a) the Northwestern Mountainous 
Region, b) the Central Plains, and c) the Eastern Plains. 

 
5. RESULT AND DISCUSSIONS 

 
SVAT modeling based on a distributed modeling framework [2] 
that have an ensemble of appropriate boundary conditions and 
scaled parameters was used to simulate soil moisture, soil 
temperature, and evapotranspiration in the Red-Arkansas river 
basin at a spatial resolution of ~3 km for the year 2005. Arbitrarily 
selected random error of 0-10% was introduced in the soil moisture 
values and the parameters (surface roughness, tree fraction, albedo, 
and vegetation opacity). The random error of 0-10% was to make 
the synthetic backscattering data more representative of chaos in 
the backscattering dynamics. The surface (i.e., top 5 cm) soil 
moisture from the simulation was used to compute total radar 
backscattering and its individual components (soil, vegetation, and 
soil-vegetation interaction). Mainly, backscattering based on 
HH/VV polarization was considered as the HV/VH cross 
polarization return was usually weaker than the like polarized 
return. Results presented in the subsequently are based on the 
average values of backscattering components within the study 
regions (i.e., the Northwestern mountainous region, the Central 
plains, and the Eastern plains). For brevity, the results of 
Northwestern Mountainous Region are discussed in detail.  
The Northwestern Mountainous Region is dominated by rugged 
topography and mountains, has low yearly average NDVI, and low 
average ambient temperature. The average soil moisture of this 
region is nearly 0.25 (v/v) with occasional spikes due to 
precipitation events. As expected, the backscattering at HH/VV 
polarization ( , ) from soil corresponds with soil moisture 
(Fig. 2a-b), although the variation and correspondence of  (Fig. 
2a) with soil moisture evolution is not as pronounced as  (Fig. 
2b), and is relatively constant throughout the year. Numerous 
investigations (e.g., [6]) have also shown that backscattering from 
soil having VV polarization ( ) is more sensitive to soil 
moisture than . The time series of HH total backscattering 
( ) (Fig. 2a) makes a hump in the middle of the year due to 
increase in NDVI value that ultimately increase the HH vegetation 
( ) and soil-vegetation backscattering ( ) components. 
However, this phenomenon is not visible with VV polarization 
(Fig. 2b). It mainly resulted from the surface-volume (soil-
vegetation) interaction term that has the characteristics

.  For this region the overall trend in  could be attributed to 
the trends in  and backscattering components.  

Figure 2. Mean soil moisture and mean backscattering components 
of the Northwestern Mountainous Region: a) at HH polarization, 
and b) at VV polarization. 

       To capture 
chaos and 
randomness in radar 
backscattering in 
diverse hydro-
climatic, terrain, and 
vegetation, Shannon 
entropy is used. 
Shannon entropy 
takes on a maximum 
value when the 

probability 
distribution is 
uniform without any 
deflection, and it 
reduces to zero 
when a particular 
value of the variable 
occurs with 
probability of one. 
Figure 3 highlights 
the uncertainty in 

terms of entropy associated with soil moisture and backscattering 
components for the Northwestern Mountainous Region. The 
difference in entropy values is distinct when the  and  
components are compared. This property of  component having 
high entropy values is attributed to the higher sensitivity to change 
in dielectric constant of soil medium with respect to change in soil 
moisture. In contrast, high entropy is not visible in the  
component (Fig. 3a). The entropy of  component for this 
region is relatively consistent for the whole study period. Another 
noticeable feature in Fig. 3a-b is the contribution of entropy of 
vegetation and soil-vegetation backscattering components in the 
overall response of HH/VV total backscattering ( ) 
entropy. In case of HH polarization, the first harmonic of  
entropy corresponds to the entropy of  and  components, 
and the higher harmonic responds to the  component. 
However, the entropy of  is almost unaffected by the entropy of 

 and  component. The entropy of  only responds to the 
entropy of  component. This indicates that with sparse 
vegetation, the scattering in L-band at VV ( ) polarization is 
dominated by the underlying surface and not by the vegetation and 
HH ( ) polarization is influenced by the overlaying vegetation. 
The mean plots in Fig. 2 shows the influence of the vegetation on 
total backscattering, but the entropy plot distinctly illustrates the 
effects in Fig. 3. The findings emphasize the dependence of  
on vegetation (i.e., NDVI) as an important index for algorithm 
development for the high elevation mountainous region. Similar 
analysis conducted for the Central Plains and the Eastern Plains 
show backscattering at HH polarization capture more variability 
(high entropy) in  and  components. In the Eastern Plains, 
due to high amount of vegetation the entropy of  is also quite 
significant and is not seen in other region of the study area.  
 
Figure 3. Entropy of soil moisture and backscattering components 
of the Northwestern Mountainous Region: a) at HH polarization, b) 
at VV polarization, and c) at HV polarization. 

 

 

a) 

b) 
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5.1. Estimation of 
Surface Roughness 
and Volume Scattering 
 
The new algorithm 
proposed here (Section 
3) exploits the radar 

backscattering 
components for 
determining certain 
geophysical parameters. 
As discussed in the 
above sections, the L-
band HH polarization 
( ) is most sensitive 
to the presence of 
vegetation which 
influence the roughness. 
Therefore, the HH 
polarization is used to 
evaluate s.  The 
algorithm uses the 

synthetic , surface average soil moisture (~5 cm), soil 
temperature, and precipitation data to estimate the surface 
roughness and vegetation backscattering. The assumptions and 
stochasticity in the algorithm introduce uncertainty in derived 
surface roughness estimates. The derived values of surface 
roughness depend on the inter-storm period, dielectric model and 
the assumption of static vegetation within the inter-storm period. In 
the study region, the validity of assumptions stands a better 
likelihood during spring and summer months, where the inter-
storm periods are small. The smaller inter-storm period can capture 
the dynamics of variable surface roughness. However, for extended 
inter-storm events, the cumulative errors of algorithm assumptions 
(static vegetation within the inter-storm) and errors in the model 
and data may lead to an inferior estimate of surface roughness. For 
the Northwestern Mountainous Region, a randomly selected pixel, 
Fig. 4 shows the derived surface roughness and vegetation 
backscattering components. The result shows that the surface 
roughness from the algorithm is very similar to the values used in 
calculating the synthetic radar backscattering data. The surface 
roughness exhibits variability during spring and summer months, 
and are more reliable estimate due to shorter interstrom period. The 
algorithm-estimated vegetation backscattering component shows 
consistency with respect to derived surface roughness, sparse 
vegetation and soil backscattering component for the pixel. 
However, the derived vegetation backscattering parameter shows 
nearly 25% absolute errors, when compared to synthetic data for 
the particular pixel. Similarly, other randomly selected pixels show 
absolute error ranging 20-30%. The errors in estimated vegetation 
backscattering are expected and are within reasonable limits 
considering the simplified assumptions used in the algorithm. The 
algorithm evaluated less variability and consistency in surface 
roughness parameter for the Central Plains that agrees with the 
existing ground conditions. The average surface roughness is 
slightly overestimated by 10%, when compared to the value used 
for calculating the synthetic data. The estimated vegetation 
backscattering for the region has absolute errors ranging between 
23% and 36%. For the Eastern plains, the maximum surface 
roughness is observed that is consistent to the presence of dense 
vegetation that imparts to this attribute. However, the surface 
roughness is overestimated by nearly 20%. For the Eastern plains, 

an absolute error ranging between 25% and 35% is obtained for 
estimated vegetation backscattering. The algorithm performed 
reasonably well in approximating surface roughness of the study 
areas. In case of estimation of vegetation backscattering, the 
algorithm produced considerable errors. The major portion of 
errors in vegetation backscattering is the consequence of the 
mismatch of inter-storm period and NDVI 16 days composite data. 
However, with the future availability of satellite-based radar data 
at L-band, the problem of high error in vegetation backscattering is 
expected to reduce significantly by including the co-registered 
remote sensing of vegetation water content in the algorithm. 
 
Figure 4. Algorithm-based derived surface roughness and 
combined vegetation backscattering of the Northwestern 
Mountainous Region. 

6. CONCLUSION 
 
An algorithm using 
SVAT model and 
radar backscattering 
data is presented to 
derive stochastic 

surface-roughness 
and volume 
scattering by 
vegetation. The 
results were 

promising for estimation of surface-roughness. However, further 
studies and realistic radar data is required to reduce the errors in 
estimation of vegetation volume backscattering. The work 
advances our understanding in active microwave remote sensing of 
soil moisture with region specific characterizations of 
backscattering components. The entropy-based characterization 
scheme of backscattering dynamics for variety of soil, topographic 
and vegetation conditions will help improve the radar-based soil 
moisture retrieval for upcoming SMAP mission of NASA.   
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